KWANTLEN UNIVERSITY COLLEGE

DEPARTMENT OF CHEMISTRY

CHEM 1210 FINAL EXAMINATION

TOTAL = 105 MARKS

April 17,2002 Time: 3 hours

INSTRUCTIONS:

- 1. Read all questions thoroughly and answer each question completely. **ALL WORK MUST BE SHOWN IN ORDER TO RECEIVE ANY CREDIT.**
- 2. You will be allowed to use only the given sheet of thermodynamic equations.
- 3. Ensure that this exam paper has **58** questions.

ADDITIONAL INFORMATION:

Avogadro's number = 6.02×10^{23} Faraday = 96485 Coulombs R = 0.08206 L-atm/mol-K = 8.314 J/mol-K

Arrhenius equation: $k = Ae^{-Ea/RT}$

Nernst equation: $\varepsilon = \varepsilon^{\circ} - (0.05916/n)\log Q$ (at 25°C)

First order kinetics: $ln(A_0/A) = kt$

Second order kinetics: $[1/A] - [1/A_o] = kt$

Freezing point depression and boiling point elevation: $\Delta T = iKm$

1. **(5 Marks)** Balance the following oxidation-reduction reaction in **basic solution:**

$$MO_2^+ + YO_2^{1-} \rightarrow Y_2 + Y_3O_5 + MO$$

2. **(2 Marks)** Under certain conditions oxidation of sodium azide (NaN₃, molar mass = 65.01) results in the production of $NO_2(g)$. What is the equivalent mass of sodium azide under these conditions?

3. For $2A + B \rightarrow C$, initial rate law data are:

Exp.	[A]	[B]	Rate
#1	0.10	0.10	2.0×10^{-3}
#2	0.30	0.10	18.0 x 10 ⁻³
#3	0.20	0.30	24.0×10^{-3}

(2)

The rate law is Rate = $k[A]^x[B]^y$

a.
$$x = 1$$
 and $y = 2$

b.
$$x = 2$$
 and $y = 1$

c.
$$x = 1$$
 and $y = 1$

d.
$$x = 2$$
 and $y = 2$

e.
$$x = 0$$
 and $y = 2$

- 4. What are the units for the rate constant for the rate law = k[A][B][C]?
 - a. *M*⁻²-sec

(1) c.
$$M^2$$
-sec⁻¹

d.
$$M^{-2}$$
-sec⁻¹

5.	reaction order is a. zero
	b. first
(1)	c. second
	d. third
	e. none of these
6.	If a catalyst is added to a reaction
	(1) the value of k is increased.
(1)	(2) the value of k is decreased.
(1)	(3) the rate is increased.(4) the rate is decreased.
	(5) neither rate nor the rate constant are changed, only the order.
	a. 1 and 4 b. 2 and 4 c. 2 and 3 d. 1 and 3 e. only 5
	a. Tana T
7.	Substance A decomposes by a first-order reaction. If $[A]_0 = 2.00 M$ and after 150 minutes $[A] = 0.25 M$, then its half life is:
	a. 300 minutes
(2)	b. 150 minutes
	c. 75 minutes
	d. 50 minutes e. 37.5 minutes
	e. 37.3 illimates
8.	Which of the following statements is TRUE about the reaction $2A+B \rightarrow C$ which is first order in A and first order overall
	a. The rate of the reaction will decrease at higher concentrations of B
	b. The time required for one half of A to react is directly proportional to the quantity of A present.
(2)	c. The rate of formation of C is twice the rate of reaction of A.
` /	d. The rate of reaction of B is the same as the rate of reaction of A.
	e. None of these.
_	
9.	The half-life for a first order reaction is 12 hours at 35°C and 2.5 hours at 100°C. What is the
(2)	activation energy for this reaction?
(2)	a. 31.6 kJ/mol
	b. 27.4 kJ/mol c. 23.1 kJ/mol
	d. 10.0 kJ/mol
	e27.4 kJ/mol
	C. 27.7 RJ/IIIOI
10.	Consider the following hypothetical equilibrium: $B_2(g) + A_2(g) \rightleftharpoons 2AB(g)$ where $K_c = 4$
	What is the value of K_c for the equilibrium:
	$4AB(g) \rightleftharpoons 2B_2(g) + 2A_2(g)$
	a. 0.5
·	b. 0.25
(2)	c. 2
	d. 0.0625
	e. 16

