1. Oxygen can be made by heating KClO₃. The reaction is

$$2KClO_3 \rightarrow 2KCl + 3O_2$$

- (a) What mass of oxygen can be made from 3.00 g of KClO₃?
- (b) What is the mass of KCl formed in the reaction in (a)?
- (c) What mass of KClO₃ is needed to give 3.00 g of oxygen?
- (d) If 3.30 g of oxygen is obtained from 9.00 g of KClO₃, what is the percentage yield of oxygen?
- 2. How many grams of CaO will react with 23.8 g of NH₄Cl and how much NH₃ will be formed? The reaction is

$$2NH_4Cl + CaO \rightarrow 2NH_3 + CaCl_2 + H_2O$$

3. If CH_4 is obtained in 93.5% yield from the reaction of Al_4C_3 with water, what mass of Al_4C_3 is required to yield 10.0 g of CH_4 ? The reaction is

$$Al_4C_3 \ + \ 12H_2O \ \rightarrow \ 3CH_4 \ + \ 4Al(OH)_3$$

4. If ethyl alcohol is isolated in 88.0% yield from the fermentation of glucose, what volume of ethyl alcohol can be produced from 454 g (1 lb) of glucose? The density of ethyl alcohol is 0.789 g/mL. The reaction is

$$\begin{array}{cccc} C_6H_{12}O_6 & \rightarrow & 2C_2H_5OH & + & 2CO_2 \\ \textbf{glucose} & \textbf{ethyl alcohol} \end{array}$$

5. The reaction of magnesium nitride with water produces magnesium hydroxide and ammonia.

$$Mg_3N_2 \ + \ 6H_2O \ \rightarrow \ 3Mg(OH)_2 \ + \ 2NH_3$$

- (a) Calculate the mass of NH_3 that can be made from 47.5 g of 86.0% Mg_3N_2 .
- (b) Calculate the mass of 91.0% Mg₃N₂ that is required to make 62.6 g of NH₃.
- (c) 31.0 g of a sample of Mg_3N_2 gave 8.50 g of NH_3 . What is the percent purity of the Mg_3N_2 sample?

6. What mass of Na₂CO₃·10H₂O is needed to make 25.0 g of Na₃PO₄ by the following reaction?

$$3Na_{2}CO_{3} + 2H_{3}PO_{4} \rightarrow 2Na_{3}PO_{4} + 3CO_{2} + 3H_{2}O$$

7. (a) How many grams of Fe₂S₃ can be formed by the reaction of 3.50 g of FeBr₃ and 6.40 g of Na₂S? The reaction is:

$$2FeBr_3 + 3Na_2S \rightarrow Fe_2S_3 + 6NaBr$$

- (b) Calculate the mass of the excess reactant remaining at the end of the reaction.
- 8. Diborane, B_2H_6 , is formed by the reaction shown below.

$$3NaBH_4 + 4BF_3 \rightarrow 3NaBF_4 + 2B_2H_6$$

Calculate the theoretical yield of B₂H₆ from the reaction of 1.30 g of NaBH₄ and 2.50 g of BF₃ and the mass of the excess reactant left over.

9. When 3.00 g of PH_3 were reacted with 5.50 g of O_2 , 5.60 g of P_4O_{10} were obtained. Calculate the percentage yield of P_4O_{10} in the reaction. The reaction is

$$4\text{PH}_3 \ + \ 8\text{O}_2 \ \rightarrow \ \text{P}_4\text{O}_{10} \ + \ 6\text{H}_2\text{O}$$

10. The combustion of propane (C_3H_8) is given by the equation below.

$$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(l) + 2200 \text{ kJ}$$

- (a) Is the reaction **exothermic** or **endothermic**?
- (b) Calculate the heat change when 222 g of $C_3H_8(g)$ is completely burned.
- (c) What mass of $CO_2(g)$ is produced when the reaction produces a heat change of 456 J?
- 11. Calcium hydroxide can be decomposed as shown below.

$$Ca(OH)_2(s) + 66 \text{ kJ} \rightarrow CaO(s) + H_2O(l)$$

- (a) Is the reaction **exothermic** or **endothermic**?
- (b) How many kilojoules of heat are required to decompose 454 g of $Ca(OH)_2(s)$?