Mathematics Problem of the Week

Problem Number: 314
Posted on Tuesday, October 11, 2022
Deadline: Monday, October 17, 2022 at noon

Fun with Shapes

In the following figure:

- A square of side 8 covers parts of a full white circle.
- The white circle covers parts of four pink semi-circles (half circles).

Show that the surface area of the orange square is equal to the surface area of the pink regions.

What You Might Need:
Area of a circle of radius r is πr^{2} and area of a square of side s is s^{2}.

Mathematics Problem of the Week

Problem Number: 314
Posted on Tuesday, October 11, 2022
Deadline: Monday, October 17, 2022 at noon

Solution:

By Pythagorean, since the square is of sides 8 , then the diameter of the white circle is $8 \sqrt{2}$ which means the radius of the circle is $4 \sqrt{2}$. The white regions surface area is then $\pi \times(4 \sqrt{2})^{2}-8 \times 8=32 \pi-64$.

The surface area of the pink region is:
"area of 4 semicircles (two circles) of radius 4 - area of the white regions" Thus

$$
\begin{aligned}
\text { area } & =2 \times \pi \times 4^{2}-(32 \pi-64) \\
& =32 \pi-32 \pi+64=64
\end{aligned}
$$

which is the same as the area of the orange square.