Given the following equilibria: 11.

$$2A(g) + B(g) \rightleftharpoons 3C(g)$$
 $K_c = 1.7 \times 10^{-13}$
 $2D(g) + 2B(g) \rightleftharpoons 3C(g)$ $K_c = 4.1 \times 10^{-31}$

Find the equilibrium constant for the following equilibrium: $2D(g) + B(g) \rightleftharpoons 2A(g)$

- a. 1.6 x 10⁻⁹
- b. 7.0 x 10⁻⁴⁴
- **(2)** c. 2.6 x 10⁻²²
 - d. 4.2×10^{17}
 - e. 2.4 x 10⁻¹⁸
- 12. For the reaction: $POCl_3(g) \rightleftharpoons POCl(g) + Cl_2(g)$, $K_c = 0.450$

A sample of pure POCl₃(g) was placed in a container and allowed dissociate according to the above reaction. At equilibrium, the concentration of POCl(g) was found to be 0.150 M. What was the initial concentration of $POCl_3(g)$?

- a. 0.225 *M*
- b. 0.200 M
- **(2)** c. 0.633 *M*
 - d. 0.483 M
 - e. 0.350 *M*
- 13. For the following chemical reaction at equilibrium:

$$2\text{Cl}_2(g) + 2\text{H}_2\text{O}(g) \rightleftharpoons 4\text{HCl}(g) + \text{O}_2(g)$$

- a. $K_p = K_c$ b. $K_p = K_c(RT)$ **(2)**
 - c. $K_p = K_c(RT)^{-1}$

 - d. $K_p = K_c (RT)^{-3}$ e. $K_p = K_c (RT)^3$
- Calculate the ratio (K_p/K_c) for the following chemical reaction at equilibrium at 25°C: 14.

$$2\text{Cl}_2(g) + 2\text{H}_2\text{O}(g) \rightleftharpoons 4\text{HCl}(g) + \text{O}_2(g)$$

- a. 1
- **(1)** b. 24.5
 - c. 2.05
 - d. 0.0408
 - e. 2477
- 15. Consider the equilibrium:

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g), \Delta H^\circ = -196.6 \text{ kJ}$$

The equilibrium is shifted to the left if:

- a. some sulfur trioxide is removed.
- b. the temperature is raised.
- c. a catalyst is added. **(2)**
 - d. the pressure is raised.
 - e. none of these answers.
- All of the following may shift the position of a reaction at equilibrium **EXCEPT**: 16.
 - a. temperature change
 - b. concentration change
- **(1)** c. volume change
 - d. pressure change
 - e. catalyst

17. For the reaction: $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ In a closed 3.0 liter container are placed 0.75 mol of N₂ and 1.20 mol of H₂. When the reaction reaches equilibrium, $[H_2] = 0.100 \, M$. Which of the following is TRUE? a. $[NH_3] = 0.150 M$

b. $[NH_3] = 0.200 M$ **(2)** c. $[N_2] = 0.650 M$ d. $[N_2] = 0.250 M$

e. none of these

In the equilibrium system: $PO_4^{3-}(aq) + H_2O(l) \rightleftharpoons HPO_4^{2-}(aq) + OH^{-}(aq)$ 18. Brønsted-Lowry theory would designate:

a. PO₄³- and H₂O as the bases

b. HPO_4^{2-} and PO_4^{3-} as a conjugate pair

(1)

c. HPO_4^{2-} as a base d. HPO_4^{2-} and H_2O as a conjugate pair

e. PO_4^{3-} as amphiprotic

19. Which species in the following reaction acts as the Lewis acid?

$$Co^{2+}(aq) + 4Cl^{-}(aq) \rightleftharpoons CoCl_4^{2-}(aq)$$

a. CoCl₄²-

b. Cl

c. Co²⁺ **(1)**

d. none are acids

20. 0.272 g of a monoprotic acid (Molar mass = 189 g/mol) is dissolved in water to produce 25.0 mL of a solution with pH = 4.93. Calculate the disociation constant of the acid.

