KWANTLEN UNIVERSITY COLLEGE

DEPARTMENT OF CHEMISTRY

Name:	
Student Number:	
December 17, 2001	
Time: 3 hours	

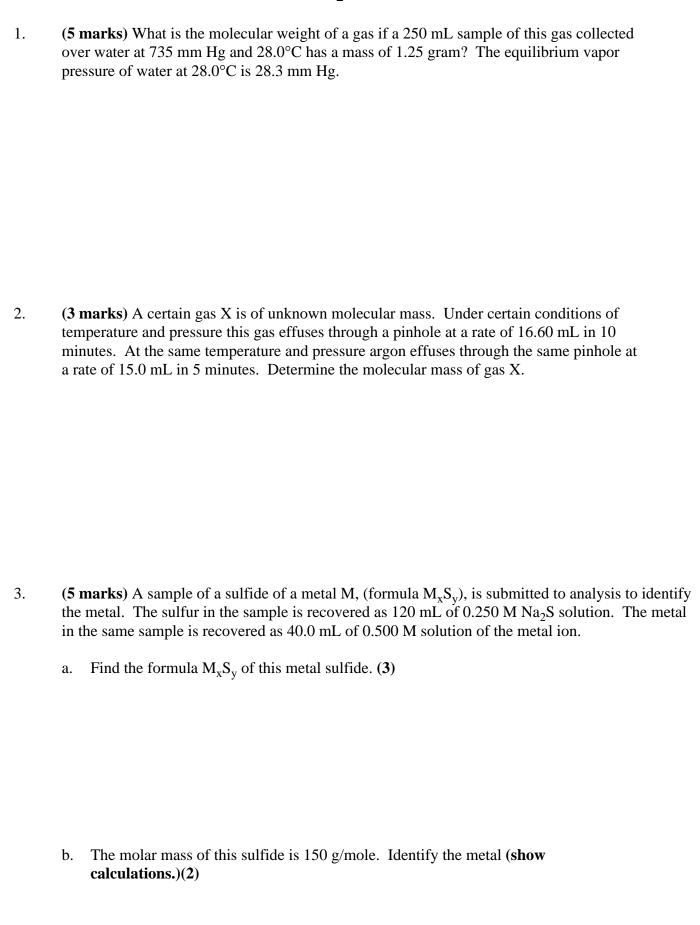
Final Examination: CHEM 1110

INSTRUCTIONS:

- 1. All calculations must be shown in order to receive any credit.
- 2. A periodic table will be given to you.
- 3. Rough work should be done on the back of the pages.
- 4. Be sure this exam paper has 11 pages.
- 5. If you need more space, use the back of the preceding page and clearly indicate the question number to be graded.

ADDITIONAL INFORMATION:

Avogadro's number = 6.02×10^{23}


1 atm = 760 mm Hg

$$K = 273 + {}^{\circ}C$$

 $K = 273 + ^{\circ}C \qquad \qquad R = 0.08206 \text{ L} \cdot \text{atm/mol} \cdot K$

$$h = 6.626 \text{ x } 10^{-34} \text{ Joule} \cdot \text{s}$$
 and $c = 2.998 \text{ x } 10^8 \text{ m/s}$

Page	Possible marks	
2	13	
3	14	
4	28	
5	20	
6	14	
7	12	
8	16	
9	28	
10	12	
11	15	
TOTAL	172	

4. **(6 marks)** Consider the reaction

$$4 \text{ NH}_3(g) + 5 \text{ O}_2(g) \rightarrow 4 \text{ NO}(g) + 6 \text{ H}_2\text{O}(\ell)$$

Suppose 6.00 L of NH_3 measured at 25.0°C and 1.00 atm is mixed with 7.00 L of O_2 , measured at the same temperature and pressure, and the above reaction takes place.

