KWANTLEN UNIVERSITY COLLEGE

DEPARTMENT OF CHEMISTRY

Final Examination: CHEM 1110

Name:____

April 19, 2002

Time: 3 hours

INSTRUCTIONS:

- 1. Show all calculations in order to receive any credit.
- 2. A periodic table will be given to you.
- 3. Rough work should be done on the back of the pages.
- 4. Be sure this exam paper has 10 pages.

ADDITIONAL INFORMATION:

R = 0.08206 L-atm/mol-K Planck's constant = h = 6.62 x 10⁻³⁴ Joule-s speed of light = c = $3.0 \times 10^8 \text{ m/s}$ Avogadro's number = 6.02×10^{23} 1 atm = 760 mm Hg

PAGE	MARKS	
2	17	
3	11	
4	26	
5	20	
6	14	
7	14	
8	26	
9	18	
10	9	
Bonus	5	
TOTAL	155	

1.	completely by equation shows	reacting with n below:	exactly 25.0	0 mL of 0.1	1000 M K ₂ C	was dissolved in water and oxide $c_{12}O_{7}$ according to the balanced recording to the balan	
	Determine the	value of X in	[(NH ₄) ₂ Fe(S	SO ₄) ₂ ·XH ₂ C)].		
2.	(2) A 1.520 g sample of a nitrogen oxide was found to contain 0.463 g of nitrogen. The empirical formula for this oxide of nitrogen is:						
	(a) N ₂ O	(b) NO	-	•	d) NO ₂	(e) N_2O_5	
3.	(2) 12.21 g of an unknown gas is sealed in a 1.0 L flask at 97°C and 3.75 atm. Which one of the following is most likely to be the unknown gas?						
	(a) H ₂ S	(b) HBr	(c) CO_2		COCl ₂	(e) C_2H_2	
4.	(2) Calculate th (a) 0.60	ne density in (b) 1.13	g/L of H ₂ S g (c) 16.6	as at 20°C a (d) 46.0		n pressure.	
5.	(2) Calculate th (a) 6.64 x 10 ⁻¹³ (d) 664 nm		(b) 3.98 x				
6.	(2) How many				2-5	4	
	(a) 5	(b) 9	(c) 10	(d)	25	(e) 50	

7. (2) How many electrons in the ground state of a Hg atom can have the quantum number $m_{\ell} = +1$?

(a) 8

(b) 10

(c) 12

(d) 14

(e) 16

8. For H-like species the energy of an electron in any given orbit can be calculated from the formula.

$$E_n = \frac{-2.178 \times 10^{-18} Z^2}{n^2}$$
 (Joule)

(a) (4) Calculate the energy and frequency for the transition from the n = 3 to n = 2 transition in the Li^{2+} ion.

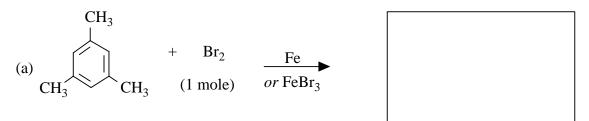
(b) (4) Calculate the ionization energy (in kJ/mol) for the He⁺ ion if the electron is in the ground state.

- 9. (3) Consider the electronic transitions in the H-atom from the n = 6 orbit to <u>all</u> the lower orbits in answering the following questions:
 - (a) The transition from $n = \underline{\hspace{1cm}}$ to $n = \underline{\hspace{1cm}}$ should produce the photon with the greatest frequency.
 - (b) The transition from $n = \underline{\hspace{1cm}}$ to $n = \underline{\hspace{1cm}}$ should produce the photon with the smallest frequency.
 - (c) The transition from $n = \underline{\hspace{1cm}}$ to $n = \underline{\hspace{1cm}}$ should produce the photon whose wavelength is most likely found in the visible region.