a. 4.1 x 10⁻⁸

b. 1.4 x 10⁻¹⁰

c. 2.1 x 10⁻⁴ **(2)**

d. 2.8 x 10⁻⁷ e. 2.4 x 10⁻⁹

21. Determine the pH of the solution prepared by mixing equal amounts of 0.210 M HCl and 1.63 M NaCHO₂. K_a (for HCHO₂) = 1.8 x 10⁻⁴.

a. 2.91

b. 4.57

(2) c. 4.77

d. 9.43

e. 11.09

22. Which of the following would NOT be considered a buffer solution?

a. $0.1 M HC_2H_3O_2$ and $0.1 M NaC_2H_3O_2$

b. 0.1 M NH₃ and 0.1 M NH₄NO₃

c. 0.1 M NaHSO₃ and 0.1 M H₂SO₃ **(1)**

d. 0.1 *M* HI and 0.1 *M* NaI

e. 0.1 M Na₂HPO₄ and 0.1 M NaH₂PO₄

23. In the titration of 20.0 mL of a 0.100 M H₂A acid (p $K_{a1} = 4.00$ and p $K_{a2} = 6.00$) with 0.200 M NaOH. Which of the following is FALSE? a. 20.0 mL of NaOH solution are needed to reach the second equivalence point. b. the pH at the first equivalence point is 5.00 **(4)** c. the pH at the second equivalence point is greater than 7.0 d. when 10.0 mL of NaOH have been added the $[H_2A] = [HA^-]$ e. At the start before any base has been added the pH = 2.5024. What is the after addition of 10.0 mL of 1.0 M HCl to 90.0 mL of a buffer consisting of 1.0 M NH₃ and 1.0 *M* NH₄Cl? K_b (for ammonia) = 1.8 x 10⁻⁵ a. 4.74 b. 9.16 c. 9.26 **(2)** d. 9.36 e. 11.58 A certain acid has a $K_a = 6.80 \times 10^{-6}$. What is the pH of a 0.247 M solution of the acid's potassium 25. a. 4.72 b. 9.28 c. 9.11 **(2)** d. 9.44 e. 9.89 For aqueous NH₄NO₃, predict whether the solution is acidic, basic or neutral and why. 26. a. acidic because it is a strong acid. b. basic because it is a weak base. c. neutral because there is no hydrolysis. **(1)** d. acidic because it is the salt of a strong acid. e. acidic because it is the salt of a weak base. Phenol red indicator changes from yellow to red in the pH range 6.6 to 8.0. What color will the 27. indicator show in a 0.10 M NaCN solution? a. red b. yellow c. red-yellow mixture **(1)** d. the indicator is its original color e. there is not enough information to answer this question. What is the concentration of SO_4^{2-} ion in a 3.6 M H_2SO_4 solution? 28. $K_{a2} = 1.1 \text{ x } 10^{-2}.$ a. 0.011 *M* b. 0.040 *M*

