1. Calculate the number of moles in
(a) $3.00 \times 10^{23}$ atoms of Mg
(b) $8.72 \times 10^{15}$ molecules of $\mathrm{CO}_{2}$
(c) $5.0 \times 10^{24}$ formula units of NaCl
(d) 15.0 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(e) 38.4 g of $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
(f) 2.45 mg of Si
2. What is the mass of
(a) 2.50 moles of aluminum
(b) 0.500 mole of $\mathrm{CaCO}_{3}$
(c) $6.47 \times 10^{-2}$ mole $\mathrm{N}_{2} \mathrm{O}_{3}$
(d) $8.8 \times 10^{-5} \mathrm{~mole}$ of hydrogen gas
(e) $1.15 \times 10^{20}$ formula units of $\mathrm{LiNO}_{3}$
(f) $6.02 \times 10^{30}$ atoms of mercury
(g) $1.0 \times 10^{10}$ molecules of $\mathrm{ICl}_{5}$
3. A chemist wishes to carry out a chemical reaction in which KBr and $\mathrm{AgNO}_{3}$ are used.
(a) Calculate the molar mass of each of these substances.
(b) What mass of each would be required if the chemist wanted to use $2.00 \times 10^{-2}$ mole of each compound?
4. Calculate the
(a) number of atoms in 2.56 moles of $\mathrm{P}_{4}$
(b) number of chloride ions in 55.0 g of $\mathrm{CaCl}_{2}$
(c) moles of oxygen atoms in 22.5 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
(d) mass of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ that contains 0.035 mole of $\mathrm{Na}^{+}$
(e) mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ that contains $8.6 \times 10^{28} \mathrm{NO}_{3}{ }^{-}$ions
