KWANTLEN UNIVERSITY COLLEGE

Department of Chemistry

CHEM 0094 FINAL EXAM	Name:
April 18, 2002	Instructor:

INSTRUCTIONS

Write your answers in the spaces provided. Rough work may be done on the backs of the pages.

Show all work for full credit.
Strict adherence to independent work.
A periodic chart is attached
Ensure this exam has 11 pages of questions

USEFUL DATA: Avogadro's number = 6.02 x 10²³/mole

 $^{\circ}F = 1.8 \times ^{\circ}C + 32$

SOLUBILITY RULES

ION	RULES
Group IA	1. All ionic compounds in which the cation is a
NH_4^+	Group IA element or NH ₄ ⁺ are soluble.
NO_3	All nitrates are soluble.
Cl ⁻ ,Br ⁻ ,l ⁻	3. All soluble except those of Ag ⁺ and Pb ²⁺
SO ₄ ²⁻	4. All soluble except for CaSO ₄ , BaSO ₄ , SrSO ₄
	PbSO ₄ , and Ag ₂ SO ₄ .
S ²⁻	5. All sulfides are insoluble except those of the
	Group IA or IIA elements or NH ₄ ⁺ .
	All other compounds are insoluble.

ACTIVITY SERIES OF THE METALS

Li K Ba Na Mg Al Zn Fe Cd Ni Sn Pb (H) Cu Hg Ag Au Most reactive Least reactive

1.	The following are properties of the element zirconium; classify them as physical or chemical properties. [3]
	a) reacts with hot HCl(g)
	b) melting point = 1852°C
	c) reacts with silicon at high temperature
2.	Classify the following changes as physical or chemical. [3]
	a) tearing up a piece of paper
	b) burning sugar
	c) dissolving sugar in water
3.	How many significant figures? [4]
	a) 0.004196 c) 4068
	b) 2.00 x 10 ⁻³ d) 90.09
4.	Express the following in scientific notation to have three significant figures. [2]
	a) 8,720,000
	b) 0.006285
5.	a) The lowest recorded temperature in the world was recorded as -89.2°C at the Soviet Antarctic Station on July 23, 1983. What is this temperature in °F? [2]
	b) The highest recorded temperature in the world was recorded as 136.4°F at Azizia, Libya, in the Sahara desert on September 13, 1922. What is this temperature in °C? [2]

- **6.** Perform the following conversions.
 - **a)** 25.9 km to mm [2]
 - **b)** $13.6 \text{ g/mL to kg/m}^3$ [2]
 - **c)** 3655 square feet to square meters (12.0 inches = 1ft, 1 inch = 2.54 cm) **[3]**

7. How many grams of gold will have the same volume as 100.0 g of copper? Densities (g/cm³) of copper and gold are 8.96 and 19.32, respectively. [2]

8. Much of iron is obtained from the mineral magnetite, which has a density of 5.2 g/cm^3 and contains 72.4 % iron by mass. How many cubic meters of magnetite are needed to supply 1000 kg of iron? [3]

9.	a) It takes 1368 J to raise the temperature of 45.6 g of lead by 13.3°C. What is the specific heat of lead? [2]
	b) How much energy is needed to raise the temperature of 850 g block of aluminum from 22.8°C to 94.6°C? Specific heat of aluminum is 0.900 J/g °C. [2]
10.	 a) An ion contains 50 protons, 68 neutrons, and 48 electrons. Give its isotopic or nuclide symbol. [1.5]
	b) How many protons , neutrons, and electrons are in ⁵⁹ Co ³⁺ ? [1.5]
	c) Identify each of the following elements: [6]
	i) A noble gas with 54 protons
	ii) A member of the oxygen family. The anion with 2- charge contains 36 electrons

iii) A member of the alkaline earth family. The 2+ ion has 18 electrons. _____

iv) How many elements are there in period # 4?		
	nula of a diatomic elemer t is a liquid at 25ºC.	ntary
vi) Give the symb	ool of the most active alka	ali metal
Calculate the atomi following: [3]	c mass to four significan	t digits for antimony, given the
Isotope	Atomic Mass(amu)	% Abundance
Sb-121	120.9038	57.25
Sb-123	122.9041	42.75
Write the formula for	or each of the following: [6]
a) Copper(I) carbona	ate	
b) Iron(II) nitrite		

f) Ammonium sulfate ______

13. Write the correct name for each of the following: [6]

a) AgNO₃ ______

c) Diphosphorous pentoxide

e) Cobalt (II) chloride hexahydrate

d) Hydrosulfuric acid

11.

12.

b)	H_2SO_4	

14. Balance the following equations: **[4]**

a)
$$P_4 + Cl_2 \rightarrow PCl_5$$

b)
$$NH_4NO_3 \rightarrow N_2O + H_2O$$

c)
$$C_3H_5N_3O_9 \rightarrow N_2 + CO_2 + H_2O + O_2$$

d) HNCO + NO
$$\rightarrow$$
 N₂ + H₂O + CO₂

15. Complete and balance the following reactions. Give the proper states of substances. In each case there is a reaction. **[12]**

a)
$$Pb(NO_3)_2(aq) + HCl(aq) \rightarrow$$

b) Al(OH)₃(s) + HNO₃(aq)
$$\rightarrow$$

c)
$$Ca(s) + H_2O(l) \rightarrow$$

d) CaCO₃(s)
$$\stackrel{\Delta}{\longrightarrow}$$

$$\textbf{e)} \quad Ca(OH)_2(aq) \ + \quad \quad H_3PO_4(aq) \ \rightarrow$$

$$\textbf{f)} \qquad C_7H_6O_3(s) \qquad + \qquad O_2(g) \qquad \rightarrow$$

<i>(</i>	1	
ıcam	niictioni	
(COIII	bustion)	

