

Deprivation of Olfaction and Vision in Bumblebees (Bombus impatiens)

Sherri Jasmine Graham & Levente Orban, Ph. D

Research Questions: What is the impact of olfaction and vision deprivation on bumblebee foraging? Will the same foraging skills develop when deprived?

Literature:

- Foraging experience has been linked to mushroom body growth in the medial calyx
- However, restructuring of the bumblebee brain occurs in the first 21 days
- Recent research has shown mushroom body growth may be initialized by development and enforced by experience and stimuli
- Full deprivation of olfaction or vision to control for experience is limited in past research

- Callow workers (inexperienced, newly hatched workers) selected from a colony of Bombus impatiens
- Randomly assigned to either olfaction deprivation (n = 6), vision deprivation (n = 6), or control (n = 6)

Procedure:

- A dental impression compound was applied to the antennae of the olfaction deprivation group to block smell
- The vision deprivation group had the compound applied to the full ommatadia to block vision
- The control group had the compound applied to their thorax
- Callow workers were placed in a nest of only manipulated individuals, with free access to pollen and sugar water in multiple locations
- Testing was to be done on the foraging skills of the three groups after three days of living with the conditions
- Due to mortality prior to two days tests could not be conducted

Results:

- A chi-square test was conducted examining the relationships between the conditions and death or survival this relationship was not significant
- A chi-square test was also conducted between whether the compound was removed and the length of survival this relationship was significant.

Discussion:

- The significant chi-square test showed that there is a relationship between compound removal and length of survival
- This suggests that if callows removed the compound, they may have lived longer
- Due to inconsistency mortality could not be owed dependably to deprivation
- •Other studies have noted mortality with experiments using a similar compound, but this death was not examined further to determine the cause, be it deprivation or the compound
- •Post experiment, this colony was found to have a moth infestation resulting in unhealthy workers and callows

Further Research:

Needs to fully examine deprivation and its impact on foraging skills, and further what this impact is in comparison to age matched, non-deprived callows of a healthy colony

References:

Fahrbach, S., Farris, S. M., Sullivan, J. P., & Robinson, G. E. (2003). Limits on volume changes in the mushroom bodies of the honey bee brain. Journal of Neurobiology, 57(2), 141-151. doi:10.1002/neu.1025

Groh, C., Lu, Z., Meinertzhagen, I., & Rossler, W. (2012). Age-related plasticity in the

synaptic ultrastructure of neurons in the mushroom body calyx of the adult honeybee apis mellifera. The Journal of Comparative Neurology, 520, 3509-3527. doi:10.1002/cne.23102

Jones, B., Leonard, A., Papaj, D., & Gronenberg, W. (2013). Plasticity of the worker bumblebee brain in relation to age and rearing environment. Brain, Behavior and Evolution, 82(4), 250-261. doi:10.1159/000355845

Riveros, A. & Gronenberg, W. (2010). Brain allometry and neural plasticity in the bumblebee bombus occidentalis. Brain, Behavior and Evolution, 75(2), 138-148. doi:10.1159/000306506

Acknowledgements:

- Biobest Canada Ltd.
- Jamie Christiaanse
- Raman Dhaliwal
- Aron Dhaliwal
- Kevin Smith