STOICHIOMETRY

1. Oxygen can be made by heating KClO_{3}. The reaction is

$$
2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}
$$

(a) What mass of oxygen can be made from 3.00 g of KClO_{3} ?
(b) What is the mass of KCl formed in the reaction in (a)?
(c) What mass of KClO_{3} is needed to give 3.00 g of oxygen?
(d) If 3.30 g of oxygen is obtained from 9.00 g of KClO_{3}, what is the percentage yield of oxygen?
2. How many grams of CaO will react with 23.8 g of $\mathrm{NH}_{4} \mathrm{Cl}$ and how much NH_{3} will be formed? The reaction is

$$
2 \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{CaO} \rightarrow 2 \mathrm{NH}_{3}+\mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

3. If CH_{4} is obtained in 93.5% yield from the reaction of $\mathrm{Al}_{4} \mathrm{C}_{3}$ with water, what mass of $\mathrm{Al}_{4} \mathrm{C}_{3}$ is required to yield 10.0 g of CH_{4} ? The reaction is

$$
\mathrm{Al}_{4} \mathrm{C}_{3}+12 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{CH}_{4}+4 \mathrm{Al}(\mathrm{OH})_{3}
$$

4. If ethyl alcohol is isolated in 88.0% yield from the fermentation of glucose, what volume of ethyl alcohol can be produced from $454 \mathrm{~g}(1 \mathrm{lb})$ of glucose? The density of ethyl alcohol is $0.789 \mathrm{~g} / \mathrm{mL}$. The reaction is

$$
\begin{aligned}
& \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \\
& \text { glucose }
\end{aligned} \rightarrow \quad \begin{aligned}
& 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \\
& \text { ethyl alcohol }
\end{aligned}+2 \mathrm{CO}_{2}
$$

5. The reaction of magnesium nitride with water produces magnesium hydroxide and ammonia.

$$
\mathrm{Mg}_{3} \mathrm{~N}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{NH}_{3}
$$

(a) Calculate the mass of NH_{3} that can be made from 47.5 g of $86.0 \% \mathrm{Mg}_{3} \mathrm{~N}_{2}$.
(b) Calculate the mass of $91.0 \% \mathrm{Mg}_{3} \mathrm{~N}_{2}$ that is required to make 62.6 g of NH_{3}.
(c) 31.0 g of a sample of $\mathrm{Mg}_{3} \mathrm{~N}_{2}$ gave 8.50 g of NH_{3}. What is the percent purity of the $\mathrm{Mg}_{3} \mathrm{~N}_{2}$ sample?
6. What mass of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ is needed to make 25.0 g of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ by the following reaction?

$$
3 \mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow 2 \mathrm{Na}_{3} \mathrm{PO}_{4}+3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}
$$

7. (a) How many grams of $\mathrm{Fe}_{2} \mathrm{~S}_{3}$ can be formed by the reaction of 3.50 g of FeBr_{3} and 6.40 g of $\mathrm{Na}_{2} \mathrm{~S}$? The reaction is:

$$
2 \mathrm{FeBr}_{3}+3 \mathrm{Na}_{2} \mathrm{~S} \rightarrow \mathrm{Fe}_{2} \mathrm{~S}_{3}+6 \mathrm{NaBr}
$$

(b) Calculate the mass of the excess reactant remaining at the end of the reaction.
8. Diborane, $\mathrm{B}_{2} \mathrm{H}_{6}$, is formed by the reaction shown below.

$$
3 \mathrm{NaBH}_{4}+4 \mathrm{BF}_{3} \rightarrow 3 \mathrm{NaBF}_{4}+2 \mathrm{~B}_{2} \mathrm{H}_{6}
$$

Calculate the theoretical yield of $\mathrm{B}_{2} \mathrm{H}_{6}$ from the reaction of 1.30 g of NaBH_{4} and 2.50 g of BF_{3} and the mass of the excess reactant left over.
9. When 3.00 g of PH_{3} were reacted with 5.50 g of $\mathrm{O}_{2}, 5.60 \mathrm{~g}$ of $\mathrm{P}_{4} \mathrm{O}_{10}$ were obtained. Calculate the percentage yield of $\mathrm{P}_{4} \mathrm{O}_{10}$ in the reaction. The reaction is

$$
4 \mathrm{PH}_{3}+8 \mathrm{O}_{2} \rightarrow \mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{H}_{2} \mathrm{O}
$$

10. The combustion of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ is given by the equation below.

$$
\mathrm{C}_{3} \mathrm{H}_{8}(g)+5 \mathrm{O}_{2}(g) \rightarrow 3 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(l)+2200 \mathrm{~kJ}
$$

(a) Is the reaction exothermic or endothermic?
(b) Calculate the heat change when 222 g of $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})$ is completely burned.
(c) What mass of $\mathrm{CO}_{2}(\mathrm{~g})$ is produced when the reaction produces a heat change of 456 J ?
11. Calcium hydroxide can be decomposed as shown below.

$$
\mathrm{Ca}(\mathrm{OH})_{2}(s)+66 \mathrm{~kJ} \rightarrow \mathrm{CaO}(s)+\mathrm{H}_{2} \mathrm{O}(l)
$$

(a) Is the reaction exothermic or endothermic?
(b) How many kilojoules of heat are required to decompose 454 g of $\mathrm{Ca}(\mathrm{OH})_{2}(s)$?