10.	(2) Which	element has	the following	valence electr	on configuration $6s^26p^2$?
	(a) Sn	(b) Sb	(c) Pb	(d) Bi	(e) Te	
11	(2) How m	nany unpaired	l electrons doe	es a Mn ³⁺ ion	have?	
	(a) 5	(b) 4	(c) 3	(d) 2	(e) 1	
12.		-			ch one of the following?	
	(a) O^{2-}	(b) F ⁻	(c) Na ⁺	(d) Al^{3+}	(e) K ⁺	
13.	` ,		the smallest at			
	(a) F	(b) Al	(c) S	(d) P	(e) Si	
14.			mallest radius			
	(a) Na ⁺	(b) K ⁺	(c) Ca ²⁺	(d) Mg^{2+}	(e) F ⁻	
15.	, ,		•		nost negative electron aff	inity value?
	(a) Ar	(b) Cl	(c) Br	(d) K	(e) P	
16.					zation energy?	
	(a) Li	(b) Ga	(c) K	(d) Bi	(e) As	
17.	, ,		the highest ele			
	(a) As	(b) Cl	(c) Ga	(d) P	(e) Br	
18.			_		ization energy?	
	(a) Li	(b) Mg	(c) O	(d) S	(e) Ca	
19.			ing covalent b		±	
	(a) Al-I	(b) Si-I	(c) Al-Cl	(d) Si-Cl	(e) Si-P	
20.					ble draw the isomers, and carbon atoms with an ast	
	(a)(2) Clo	CH=CHCH ₃				
	(b)(1) CH	H ₂ =CHCHCl(CH ₂			
	()()	2	3			

(c)(3) CH_3

21. **(10)** Name the following, using IUPAC or other acceptable names:


(c)
$$CH_3CH_2C \equiv CC(CH_3)_3$$

$$\begin{array}{ccc} \text{(d)} & \text{CH}_3\text{CH}_2\text{CH}_2\text{-C-OH} \\ & || & \text{O} \end{array}$$

$$(e) \begin{array}{c} CH_3 \\ C \\ CH_3 \\ C$$

- 22. **(10)** Draw structures for the following:
 - (a) cis-3,4-dichlorocyclopentanone
 - (b) isobutyl benzoate or 2-methylpropyl benzoate
 - (c) 2,4-dinitroethylbenzene
 - (d) 3,5,5-trimethyl-4-propylnonane
 - (e) *trans*-4,4,7-trimethyl-6-ethyl-2-octene

23. **(14)** Draw the structure(s) for the organic reactant(s) *or* product(s) in each case.

$$+ 2HBr \longrightarrow Br$$

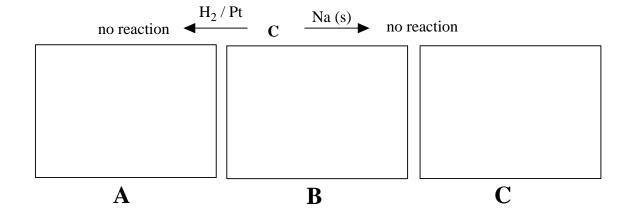
$$Br$$

$$Br$$

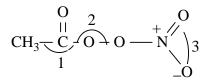
(e)
$$CH_3C = CHCH_2CH_3 + KMnO_4 \text{ (hot)}$$
 + CH_3

24. (a)(7) Draw the 7 isomers of $C_5H_{10}O$ which have a ketone or aldehyde functional group.

(b)(7) Assign structures to A, B and C, three of the isomers referred to in part (a), and to their numbered reaction products (I to IV) on the basis of the data given below. ([O] = reaction with $KMnO_4$ and [R] = reaction with H_2 and Pt).


A is optically active but **B** and **C** are not. **A** gives a silver mirror with the Tollens reagent but **B** and **C** do not.