(2)

c. 0.20 *M* d. 0.60 *M* e. 1.8 *M*

29.	Ten mL of $0.10 M \text{ NH}_3(aq)$ ($K_b = 1.8 \times 10^{-5}$) is mixed with ten mL of $0.10 M \text{ NH}_4\text{Cl}$, the resulting solution:
(2)	a. has a pH = 4.74 b. has a [H ⁺] of about 1 x 10^{-3} M c. is acidic d. has an [OH ⁻] of about 1.8×10^{-5} M e. has an [NH ₄ ⁺] greater than that of the NH ₄ Cl(aq)
30.	The p K_b for methylamine is 3.38. What is the pH of an aqueous solution for which the label reads 0.042 M CH ₃ NH ₂ ?
(2)	a. 2.4 b. 4.8 c. 9.2 d. 11.6 e. 12.3
31.	Which of the following has the <u>smallest</u> molar solubility in pure water? a. CuS ($K_{sp} = 8 \times 10^{-37}$) b. Bi ₂ S ₃ ($K_{sp} = 1 \times 10^{-70}$)
(3)	c. Ag ₂ S $(K_{sp} = 1 \times 10^{-51})$ d. MnS $(K_{sp} = 7 \times 10^{-16})$ e. PbS $(K_{sp} = 3 \times 10^{-28})$
32.	Calculate the molar solubility of silver chromate in a 0.010 M Na ₂ CrO ₄ solution. $K_{\rm sp}$ of Ag ₂ CrO ₄ = 9.0 x 10^{-12} . a. $9.0 \times 10^{-10} M$
(2)	b. $4.5 \times 10^{-10} M$ c. $6.0 \times 10^{-5} M$ d. $3.0 \times 10^{-5} M$ e. $1.5 \times 10^{-5} M$
33.	The solubility product of silver sulfate is 1.6×10^{-5} . What is the molar solubility of this compound in pure water? a. $8^{\frac{1}{2}} \times 10^{-2} M$
(2)	a. $8^2 \times 10^{-1} M$ b. $4^{\frac{1}{3}} \times 10^{-2} M$ c. $16^{\frac{1}{2}} \times 10^{-3} M$ d. $1.6 \times 10^{-5} M$ e. none of these M
34.	The heat of combustion, $\Delta H^{\circ}_{\text{comb}}$, for one mole of benzene(C ₆ H ₆) is -3267.4 kJ. Given the $\Delta H^{\circ}_{\text{f}}(\text{CO}_2(g)) = -393.5 \text{ kJ/mol}$ and $\Delta H^{\circ}_{\text{f}}(\text{H}_2\text{O}(l)) = -285.8 \text{ kJ/mol}$. $C_6\text{H}_6(l) + 15/2 \text{ O}_2(g) \rightarrow 6\text{CO}_2(g) + 3\text{H}_2\text{O}(l)$
(2)	Calculate the $\Delta H^{\circ}_{\rm f}$ of benzene. a. +2588.1 kJ/mol b49.0 kJ/mol c808.4 kJ/mol d. +49.0 kJ/mol

e. +808.4 kJ/mol

35.		$2H_2(g) + O_2(g) \rightarrow 2$ Q(g) is required to li				
(2)	b. 2.05 g c. 4.17 g d. 8.34 g e. 16.7 g					
36.	(1) As two gases	ect statements conce mix, ΔS is positive thermodynamic pro	· ·	e degree of disorder.		
(2)	 (2) Entropy is a thermodynamic property related to the degree of disorder. (3) As temperature in a gas decreases, ΔS is positive. (4) Molecules in the liquid state have higher entropy than molecules in the gaseous state. 					
	a. 1 and 3	b. 1,2 and 3	c. 1 and 2	d. 1,2 and 4	e. 2 and 3	
37.	spontaneous? a. $\Delta H^{\circ}(+)$ and $\Delta S^{\circ}(+)$	$S^{\circ}(+)$	ns of signs for $\Delta H^{ m c}$	$^{\circ}$ and ΔS° will always r	esult in a reaction being	
(1)	b. $\Delta H^{\circ}(+)$ and ΔS c. $\Delta H^{\circ}(-)$ and ΔS d. $\Delta H^{\circ}(-)$ and ΔS e. cannot determ	(°(+)	perature			
38.		of methanol is 38.0		al boiling point of 64.5	°C. The molar enthalpy	
(1)	c. 589 kJ/mol-K d. 0.589 kJ/mol-L e. 0.112 kJ/mol-L					
39.	For a particular r a. 88.02 J/mol b. 202.7 J/mol	reaction $K_p = 0.377$	at 25°C. What is 2	ΔG° for this reaction?		
(1)	c. 1049 J/mol d. 2420 J/mol e1049 J/mol					
40.	For the reaction: a. +605 J/K	$2O_3(g) \rightarrow 3O_2(g)$.	What is ΔS° for the	ne system?		
(2)	b. +137 J/K c. +12 J/K d39 J/K e183 J/K					

