CHEQ 1094 MOLES

The mass of 1 mole of any chemical species (atom, molecule or ion) is the number of grams equal to its formula weight (FW) and is known as its molar mass with units of g/mole (or g/mol).

Examples of masses of 1 mole (molar mass):

C atoms: 12.01 g O_2 molecules: 32.0 g H_2O molecules: 18.0 g

 CO_2 molecules: 44.0 g $C_6H_{12}O_6$ molecules: 180 g

MgCl₂ formula units: 95.2 g Fe₂(CO₃)₃ formula units: 291.7 g

 $CaSO_4 \cdot 2H_2O$ formula units: 172.2 g CO_3^{2-} ions: 60.0 g

It was determined experimentally that 1 mole of anything contains approximately 6.02×10^{23} (Avogadro's number, N) units of that substance.

We can summarize the relationship between mass, moles and number of units as follows:

1 mole \equiv gram formula weight (molar mass) \equiv 6.02 x 10²³ units moles mass (g) no. of units

As we saw in unit conversion, any equality leads to two conversion factors. Thus we can easily interconvert mass, moles and number of units.

Convert:

- (a) 1.65 g of Al to moles. (*Ans.* 0.0612 mole).
- (b) 3.75×10^2 moles of Si to mass (in grams). (Ans. 1.05 x 10^4 g)
- (c) $5.85 \times 10^{-3} \text{ g CO}_2$ to molecules of CO₂. (Ans. 8.00 x 10^{19} molecules)
- (d) $1.0 \times 10^{25} \text{ N}_2$ molecules to moles of N_2 . (Ans. 17 moles)
- (e) 5.74×10^{-3} moles of Ni to atoms of Ni. (Ans. 3.46 x 10^{21})
- (f) 8.00×10^{21} molecules of O₂ to grams of oxygen. (Ans. 0.425 g)
- (g) 4.66 g of bromine to moles of bromine molecules. (Ans. 2.92 x 10⁻² moles)

Calculate:

- (a) the mass of $C_4H_8O_2$ that contains 2.50 moles of oxygen atoms. (Ans. 110. g)
- (b) the number of moles of hydrogen atoms in 25.5 g of C_3H_8 . (Ans. 4.63 moles)
- (c) the number of carbon atoms in 15.8 mg of sucrose ($C_{12}H_{22}O_{11}$). (Ans. 3.33 x 10^{20})
- (d) the mass of NH₂CONH₂ that contains 4.00×10^{27} N atoms. (Ans. 2.00×10^5 g)