a. Identify the limiting reactant (Show calculations.) (2)

b. What is the mole fraction of the excess reactant in the gas mixture after the reaction has taken place? (3)

c. What is the partial pressure of the excess reactant in the same mixture if the total pressure of the mixture is adjusted to 0.400 atm.? (1)

5. **(8 marks)**

- a. Write the ground state electronic configuration for $T\ell^{3+}$. (2)
- b. How many unpaired electrons does $T\ell^{3+}$ (Thallium 3+) have in its ground state? (1)
- c. Is $T\ell^{3+}$ in its ground state DIAMAGANETIC or PARAMAGNETIC? (1)
- d. In the ground state electronic configuration of $T\ell^{3+}$ how many electrons have the following quantum numbers. (4)

(i)
$$n = 3$$

(ii)
$$n = 4$$
 and $\ell = 1$

(iii)
$$m_{\ell} = +1$$

(iv)
$$m_{\ell} = +2$$
 and $m_{s} = +\frac{1}{2}$

6.	The $C\ell$ -Se- $C\ell$ bond A. 90°	d angles in <u>Se</u> C ℓ_4 ar B. 109.5°	re expected to be ap C. 120°	pproximately: (2) D. 180°	E. 90° and 120°
7.	According to the angular? (2)	VSEPR theory, whi	ch of the following	species is (are) predi	cted to be
	A. $\underline{O}F_2$	B. <u>Xe</u> F ₂	C. O <u>C</u> S	D. H <u>C</u> N	E. both A and B
8.	The central atom : A. 2,0	in <u>Br</u> F ₂ ⁺ has bon B. 2,1	ding pair(s) and C. 2,2	non-bonding (lone) pD. 2,3	pair(s). (2) E. 3,2
9.	According to VSF A. tetrahedral bipyramid	EPR theory the geor B. see-saw		nolecule is best decrib mid D. trigonal pla	
10.	Which of the followard A. $\underline{C}C\ell_4$	owing molecules is B. GeH ₄	polar? (2) C. <u>S</u> C ℓ_4	D. <u>Ga</u> I ₃	E. <u>S</u> O ₃
11.	Which one of the A. $\underline{Br}F_2^{1-}$	following species h B. $\underline{SF_3}^+$	as sp ² hybridization C. $\underline{P}C\ell_3$	n at the central atom? D. CH ₃ ⁺	(2) E. CH ₃ ¹⁻
12.	Which of the followards A. BrF ₂ ¹⁻ F. A and B	owing molecules ha B. $\underline{SF_3}^+$ G. A and C	s (have) sp^3d hybrid C. $\underline{P}C\ell_3$ H. A and D	dization at the central D. ${\rm CH_3}^+$ I. B and E	atom? (2) E. CH ₃ ¹⁻ J. C and D
13.		• • • • • • • • • • • • • • • • • • • •		lecule H_2 CCC H_2 ? (2) D. 4 σ and 4 π	E. 6σ and 2π
14.	The ground state of A. $(\sigma_{1s})^2(\sigma^*_{1s})^2(\sigma_{1s})^2(\sigma_{2s})^$	molecular orbital electrons are molecular orbital electrons a	ectron configuration $(1/(\pi_{2p})^1)^1$ $(1/(\pi_{2p})^2)^2$ $(1/(\pi_{2p})^2)^2$	n of the molecule C_2 :	is: (2)
15.	Use MO theory to A. C ₂	predict which of th B. FN	ne following is (are) C. NO ⁺	paramagnetic? (2) D. A and B	E. A and C
16.	Use MO theory to A. OF	predict which of the B. CN ⁻	ne following species C. O_2^+	s would have the shor D. BO	test bond length? (2) E. B ₂
17.	Use MO theory to A. OF	predict which of the B. CN ⁻	ne following species C. O_2^+	s would have the long D. BO	est bond length? (2) E. B ₂
18.	Use MO theory to A. OF	predict which of the B. CN ⁻	ne following species C. ${\rm O_2}^+$	s would have the larg D. BO	est bond energy? (2) E. B ₂
19.	Use MO theory to A. OF	predict which of the B. CN ⁻	ne following species C. ${\rm O_2}^+$	s would have the sma D. BO	llest bond energy? (2) E. B ₂