41. For the reaction: $2O_3(g) \rightarrow 3O_2(g)$ at 298 K. Which of the following statements is TRUE?

a. $\Delta S_{\text{universe}} > 0$ and $\Delta G^{\circ} < 0$

(2) b. $\Delta S_{\text{universe}} < 0 \text{ and } \Delta G^{\circ} > 0$

c. $\Delta S_{\text{universe}} = 0$ and $\Delta G^{\circ} = 0$

d. $\Delta S_{\text{universe}} > 0$ and $\Delta S_{\text{surroundings}} = 0$

e. $\Delta S_{\text{universe}} < 0$ and $\Delta S_{\text{system}} > 0$

42. For the reaction $Cl_2(g) + 3F_2(g) \rightleftharpoons 2ClF_3(g)$ $K_p = 4.1 \times 10^{34}$ at 77°C and $K_p = 1.3 \times 10^{43}$ at 25°C.

What is the value of ΔH° ?

a. +157 kJ

(2) b. -157 kJ

c. -6.0 kJ

d. -142 kJ

e. -326 kJ

43. Consider the reaction:

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

 $\Delta H^{\circ}_{f,298}(kJ/mol)$ -110.5

0 -200.7

 $S^{\circ}(J/\text{mol-K})$

197.6 130.6

239.7

What is ΔG° for this reaction at 300°C? Is the reaction spontaneous at 300°C?

a. -35.3 kJ, YES

b. +35.3 kJ, NO

(2) c. +35.3 kJ, YES

d. -24.5 kJ, NO

e. -24.5 kJ, YES

44. Determine the equilibrium constant (K_c) for the following reaction at 298 K:

$$\operatorname{Sn}^{2+}(aq) + \operatorname{Ti}(s) \to \operatorname{Sn}(s) + \operatorname{Ti}^{2+}(aq)$$

Given the standard reduction potentials: $Ti^{2+}/Ti = -1.630 V$ and for $Sn^{2+}/Sn = -0.137 V$

a. 1.7×10^{25}

b. 3.0×10^{50}

(2) c. 5.4×10^{59}

d. 3.4 x 10⁻⁵¹

e. 1.8 x 10⁻⁶⁰

45. Will magnesium metal react with Al³⁺ ion from an aqueous solution?

The standard reduction potentials: $Mg^{2+}/Mg = -2.36 V$ and for $Al^{3+}/Al = -1.68 V$

a. no, since the cell voltage is negative

b. yes, since ΔG° is positive

(2) c. yes, because the system is at equilibrium

d. yes, since $\Delta S_{\text{universe}} > 0$

e. no, because the reverse reaction is spontaneous

46. Choose the INCORRECT statement:

a. An electrode is often a strip of metal.

b. An electrode in a solution of its ions is a half cell.

(1) c. An electrochemical cell is a half-cell.

d. The electromotive force (emf) is the cell potential.

e. The cell potential is the potential difference between the half-cells.