- 16. Aspartame is an artificial sweetner that is 160 times sweeter than sucrose (table sugar) when dissolved in water. It is marketed as Nutra-Sweet. The molecular formula of aspartame is $C_{14}H_{18}N_2O_5$.
 - a) Calculate the molar mass of aspartame. [2] _____
 - **b)** How many moles of molecules are in 10.0 g of aspartame? [2]

c) How many molecules are in 5.00 g of aspartame? [1]

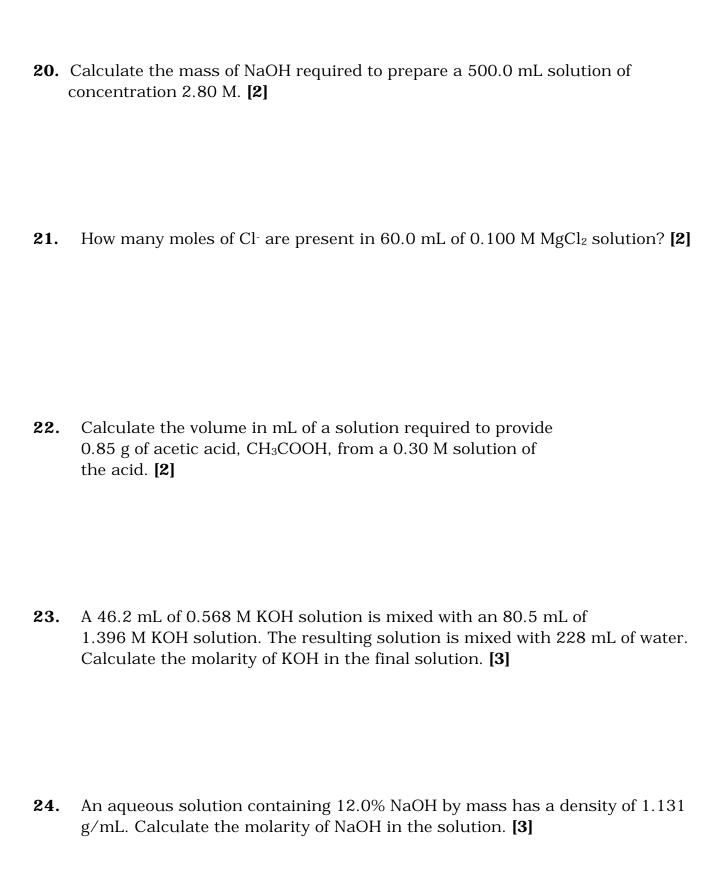
d) How many atoms of nitrogen are in 10.0 g of aspartame? [2]

	e) What is the mass of one molecule of aspartame? [2]
17.	Monosodium glutamate (MSG), a food-flavor enhancer, has been blamed for "Chinese restaurant syndrome," the symptoms of which are headaches and chest pains. MSG has the following composition by mass: $35.51~\%$ C, $4.77~\%$ H, $37.85~\%$ O, $8.29~\%$ N, and $13.60~\%$ Na.
	a) Calculate the simplest (empirical) formula of MSG. [5]
	b) What is its molecular formula if its molar mass is 169? [2]
18.	The fertilizer ammonium sulfate is prepared by the following reaction.

$$2 \text{ NH}_3(g) + \text{H}_2\text{SO}_4(aq) \rightarrow (\text{NH}_4)_2\text{SO}_4(aq)$$

The yield of the reaction is 87.0 %. How many grams of NH_3 are needed to produce 445 grams of ammonium sulfate? [3]

19. Consider the reaction


$$MnO_2 \ + \ 4 \ HCl \ \rightarrow \ MnCl_2 \ + \ Cl_2 \ + \ 2 \ H_2O$$

If 0.86 mole of MnO_2 and 48.2 g of HCl react,

a) Which is the limiting reagent? [4]

 ${f b)}$ How many grams of chlorine will be produced? [2]

c) How many grams of which reactant are left unused? [3]

25. How many mL of a 0.610 M NaOH solution are needed to completely neutralize 20.0 mL of a 0.245 M H₂SO₄? **[3]**

$$2 \text{ NaOH(aq)} + \text{H}_2\text{SO}_4(\text{aq}) \rightarrow \text{Na}_2\text{SO}_4(\text{aq}) + 2 \text{ H}_2\text{O(l)}$$

26. Write the net-ionic equations for the following reactions. **[4]**

a)
$$2 \text{ HCl}(aq) + \text{Ba}(OH)_2(aq) \rightarrow \text{Ba}(Cl_2(aq) + 2 \text{ H}_2O(l)$$

$$\textbf{b)} \ \ Zn(s) \ + \ \ CuSO_4(aq) \rightarrow ZnSO_4(aq) \ + \ Cu(s)$$

27. How much heat is given off when 1.00 kg of CH₃OH is burned according to the reaction? [2]

$$CH_3OH(l) + 3/2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(l) + 728 \text{ kJ}$$