25.	(2) According to the VSEPR theory the(a) trigonal pyramidal(c) tetrahedral(e) square planar		e geometry of (b) trigonal (d) T-shape	planar	scribed as:	
26.	(2) According (a) square plus (c) trigonal let (e) square py	lanar bipyramidal	PR theory the	e geometry of (b) see-saw (d) tetrahed	shaped	le is best described as:
27.	(2) The bond (a) 90°	d angle in O ₃ (b) 120°	is expected to (c) 145°		eately: (e) 109.5°	
28.	be:	ng to the VSE (b) 90° a			angles in the SeC (d) $< 109.5^{\circ}$	Cl_4 molecule are predicted to $\text{(e)} < 90^\circ \& < 120^\circ$
29.	(2) What is t (a) sp				the $\underline{SO_3}^2$ -ion? (e) sp^3d^2	
30.	(2) What is t (a) sp	• -	ion on the cer (c) sp ³		$\underline{\underline{S}}$ nCl ₃ ⁺ ? (e) sp ³ d ²	
31.	(2) Which of (a) AsF ₅		owing is a pol (c) GaCl ₃		O_4 (e) SF_4	
32.	(2) What is to (a) 0.5	the bond orde (b) 1.0	r for N ₂ ⁺ ? (c) 1.5	(d) 2.0	(e) 2.5	
33.	(2) What is to (a) 1.0	the bond orde (b) 1.5	r for O_2^{2-} ? (c) 2.0	(d) 2.5	(e) 3.0	
34.	(2) Which of (a) H ₂	f the followin (b) Li ₂	g is paramagr (c) B ₂	netic? (d) C ₂	(e) C ₂ ² -	
35.	(2) Which of (a) O ₂		g would have (c) O ₂ -	the shortest l (d) O_2^{2-}	oond length?	
36.	(2) Which of (a) O ₂		g would have (c) O ₂ -	the largest be (d) O_2^{2-}	ond energy?	
37.	(a) 3 sigma l (c) 4 sigma a	• •	S	(b) 3 sigma	lecule of N <u>CC</u> N? bonds and 2 pi bond and 3 pi bonds	ls


- 38. **(4)** The measured O-N-O bond angles are 180° in NO₂⁺, 134° in NO₂, adn 115° in NO₂⁻. Account for this trend.
- 39. **(2)** Assume that you have an unlabeled bottle containing a white crystalline powder. The powder melts at 310°C. You are told that it is either, SO₃, CCl₄, BrCl, or NaNO₃. Which do you think that it is? Explain your choice.
- 40. **(6)** Write the Lewis dot structures, including formal charges as well as resonance forms as requested for each of the following:
 - (a) HPO₃²⁻ (show three resonance structures and circle the most probable)
 - (b) FClO₃ (show three resonance structures and circle the most probable)
- 41. **(6)** There are more than 150 isomers of $C_6H_{10}O$. Give one possible structure for **A**, one for **B**, and one for **C** having the formula $C_6H_{10}O$ which give the following reactions:

$$C_6H_{12}O$$
 $\stackrel{H_2/Pt}{\longleftarrow}$ A $\stackrel{Na(s)}{\longrightarrow}$ $H_2(g) + Na^+ C_6H_9O^-$

no reaction
$$\stackrel{\text{H}_2 / Pt}{\longleftarrow}$$
 B $\stackrel{\text{Na (s)}}{\longrightarrow}$ $\text{H}_2(g) + \text{Na}^+ \text{C}_6 \text{H}_9 \text{O}^-$

42. One of the constituents of photochemical smog is peroxyacetyl nitrate, PAN. It has the structure shown below.

- (a) (1) How many sigma bonds are there in this molecule? _____
- (b) (1) How many pi bonds are there in this molecule? _____
- (c) (3) Give the approximate values of the angles labeled, 1,2,3.

Angle #1	Angle #2	Angle #3
----------	----------	----------

- (d) (1) How many non-bonding (lone) pairs of electrons are in this structure?
- (e) (3) Determine the number of atoms and the <u>total number</u> of hybrid orbitals used by these atoms in the above molecule.

Number of atoms using sp³ hybrid orbitals is _____

<u>Total number</u> of sp³ hybrid orbitals used is _____

Number of atoms using sp² hybrid orbitals is _____

<u>Total number</u> of sp² hybrid orbitals used is _____

Number of atoms using sp hybrid orbitals is _____

<u>Total number</u> of sp hybrid orbitals used is _____

BONUS QUESTION (5)

The bond angle H-O-H in water is 104.5°, the C-O-H bond angle in methanol is 109°, and the C-O-C bond angle in dimethyl ether is 112°. Explain the differences between the above observed bond angles and the expected bond angles.