1. For a $1.025 M \mathrm{FeCl}_{3}$ solution, calculate the
(a) volume of solution containing $11.4 \mathrm{~g} \mathrm{FeCl}_{3}$
(b) number of moles of $\mathrm{FeCl}_{3}$ in 555 mL of solution
(c) number of moles of chloride ion in 125 mL of solution
(d) mass of $\mathrm{FeCl}_{3}$ in 1.65 L of solution
(e) molarity of the resulting solution if 25.0 mL of the 1.025 M solution is added to 125.0 mL of water
(f) volume of the 1.025 M solution which must be diluted to 500.0 mL to obtain a $0.0925 M$ solution
(g) the molarity of the resulting solution if 75.0 mL of the 1.025 M solution is added to 50.0 mL of a $1.875 \mathrm{M} \mathrm{FeCl}_{3}$ solution.
2. For the reaction $\quad \mathrm{FeCl}_{3}(a q)+3 \mathrm{KOH}(a q) \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}(s)+3 \mathrm{KCl}(a q)$
(a) what volume of $0.1189 \mathrm{M} \mathrm{FeCl}_{3}$ is needed to form 1.38 g of $\mathrm{Fe}(\mathrm{OH})_{3}$ ?
(b) what volume of 0.205 M KOH is needed to react with 25.0 mL of $0.1189 \mathrm{M} \mathrm{FeCl}_{3}$ ?
(c) what volume of $0.1189 \mathrm{M} \mathrm{FeCl}_{3}$ is needed to react with 0.184 g of KOH ?
(d) what volume of $0.1189 \mathrm{M} \mathrm{FeCl}_{3}$ is needed to react with 0.265 g of $85.0 \% \mathrm{KOH}$ ?
3. (a) What is the molarity of $\mathrm{NaNO}_{3}$ in a solution containing 1.38 g of $\mathrm{NaNO}_{3}$ in 875 mL of solution?
(b) Given that the density of the solution is $1.00 \mathrm{~g} / \mathrm{mL}$, what is the percent (by mass) of $\mathrm{NaNO}_{3}$ in a 0.235 M solution?
4. For the reaction

$$
\mathrm{KOH}(a q)+\mathrm{HCl}(a q) \rightarrow \mathrm{KCl}(a q)+\mathrm{H}_{2} \mathrm{O}(l)
$$

(a) what is the molarity of the HCl solution if 23.4 mL of 0.08652 M KOH was required to titrate 25.0 mL of the HCl solution?
(b) what volume of 0.09785 M KOH is required to titrate 25.0 mL of 0.1007 M HCl ?

