1. INFORMATION FROM A FORMULA

Consider the formula CaSO_{4}. The information contained in that formula can be expressed in several ways. Since CaSO_{4} is ionic, the formula gives the simplest whole number ratio of the atoms of Ca, S and O in the compound. It also gives the number of atoms of Ca, S and O in one formula unit of CaSO_{4}. Since a mole is a fixed number, the formula also gives the simplest whole number ratio of the moles of Ca, S and O in the compound and the number of moles of Ca, S and O in one mole of CaSO_{4}. We can calculate the mass ratio by multiplying the number of atoms (or moles) of each element by its atomic weight (or molar mass). This mass ratio can also be expressed as a percentage by mass. These ratios are set out below.

1. Atom ratio: 1 Ca atom $: 1 \mathrm{~S}$ atom $: 4 \mathrm{O}$ atoms
2. Mole ratio: 1 mole Ca atoms $: 1$ mole S atoms $: 4$ moles O atoms
3. Mass ratio: $\quad 40.1 \mathrm{~g} \mathrm{Ca} \quad: \quad 32.1 \mathrm{~g} \mathrm{~S}: \quad 4 \times 16.0 \mathrm{~g} \mathrm{O}$
4. Mass percent: $\quad 29.4 \% \mathrm{Ca} \quad: \quad 23.6 \% \mathrm{~S} \quad 47.0 \% \mathrm{O}$

For molecular compounds, the molecular formula gives the actual number of atoms of each element in one molecule of the compound. Consider a compound of molecular formula $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ (such as ethyl acetate used as nail polish remover). This formula can be interpreted in terms of atom ratio, mole ratio, mass ratio or mass percent as for the ionic compound CaSO_{4} above. However, a compound of molecular formula $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ will have the same atom ratio, mole ratio, mass ratio or mass percent as $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ because $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ is $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\right)_{2}$. We say that these compounds $\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right.$ and $\left.\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\right)$ have different molecular formulas but the same empirical formula $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\right)$. The empirical formula of a molecular compound is the simplest whole number ratio of the atoms of the different elements. Thus, the compounds $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}, \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5}$ and $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{4}$ all have the same empirical formula $\left(\mathrm{CH}_{2} \mathrm{O}\right)$. If the formula is not divisible by a whole number to give a whole number ratio, its molecular formula is its empirical formula. Examples are $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{2}, \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}$, etc.

The mass ratio (and hence mass percent) of a compound can be obtained from its mole ratio of its elements and the atomic weights of its elements. Hence, one can work backwards from a mass ratio (including mass percent) to a mole ratio using the atomic weights of the elements.

2. EMPIRICAL FORMULAS

(a) A compound was found to contain 28.83% magnesium, 14.22% carbon and 56.94% oxygen. Calculate the formula of the compound.

Solution:

First, check to see that the sum of the percentages $=100$
$28.83+14.22+56.94=99.99$ ($=100$ within experimental error $)$
Percentages are mass percentages. If we consider 100 g of the compound, the percentages are the masses, in grams, of the elements in the compound and represent the mass ratios of the elements. Since a formula is an atom ratio which is equal to the mole ratio of atoms of the elements in the compound, conversion of the mass ratio to the mole ratio and expressing the mole ratio as a whole number ratio gives the formula of the compound.

	Mg	C	O
mass (g)	28.83	14.22	56.94
mole ratio	$\frac{28.83}{24.31}$	$\frac{14.22}{12.01}$	$\underline{56.94}$
	1.186	1.184	3.559
		1	3.006
divide by smallest (1.184) (to get whole numbers) Within experimental error, this ratio is $1: 1: 3$	1.002		

The process used above involved the following steps:

1. Use percentages as mass ratio
2. Convert masses to moles
3. Divide by the smallest
4. Round off to 3 significant figures

Where the percentages of all but one of the elements are given, the percentage of that element can be found by difference.
(b) A compound containing K, N and O was found to be $38.7 \% \mathrm{~K}$ and $13.9 \% \mathrm{~N}$. Calculate the formula of the compound.
(c) Thermal decomposition of 1.9025 g of an oxide of mercury gave 1.8296 g of mercury. Calculate the formula of the oxide. (N.B.: It is not necessary to calculate the percentage of each element; any mass ratio can be converted into a mole ratio)
(d) Heating 0.4725 g of iron in the presence of an excess of pure oxygen gave 0.6758 g of a compound. Calculate the formula of the compound.