20. (10 marks) Name the following, using IUPAC or other acceptable names:

b.
$$\begin{array}{cccc} CH_3CHCH_2CH CH_2CH_2C \\ & | & | \\ Br & CH_2CH_3 \end{array}$$

c.
$$CH_3CH_2C \equiv CC(CH_3)_3$$

21. **(10 marks)** Draw structures for the following:

- a. cis-3,4-dichlorocyclopentanone
- b. isobutyl benzoate or 2-methylpropyl benzoate
- c. 2,4-dinitroethylbenzene
- d. 3,5,5-trimethyl-4-propylnonane
- e. *trans*-4,4-dimethyl-6-isopropyl-2-octene

22. (14 marks) Draw the structure(s) for the organic product(s) in each case.

(a)
$$\begin{array}{c|c} & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

(b)
$$(CH_3)_2CHCOOH + CH_2OH \xrightarrow{H^+}$$

(c)
$$CH_3 - C - CH_2 - CH_2 - C-H + H_2(excess) \xrightarrow{Pt} O$$

(d)
$$CH_{3}C = CHCH_{2}CH_{3} + HCl$$

$$CH_{3}$$

(e)
$$CH_3 \cdot C = CHCH_2CH_3 + KMnO_4 \text{ (hot)} \longrightarrow CH_3$$

$$(f) \qquad \begin{array}{c} OH & OH \\ | & | \\ CH_3 - C \cdot CH_2 \cdot CH_2 \cdot C - CH_3 & + KMnO_4 \\ | & | \\ CH_3 & H \end{array} \longrightarrow$$

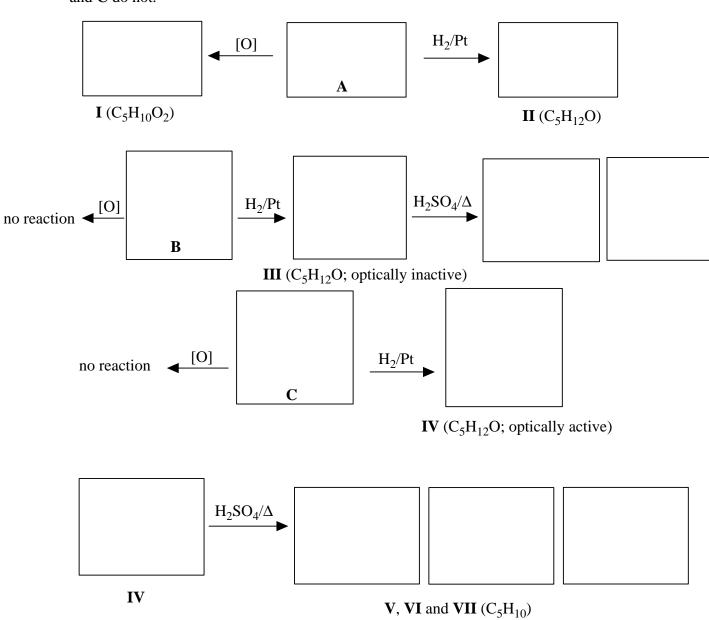
(g)
$$(CH_3)_2CHCOOH + NH_2 \xrightarrow{heat}$$

- 23. **(6 marks)** For each compound, if *cis-trans* isomerism is possible draw the isomers, and if optical isomerism is possible label all chiral (asymmetric) carbon atoms with an asterisk (*).
 - (a) C&CH=CHCH₃
 - (b) CH₂=CHCHC&CH₃
 - (c) CH₃

