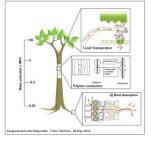
KPU Small Farm Sessions 2/13/2016

Rebecca Harbut, KPU Small Farms Workshop, February 13, 2016 KPU, Richmond

Water Stress

- Drought stress is the most significant environmental stress resulting in crop loss
- 'Agricultural Drought' lack of adequate moisture for crops to complete normal plant development and crop maturity
 - Meteorological drought prolonged lack of precipitation
 - Increased evapotranspiration rates


Impact of Water Stress on Crop Development

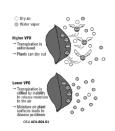
- · Compressed growth cycle
- Reduced rate of cell division and expansion
- Reduced leaf size
- Reduced stem elongation
- Reduced root proliferation
- Reduced fertilization
- Disturbed stomatal oscillations
- · Compromise nutrient balances

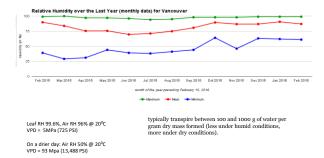
Soil - Plant - Atmosphere Continuum

- · There is a continuous water column
- Soil-Plant-Atmosphere
 Root uptake is junction between soil-plant
- · Root health, depth, growth
- Evapot readin, deput, growth
 Evapot ranspiration is the junction between plant-atmosphere
 Stomatal conductance is the 'valve'
- · Column is under constant tension
- · The water status is affected by any change in conditions in the soil, plant or atmosphere

Soil: Plant Available Water

- A healthy soil has: pore space free of water and sufficient movement of gases through soil profile
- Permanent Wilting Point plant is unable to extract water from the soil matrix
 - May still be lots of water in the soil!




Leaf Vapour Pressure Deficit

- · Water movement through the column is driven primarily by transpiration
- Difference in vapour pressure between the leaf air and ambient air
- Driven by:
 - Solar radiation
 Wind speed

 - Turbulence Humidity

2/13/2016 **KPU Small Farm Sessions**

4 Factors that reduce hydraulic conductivity... 1. Root/soil shrinkage Roots and soil pull away from each other reducing the hydraulic (wet) linkage • Severity impacted by soil type - most severe in clay soils

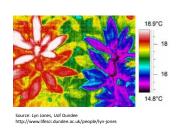
4 Factors that reduce hydraulic conductivity...

- 2. Solute accumulation at root surface
 - High rates of
 - transpiration Low rainfall
 - · Fertilizer application High tunnels

4 Factors that reduce hydraulic conductivity...

- 3. Physiological reduction in root hydraulic pressure
 - Low temperatures
 - Drought stress

 - Prougnt stress

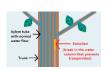

 'stress phytohormone' production —
 Abscisic acid

 Allows drought conditions sensed in
 the roots to be signaled to the leaves
 before leaves sense drought conditior

Plant Temperature

- · Transpiration is the cooling mechanism for plants
- Plant and Fruit temperature quickly rises in water stress conditions

Abcsisic Acid (ABA) - Stress Hormone

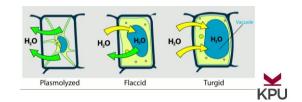

- Water stress increases production of ABA
- Produced in roots
- Reduces stomatal conductance
- · Drought stress will trigger signal to shorten crop growth cycle

4 Factors that reduce hydraulic conductivity...

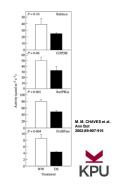
- 4. Xylem Emboli
 - Under very large water xylem tension, water column may 'snap'
 - Loss of water through transpiration is not matched by root uptake
 - Gas filled cavities
 - Plants native/adapted to humid regions are much more prone to cavitation than plants from more arid environments

Impact of Water Stress

- Factors that influence the impact of water stress:
 - · Duration and intensity of water stress
 - Crop phenology
 - Crop genotype


Acclimation to Drought Conditions

- Plants exposed to drought express morphological and physiological changes:
 - Decreased leaf expansion
 - Senescence of older leaves
 - Increased cuticle thickness
 - Increased root extension into deeper soil
 - Accumulation of solutes in the root cap to decrease osmotic potential


Loss of Turgor Pressure

- Wilting
- Plasma membrane pulls away from cell wall

Water Vs. Carbon

- Water and CO₂ exchange are linked water conservation = reduced C uptake
- carbon uptake is critical for growth

Timing is Everything...