Mole ratios obtained in calculating formulas may involve only whole numbers, as in examples (a) to (c), or may involve the fraction $\frac{1}{2}$, as in example (d). Many other fractions may be involved in complicated formulas, but in this course only the fractions $\frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{1}{3}$ and $\frac{2}{3}$ will be met. In (d), we saw that we had to multiply $1 \frac{1}{2}$ (1.5) by 2 to get a whole number ratio. We can therefore add another step to the generalized calculation of formulas:
5. If step 4 does not give whole numbers, multiply $\frac{1}{2}(.5)$ by $2, \frac{1}{4}(.25)$ and $\frac{3}{4}(.75)$ by 4 , and, $\frac{1}{3}$ (.33) and $\frac{2}{3}$ (.67) by 3 .
(e) A compound contained 81.7% carbon and 18.3% hydrogen. Calculate the empirical formula of the compound.
(f) The hormone melatonin is $67.22 \% \mathrm{C}, 6.94 \% \mathrm{H}, 12.06 \% \mathrm{~N}$ and $13.78 \% \mathrm{O}$. Calculate the empirical formula of melatonin.

3. MOLECULAR FORMULAS

Formaldehyde, $\mathrm{CH}_{2} \mathrm{O}$, and the sugar ribose, $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5}$, have different molecular formulas but each has a $1: 2: 1$ ratio of $\mathrm{C}: \mathrm{H}: \mathrm{O}$ [ribose is $5\left(\mathrm{CH}_{2} \mathrm{O}\right)$] and hence they both have the same empirical formula, $\mathrm{CH}_{2} \mathrm{O}$. A mass ratio can only give an empirical formula, not a molecular formula. To calculate a molecular formula from an empirical formula, the molecular weight (MW \equiv molar mass, MM) must be known. An empirical formula, as any formula, has a formula weight which we can call the empirical formula weight (EFW). The ratio MW/EFW $=n$ must be a whole number and n (empirical formula $)=$ molecular formula.

Example: The sugar D-manno-heptulose, isolated from the avocado pear, has an empirical formula of $\mathrm{CH}_{2} \mathrm{O}$ and a molar mass of about $205(\pm 7) \mathrm{g} / \mathrm{mole}$. Calculate the molecular formula.

Solution: EFW of $\mathrm{CH}_{2} \mathrm{O}=[12+(2 \mathrm{x} 1)+16]=30$
$n=205 / 30=6.83 \quad n=7$ (must be a whole number)
molecular formula is $7\left(\mathrm{CH}_{2} \mathrm{O}\right)=\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{7}$
(a) The empirical formula of dry cleaning fluid, perchloroethylene (PCE), is CCl_{2}. The molar mass of PCE is $166 \mathrm{~g} / \mathrm{mole}$. Calculate the molecular formula of PCE.
(b) Eugenol, the major component of clove oil, is used as a dental analgesic and contains only carbon, hydrogen and oxygen. Eugenol is $73.14 \% \mathrm{C}$ and $7.38 \% \mathrm{H}$ and has a molar mass of about $160 \mathrm{~g} /$ mole. Calculate the empirical formula of eugenol and then its molecular formula.

4. HYDRATES

We can also use the mole ratio approach for calculating the formula of a hydrate. The formula $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ means that the mole ratio of $\mathrm{H}_{2} \mathrm{O}$ to CuSO_{4} is $5: 1$. For a hydrate where the number of moles of water per mole of compound is not known, the mass ratio of water to compound must be found by experiment and then converted into a mole ratio.
(a) When 3.7200 g of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot n \mathrm{H}_{2} \mathrm{O}$ was heated to drive off water, a 2.3372 g residue of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$ was obtained. Calculate the value of n. (Ans. 6)
(b) A hydrate of iron(II) phosphate $\left[\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot n \mathrm{H}_{2} \mathrm{O}\right]$ was found to be 28.74% water. Calculate the value of n. (Ans. 8)
(c) When 0.8655 g of $\mathrm{MSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ was heated to drive off water, a 0.4227 g residue of MSO_{4} was obtained. Calculate the atomic weight of M and hence identify M . $($ Hint: Use FW $=$ grams $/$ moles or algebra) $($ Ans. Mg$)$