24. **(6 marks)**

- a. Fog lights are effective for driving under foggy conditions because reflection is minimized since the wavelength of the yellow light is nearly equal to the diameter of a fog particle. A particular filament arrangement in fog lights generates a photon having an energy of 3.40 x 10⁻¹⁹ Joule. Estimate the diameter of a fog particle (in centimeters).(2)
- b. For H-like species the energy of an electron in any given orbit can be calculated from the formula,

$$E_n = \frac{-2.178 \times 10^{-18} Z^2}{n^2}$$
 (Joule)


Calculate the wavelength and frequency of the photon produced for the transition from the n=4 to n=3 transition in the N^{6+} ion.(4)

25. (16 marks)

a. Draw the 7 isomers of $C_5H_{10}O$ which have a ketone or aldehyde functional group.(7)

b. Assign structures to A, B and C, three of the <u>seven</u> isomers referred to in part (a), and to their numbered reaction products (I to VII) on the basis of the data given below. ([O] = reaction with $KMnO_4/heat$).(9)

 ${\bf A}$ has optical isomers but ${\bf B}$ and ${\bf C}$ do not. ${\bf A}$ gives a silver mirror with the Tollens reagent but ${\bf B}$ and ${\bf C}$ do not.

26. **(4 marks)** Indicate the type(s) of intermolecular forces present in each of the following liquids: **WILL BE MARKED RIGHT MINUS WRONG.**

SUBSTANCE	H-bonding	Dipole-Dipole	London or dispersion forces
O II CH ₃			
fluoromethane			
cyclohexanol			
trimethylamine			

27.

•			
rimethylamine			
(24 marks) For e molecule, etc.:	ach case, match	the correct properties w	with the correct atom, ion,
a. Atomic	. Atomic radius (pm) 74, 118, 197		
Si	Ca	C)
b. Ionic r	adius (pm) 99,	133, 181	
K ⁺	Ca	2+ C	CC
c. Electro	onegativity 1.6,	1.8, 2.2	
Ga	T _ℓ	S	
d. Ionizat	Ionization energy (kJ/mol) 1145, 2081, 3388		
O ⁺¹	Ne	·	ca ⁺¹
e. Electro	Electron affinity (kJ/mol) -325, -195, -121		
Sn	Se	В	r
f. Ionizat	Ionization energy (kJ/mol) 550, 1012, 2080		
Sr	Ne	P	
g. Dipole	Dipole moment (D) 0.00 (least polar), 0.25, 1.47 (most polar)		
NF ₃ _	NI	H ₃ S	F ₆
h. Bond l	ength (pm) 92,	135, 175	
C-F	H-	F N	I-Cℓ

- 28. Which compound has the highest boiling point? (2)
 A. CH₃CH₃ B. CH₃OH C. CH₃CH₂CHO D. HOCH₂CH₂OH D. CH₃Cℓ
- 29. Which compound has the lowest boiling point? (2)
 A. CH₃CH₃ B. CH₃OH C. CH₃CH₂CHO D. HOCH₂CH₂OH D. CH₃Cℓ
- 30. **(8 marks)** The metal scandium (Sc) was predicted to occur by Mendeleev before it was discovered in 1879. Determine the empirical formula of scandium hydroxide from the following data. A 0.3750 g sample of scandium hydroxide was reacted with 25.00 mL of 2.000 *M* HCl (excess reagent). The resulting solution was quantitatively transferred to a 500.0 mL volumetric flask and diluted to the mark with distilled water. A 20.00 mL sample from the volumetric flask required 15.30 mL of 0.1000 *M* NaOH solution.

31.	(12 marks) Draw the Lewis structure for each the following: include formal charges and
	three non-equivalent resonance structures (label the "best"). (central atoms are
	underlined.)

a.
$$\underline{Br}O_3^{1-}$$

b.
$$O_2 NNO$$

32. **(3 marks)** Give the hybridization for each of the atoms numbered **1** to **6** in the molecule below.

1. ____ 2. ___ 3. ___ 4. ___ 5. ___ 6. ___