Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>1</td>
</tr>
<tr>
<td>Notes by T. Sato</td>
<td>1</td>
</tr>
<tr>
<td>1 Introduction: The Nature of Science and Physics</td>
<td>3</td>
</tr>
<tr>
<td>Physics: An Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Physical Quantities and Units</td>
<td>5</td>
</tr>
<tr>
<td>Accuracy, Precision, and Significant Figures</td>
<td>12</td>
</tr>
<tr>
<td>Approximation</td>
<td>16</td>
</tr>
<tr>
<td>2 Kinematics</td>
<td>23</td>
</tr>
<tr>
<td>Displacement</td>
<td>24</td>
</tr>
<tr>
<td>Vectors, Scalars, and Coordinate Systems</td>
<td>26</td>
</tr>
<tr>
<td>Time, Velocity, and Speed</td>
<td>27</td>
</tr>
<tr>
<td>Acceleration</td>
<td>31</td>
</tr>
<tr>
<td>Motion Equations for Constant Acceleration in One Dimension</td>
<td>39</td>
</tr>
<tr>
<td>Problem-Solving Basics for One-Dimensional Kinematics</td>
<td>49</td>
</tr>
<tr>
<td>Falling Objects</td>
<td>50</td>
</tr>
<tr>
<td>Graphical Analysis of One-Dimensional Motion</td>
<td>57</td>
</tr>
<tr>
<td>3 Two-Dimensional Kinematics</td>
<td>75</td>
</tr>
<tr>
<td>Kinematics in Two Dimensions: An Introduction</td>
<td>76</td>
</tr>
<tr>
<td>Vector Addition and Subtraction: Graphical Methods</td>
<td>78</td>
</tr>
<tr>
<td>Vector Addition and Subtraction: Analytical Methods</td>
<td>85</td>
</tr>
<tr>
<td>Projectile Motion</td>
<td>91</td>
</tr>
<tr>
<td>4 Dynamics: Force and Newton’s Laws of Motion</td>
<td>107</td>
</tr>
<tr>
<td>Development of Force Concept</td>
<td>108</td>
</tr>
<tr>
<td>Newton’s First Law of Motion: Inertia</td>
<td>109</td>
</tr>
<tr>
<td>Newton’s Second Law of Motion: Concept of a System</td>
<td>110</td>
</tr>
<tr>
<td>Newton’s Third Law of Motion: Symmetry in Forces</td>
<td>116</td>
</tr>
<tr>
<td>Normal, Tension, and Other Examples of Forces</td>
<td>118</td>
</tr>
<tr>
<td>5 Newton’s Laws: Applications and Problem Solving</td>
<td>133</td>
</tr>
<tr>
<td>Problem-Solving Strategies</td>
<td>134</td>
</tr>
<tr>
<td>Further Applications of Newton’s Laws of Motion</td>
<td>135</td>
</tr>
<tr>
<td>Friction</td>
<td>141</td>
</tr>
<tr>
<td>6 Uniform Circular Motion and Gravitation</td>
<td>153</td>
</tr>
<tr>
<td>Centripetal Acceleration</td>
<td>154</td>
</tr>
<tr>
<td>Centripetal Force</td>
<td>156</td>
</tr>
<tr>
<td>Newton’s Universal Law of Gravitation</td>
<td>159</td>
</tr>
<tr>
<td>Satellites and Kepler’s Laws: An Argument for Simplicity</td>
<td>165</td>
</tr>
<tr>
<td>7 Work, Energy, and Energy Resources</td>
<td>177</td>
</tr>
<tr>
<td>Work: The Scientific Definition</td>
<td>178</td>
</tr>
<tr>
<td>Kinetic Energy and the Work-Energy Theorem</td>
<td>180</td>
</tr>
<tr>
<td>Gravitational Potential Energy</td>
<td>184</td>
</tr>
<tr>
<td>Conservative Forces and Potential Energy</td>
<td>189</td>
</tr>
<tr>
<td>Nonconservative Forces</td>
<td>192</td>
</tr>
<tr>
<td>Conservation of Energy</td>
<td>196</td>
</tr>
<tr>
<td>Power</td>
<td>199</td>
</tr>
<tr>
<td>Work, Energy, and Power in Humans</td>
<td>203</td>
</tr>
<tr>
<td>World Energy Use</td>
<td>205</td>
</tr>
<tr>
<td>8 Linear Momentum and Collisions</td>
<td>217</td>
</tr>
<tr>
<td>Linear Momentum and Force</td>
<td>218</td>
</tr>
<tr>
<td>Impulse</td>
<td>220</td>
</tr>
<tr>
<td>Conservation of Momentum</td>
<td>221</td>
</tr>
<tr>
<td>Elastic Collisions in One Dimension</td>
<td>224</td>
</tr>
<tr>
<td>Inelastic Collisions in One Dimension</td>
<td>226</td>
</tr>
<tr>
<td>Collisions of Point Masses in Two Dimensions</td>
<td>230</td>
</tr>
<tr>
<td>9 Electric Charge and Electric Field</td>
<td>239</td>
</tr>
<tr>
<td>Static Electricity and Charge: Conservation of Charge</td>
<td>240</td>
</tr>
<tr>
<td>Conductors and Insulators</td>
<td>244</td>
</tr>
<tr>
<td>Coulomb’s Law</td>
<td>248</td>
</tr>
<tr>
<td>Electric Field: Concept of a Field Revisited</td>
<td>249</td>
</tr>
<tr>
<td>Electric Field Lines: Multiple Charges</td>
<td>251</td>
</tr>
<tr>
<td>Applications of Electrostatics</td>
<td>254</td>
</tr>
<tr>
<td>10 Electric Potential and Electric Field</td>
<td>267</td>
</tr>
<tr>
<td>Electric Potential Energy: Potential Difference</td>
<td>267</td>
</tr>
<tr>
<td>Electric Potential in a Uniform Electric Field</td>
<td>272</td>
</tr>
<tr>
<td>Electrical Potential Due to a Point Charge</td>
<td>275</td>
</tr>
<tr>
<td>11 Electric Current, Resistance, and Ohm’s Law</td>
<td>281</td>
</tr>
<tr>
<td>Current</td>
<td>282</td>
</tr>
<tr>
<td>Ohm’s Law: Resistance and Simple Circuits</td>
<td>287</td>
</tr>
<tr>
<td>Resistance and Resistivity</td>
<td>288</td>
</tr>
<tr>
<td>Electric Power and Energy</td>
<td>293</td>
</tr>
<tr>
<td>12 Circuits and DC Instruments</td>
<td>303</td>
</tr>
<tr>
<td>Resistors in Series and Parallel</td>
<td>304</td>
</tr>
</tbody>
</table>
About OpenStax College