- Phenological stages differ in their sensitivity to water stress
- Many annual crops are most sensitive to water stress during and immediately after flowering
 - Reduced pollen viability
 - Death of flowering

KPU Small Farm Sessions 2/13/2016

Phenological Stages of Growth: Early Season

- Crop Establishment
 - Significantly reduce germination by affecting imbibition
 - Poor stand establishment reduces yield
 - Many annual crops are most sensitive to water stress during and immediately after flowering
 - Reduced pollen viability
 - · Death of flowering

Phenological Stages of Growth: Vegetative Growth

- · Vegetative Growth
 - Reduced leaf area index (leaf area/m² ground)
 - Early leaf senescence
 - Limits assimilatory power of the plant

Tomato Drip Irrigation

- EPK reference evapotranspiration
- ECC ET x K(estimated Crop Canopy Coverage)
- SMD (soil moisture depletion)

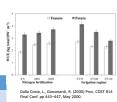
Table 2. Irrigation amount and water-use efficiency (WUE) for 1989–91 as influenced by irrigation regime in tomato fruit production.

Irrigation	Total water ² (mm)			WUE		
regimex	1989	1990	1991	(t-ha ⁻¹ -mm ⁻¹)	% Seasonal ET "	
EPK	307	345	318	0.33	86	
ECC	249	328	290	0.36	76	
SMD	216	264	249	0.42	64	
Seasonal ET	363	414	356			

HORTSCIENCE 28(1):35-37. 1993

Impact of Irrigation Regimes on Yield of Tomato

Season	Irrigation regime ^y	Fruit yield (kg/plot)			Fruit size (%) ²	
		Total	Marketable	Cull	Large	Medium
1989	EPK	96.2	75.3	20.9	58 ab	42
	ECC	88.1	70.0	18.1	64 a	36
	SMD	94.2	74.5	19.7	55 b	45
		NS	NS	NS		NS
1990	EPK	148 a	132 a	16.1	73	27
	EPK (daily)	155 a	137 a	18.4	72	28
	ECC	155 a	136 a	18.1	68	32
	SMD	131 b	112 b	19.5	68	32
				NS	NS	NS
1991	EPK	183 a	164 a	18.4 a	82	18
	EPK (daily)	169 ab	148 ab	20.5 a	86	14
	EPK × 1.25	154 b	137 b	16.8 ab	82	18
	ECC	163 ab	150 ab	13.6 b	80	20
	SMD	169 ab	163 a	6.4 c	81	19
					NS	NS


Deficit Irrigation: Potatoes

- DI of 24% 17% and 14% Full ET replacement
- Resulted in yield reductions (esp. in larger tuber size)
- Increased N content in DI
 - Increased leaching
 Increased concentration
- Cultivar
 Irrigation Treatment
 2004
 Total Yield 2006
 2007

 Ranger Russet
 Full ET
 87.8
 84.5
 88.5

DI 63.5 78.5 82.5

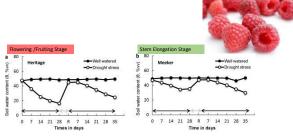
A. K. Alva, A. D. Moore & H. P. Collins (2012), J of Crop Improvement, 26:2, 211-227

Phenological Stage of Growth: Flowering

- Most crops are very sensitive to water stress during bloom
- Pollination compressed bloom time
- Reduced fertilization reduced crop
 Perennial Crops bud initiation for next year
- Common Bean Growth Stage (Water Stress Timing)
 Mean Yield (t/hs)

 Normal (no stress)
 3.1 a

 2 wks after emergence
 2.6 b


 4 wks after emergence
 2.6 b

 Flowering
 1.8 c

 2 wks after flowering
 1.9 c

KPU Small Farm Sessions 2/13/2016

ritage (a) and Meeker (b). During watering experiments, plants were grown in pots d) and two watering treatments. C.G. Morales, M.T. Pino, A. del Pozo (2013),

Phenological Stage of Growth: Late Season

- Fruit enlargement/filling
- Reduced yield
- Increased ⁰Brix
- Perennial Crops think about next season!

Estimating Crop Water Use:ET

- Evapotraspiration
 - Plant transpiration + Soil Evaporation
- Effective Precipitation
 - · Water that will enter the soil profile and be available plants
- All the factors that impact VDP impact ET...several variables to
- ET calculators are based on an equation, not in-field measurements

FARMWEST.COM

Crop Coefficients

- Based on field studies to provide an estimate of ET for specific crops
- Reference crop will typically be used when reporting ET
- ETc = ETo x Kc
- Kc is made of soil evaporation and crop transpiration changes of the course of the season

Farm West: Crop Coefficients

Summary

- Water is important!
- Crop response to water is dynamic
 - Varies by crop type, conditions and phenology
- · Optimal water supply is not necessarily 'full' water supply
- Timing of water management is critical
- Critical to understand your soils, have the data and know how to
- Probably lots of room for improvement in water use efficiency

