Fractions

$\frac{\mathrm{a}}{\mathrm{b}}$ means $\mathrm{a} \div \mathrm{b}$
a is the same as $\frac{\mathrm{a}}{1}$

Equality of Fractions

$$
\text { If } \frac{\mathrm{a}}{\mathrm{~b}}=\frac{\mathrm{c}}{\mathrm{~d}} \text {, then } \mathrm{axd}=\mathrm{bxc}
$$

(cross multiplication; equivalent to multiplying both sides by bd)

Multiplying Fractions

$$
\frac{\mathrm{a}}{\mathrm{~b}} \times \frac{\mathrm{c}}{\mathrm{~d}}=\frac{\mathrm{a} \times \mathrm{c}}{\mathrm{~b} \times \mathrm{d}}
$$

Dividing Fractions

$$
\frac{\mathrm{a}}{\mathrm{~b}} \div \frac{\mathrm{c}}{\mathrm{~d}} \equiv \frac{\mathrm{a}}{\mathrm{~b}} \times \frac{\mathrm{d}}{\mathrm{c}}=\frac{\mathrm{axd}}{\mathrm{bxc}} \quad\left(\text { same as } \frac{\frac{\mathrm{a}}{\mathrm{~b}}}{\frac{\mathrm{c}}{\mathrm{~d}}}=\frac{\mathrm{axd}}{\mathrm{bxc}}\right)
$$

Scientific Notation

The basis of all science is measurement. Using very large or very small numbers becomes cumbersome. In these cases, we rewrite the numbers in scientific notation (a.bcd $\times 10^{e}$). For example, 342587 becomes 3.42587×10^{5} and 0.000864 can be written as 8.64×10^{-4}.

Multiplying Numbers in Scientific Notation

multiply numbers and add exponents

$$
\left(a \times 10^{x}\right) \times\left(b \times 10^{y}\right)=a b \times 10^{x+y}
$$

Dividing Numbers in Scientific Notation

divide numbers and subtract exponents

$$
\left(a \times 10^{x}\right) \div\left(b \times 10^{y}\right)=\frac{a}{b} \times 10^{x-y}
$$

Percent $(\%)=($ parts $)$ per hundred
In a basket of 40 apples, 10 are rotten; $\%$ rotten apples $=\frac{10}{40} \times 100=25 \%$
$\mathbf{p p m}=$ parts per million; $\mathbf{p p b}=$ parts per billion
A $555,000 \mathrm{~g}$ sample of water contains 35 g of a toxic substance;
express the amount of the toxic substance in ppm.

$$
\mathrm{ppm}=\frac{35 \mathrm{~g} \text { toxic substance }}{555,000 \mathrm{~g} \text { water }} \times 1,000,000=63 \mathrm{ppm}
$$

Find the error in the story below.

Vancouver Sun, Aug. 24, 1987, B1
Brodeur (Canuck's No. 1 goaltender for the last 7 years) was offered a new one-year (plus option) contract that includes both a pay cut at the major league level and a minor league clause. The latter would, according to Watters (Brodeur's agent), mean a 200 per cent pay cut if Brodeur was sent to the minors. Brodeur is reportedly paid $\$ 300,000$ per season.

Direct Proportionality

For any material, the mass and volume are directly proportional; if the volume is doubled, the mass doubles, etc.

$$
\begin{aligned}
& \mathrm{M} \propto \mathrm{~V} \text { or } \mathrm{M}=\mathrm{kV} \quad(\mathrm{k} \text { is a onstant) } \\
& \frac{\mathrm{M}}{\mathrm{~V}}=\mathrm{k} \text { (if two variables are directly proportional, the ratio is constant) }
\end{aligned}
$$

$\begin{array}{cccc}\mathrm{y} & 28 & 15 & 0.96 \\ \mathrm{x} & 12 & 5 & 0.28\end{array}$
are y and x directly proportional?
(Ans. No)
usual form is $\mathrm{y}=\mathrm{kx}$ which is the equation for a straight line graph through the origin $(0,0)$

Inverse Proportionality

For a sample of a gas at constant temperature, the volume is inversely proportional to the pressure; if the pressure is doubled, the volume is halved, etc.

$$
\mathrm{V} \propto \frac{1}{\mathrm{P}} \quad \text { or } \quad \mathrm{V}=\mathrm{kx} \frac{1}{\mathrm{P}}
$$

or $\mathrm{PV}=\mathrm{k}$ (if two variables are inversely proportional, the product is constant)

y	3	6	4.5	are y and x inversely proportional?
x	18	9	12	(Ans. Yes)

If $x y=k$, a graph of y vs x is a curve, but a graph of y vs $1 / x$ is a straight line

0