47. A copper electrode weighs 23.07 g before the electrolysis of a CuSO₄ solution and 24.34 g after the electrolysis has run using a current of 193 ampere. What was the time for this electrolysis? a. 10 seconds b. 20 seconds **(2)** c. 40 seconds d. 60 seconds e. 80 seconds 48. Choose the FALSE statement: a. Only spontaneous processes occur naturally. b. The entropy of vaporization is always positive. **(2)** c. The combustion of any hydrocarbon is exothermic. d. ΔG° is always equal to zero at equilibrium. e. The greater the degree of randomness in a system, the greater the entropy of the system. 49. Calculate ε_{cell} for the following voltaic cell at 298 K: $Ni(s)|Ni^{2+}(aq)[saturated NiCO_3(s)]||Ni^{2+}(0.010 M)|Ni(s)|$ The K_{sp} for NiCO₃ is 1.42 x 10⁻⁷ and the standard reduction potential for Ni²⁺/ Ni = -0.257 V. a. +0.257 V **(2)** b. -0.0422 *V* c. 0.000 V d. +0.0844 V e. +0.0422 V What is ε° for the reaction: $CH_3OH(l) + 3/2 O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$ 50. if the $\Delta G^{\circ} = -702.5 \text{ kJ}$? a. +0.91 V b. +1.21 *V* **(2)** c. +1.82 Vd. +3.64 V e. -1.82 V 51. Which probably has the highest boiling point at 1.00 atm pressure? a. CH₃NH₂ b. CH₃CH₂CH₂OH **(1)** c. CH₃OH d. $(CH_3)_2N(CHF_2)$ e. C_4H_{10} 52. If a substance has a heat of vaporization of 3.46 kJ/g and a heat of sublimation of 4.60 kJ/g, what is its heat of fusion? a. 1.14 kJ/gb. $8.06 \, kJ/g$ **(1)** c. -1.14 kJ/gd. -8.06 kJ/ge. none of these

53.	The triple point of water is at 4.58 mm Hg and +0.01°C. Some H ₂ O at -50°C is heated to 120°C at a constant pressure of 2.05 mm Hg. The changes of state(s) occurring in this process are: a. solid to gas
(1)	b. solid to liquid to gas c. liquid to gas d. solid to liquid e. no change in state occurs at constant pressure
54.	The normal boiling point of ethanol is 78.3° C and $\Delta H^{\circ}_{\text{vap}} = 39.3 \text{ kJ/mol}$. What is the vapor pressure of ethanol at 50.0° C? a. 118 mm Hg
(2)	b. 234 mm Hg c. 354 mm Hg d. 485 mm Hg e. 670 mm Hg
55.	The vapor pressure of pure hexane at 25°C is 151.4 mm Hg and for hepane it is 45.6 mm Hg. A solution contains 0.800 mol fraction hexane. What is the composition of the vapor in equilibrium with this solution at 25°C?
(2)	a. 80.0% hexane and 20.0% heptane b. 50.0% hexane and 50.0% heptane c. 77.0% hexane and 23.0% heptane d. 45.0% hexane and 55.0% heptane e. 93.0% hexane and 7.0% heptane
56.	A solution composed of 5 mol acetone (CH ₃ COCH ₃ , P ^o = 324 mm Hg) and 5 moles of chloroform (CHCl ₃ , P ^o = 274 mm Hg) has a vapor pressure of 236 mm Hg. Which one of the following statements is completely true about this solution? a. The solution obey's Raoult's Law. b. The solution shows a positive deviation from Raoult's Law.
(2)	 c. The solution shows a positive deviation from Raoult's Law and possesses a minimum boiling point azeotrope. d. The solution shows a negative deviation from Raoult's Law and possesses a maximum boiling point azeorope. e. The solution process is exothermic because the forces between unlike molecules are weaker than those between like molecules.
57.	An aqueous NaCl solution freezes at -1.13°C. Calculate the approximate NaCl concentration of this solution in % by mass. K_f for water is 1.86 °C-m ⁻¹ . a. 3.55%
(2)	b. 1.78% c. 0.870% d. 17.8% e. 8.90%
58.	Solutions are made that contain 0.10 mol of each of the following compounds below in 100 g of water. Choose the compound whose solution will have the lowest freezing point.
(2)	a. BaBr ₂ b. KCl c. CH ₃ OH d. NiSO ₄ e. H ₂ SO ₄