OpenStax College is a non-profit organization committed to improving student access to quality learning materials. Our free textbooks are developed and peer-reviewed by educators to ensure they are readable, accurate, and meet the scope and sequence requirements of modern college courses. Unlike traditional textbooks, OpenStax College resources live online and are owned by the community of educators using them. Through our partnerships with companies and foundations committed to reducing costs for students, OpenStax College is working to improve access to higher education for all. OpenStax College is an initiative of Rice University and is made possible through the generous support of several philanthropic foundations.

About This Book

Welcome to College Physics, an OpenStax College resource created with several goals in mind: accessibility, affordability, customization, and student engagement—all while encouraging learners toward high levels of learning. Instructors and students alike will find that this textbook offers a strong foundation in introductory physics, with algebra as a prerequisite. It is available for free online and in low-cost print and e-book editions.

To broaden access and encourage community curation, College Physics is “open source” licensed under a Creative Commons Attribution (CC-BY) license. Everyone is invited to submit examples, emerging research, and other feedback to enhance and strengthen the material and keep it current and relevant for today’s students. You can make suggestions by contacting us at info@openstaxcollege.org. You can find the status of the project, as well as alternate versions, corrections, etc., on the StaxDash at http://openstaxcollege.org (http://openstaxcollege.org).

To the Student

This book is written for you. It is based on the teaching and research experience of numerous physicists and influenced by a strong recollection of their own struggles as students. After reading this book, we hope you see that physics is visible everywhere. Applications range from driving a car to launching a rocket, from a skater whirling on ice to a neutron star spinning in space, and from taking your temperature to taking a chest X-ray.

To the Instructor

This text is intended for one-year introductory courses requiring algebra and some trigonometry, but no calculus. OpenStax College provides the essential supplemental resources at http://openstaxcollege.org; however, we have pared down the number of supplements to keep costs low. College Physics can be easily customized for your course using Connexions (http://cnx.org/content/col11406). Simply select the content most relevant to your curriculum and create a textbook that speaks directly to the needs of your class.

General Approach

College Physics is organized such that topics are introduced conceptually with a steady progression to precise definitions and analytical applications. The analytical aspect (problem solving) is tied back to the conceptual before moving on to another topic. Each introductory chapter, for example, opens with an engaging photograph relevant to the subject of the chapter and interesting applications that are easy for most students to visualize.

Organization, Level, and Content

There is considerable latitude on the part of the instructor regarding the use, organization, level, and content of this book. By choosing the types of problems assigned, the instructor can determine the level of sophistication required of the student.

Concepts and Calculations

The ability to calculate does not guarantee conceptual understanding. In order to unify conceptual, analytical, and calculation skills within the learning process, we have integrated Strategies and Discussions throughout the text.

Modern Perspective

The chapters on modern physics are more complete than many other texts on the market, with an entire chapter devoted to medical applications of nuclear physics and another to particle physics. The final chapter of the text, “Frontiers of Physics,” is devoted to the most exciting endeavors in physics. It ends with a module titled “Some Questions We Know to Ask.”

Supplements

Features of OpenStax College Physics

The following briefly describes the special features of this text.
Modularity
This textbook is organized on Connexions (http://cnx.org) as a collection of modules that can be rearranged and modified to suit the needs of a particular professor or class. That being said, modules often contain references to content in other modules, as most topics in physics cannot be discussed in isolation.

Learning Objectives
Every module begins with a set of learning objectives. These objectives are designed to guide the instructor in deciding what content to include or assign, and to guide the student with respect to what he or she can expect to learn. After completing the module and end-of-module exercises, students should be able to demonstrate mastery of the learning objectives.

Call-Outs
Key definitions, concepts, and equations are called out with a special design treatment. Call-outs are designed to catch readers’ attention, to make it clear that a specific term, concept, or equation is particularly important, and to provide easy reference for a student reviewing content.

Key Terms
Key terms are in bold and are followed by a definition in context. Definitions of key terms are also listed in the Glossary, which appears at the end of the module.

Worked Examples
Worked examples have four distinct parts to promote both analytical and conceptual skills. Worked examples are introduced in words, always using some application that should be of interest. This is followed by a Strategy section that emphasizes the concepts involved and how solving the problem relates to those concepts. This is followed by the mathematical Solution and Discussion.

Problem-Solving Strategies
Problem-solving strategies are first presented in a special section and subsequently appear at crucial points in the text where students can benefit most from them. Problem-solving strategies have a logical structure that is reinforced in the worked examples and supported in certain places by line drawings that illustrate various steps.

Misconception Alerts
Students come to physics with preconceptions from everyday experiences and from previous courses. Some of these preconceptions are misconceptions, and many are very common among students and the general public. Some are inadvertently picked up through misunderstandings of lectures and texts. The Misconception Alerts feature is designed to point these out and correct them explicitly.

Take-Home Investigations
Take Home Investigations provide the opportunity for students to apply or explore what they have learned with a hands-on activity.

Things Great and Small
In these special topic essays, macroscopic phenomena (such as air pressure) are explained with submicroscopic phenomena (such as atoms bouncing off walls). These essays support the modern perspective by describing aspects of modern physics before they are formally treated in later chapters. Connections are also made between apparently disparate phenomena.

Simulations
Where applicable, students are directed to the interactive PHeT physics simulations developed by the University of Colorado (http://phet.colorado.edu). There they can further explore the physics concepts they have learned about in the module.

Summary
Module summaries are thorough and functional and present all important definitions and equations. Students are able to find the definitions of all terms and symbols as well as their physical relationships. The structure of the summary makes plain the fundamental principles of the module or collection and serves as a useful study guide.

Glossary
At the end of every module or chapter is a glossary containing definitions of all of the key terms in the module or chapter.

End-of-Module Problems
At the end of every chapter is a set of Conceptual Questions and/or skills-based Problems & Exercises. Conceptual Questions challenge students’ ability to explain what they have learned conceptually, independent of the mathematical details. Problems & Exercises challenge students to apply both concepts and skills to solve mathematical physics problems. Online, every other problem includes an answer that students can reveal immediately by clicking on a “Show Solution” button. Fully worked solutions to select problems are available in the Student Solutions Manual and the Teacher Solutions Manual.

In addition to traditional skills-based problems, there are three special types of end-of-module problems: Integrated Concept Problems, Unreasonable Results Problems, and Construct Your Own Problems. All of these problems are indicated with a subtitle preceding the problem.
Integrated Concept Problems

In Unreasonable Results Problems, students are challenged not only to apply concepts and skills to solve a problem, but also to analyze the answer with respect to how likely or realistic it really is. These problems contain a premise that produces an unreasonable answer and are designed to further emphasize that properly applied physics must describe nature accurately and is not simply the process of solving equations.

Unreasonable Results

In Unreasonable Results Problems, students are challenged not only to apply concepts and skills to solve a problem, but also to analyze the answer with respect to how likely or realistic it really is. These problems contain a premise that produces an unreasonable answer and are designed to further emphasize that properly applied physics must describe nature accurately and is not simply the process of solving equations.

Construct Your Own Problem

These problems require students to construct the details of a problem, justify their starting assumptions, show specific steps in the problem’s solution, and finally discuss the meaning of the result. These types of problems relate well to both conceptual and analytical aspects of physics, emphasizing that physics must describe nature. Often they involve an integration of topics from more than one chapter. Unlike other problems, solutions are not provided since there is no single correct answer. Instructors should feel free to direct students regarding the level and scope of their considerations. Whether the problem is solved and described correctly will depend on initial assumptions.

Appendices

Appendix A: Useful Information
Appendix B: Glossary of Key Symbols and Notation

Acknowledgements

This text is based on the work completed by Dr. Paul Peter Urone in collaboration with Roger Hinrichs, Kim Dirks, and Manjula Sharma. We would like to thank the authors as well as the numerous professors (a partial list follows) who have contributed their time and energy to review and provide feedback on the manuscript. Their input has been critical in maintaining the pedagogical integrity and accuracy of the text.

Senior Contributing Authors

Dr. Paul Peter Urone
Dr. Roger Hinrichs, State University of New York, College at Oswego

Contributing Authors

Dr. Kim Dirks, University of Auckland, New Zealand
Dr. Manjula Sharma, University of Sydney, Australia

Expert Reviewers

Erik Christensen, P.E., South Florida Community College
Dr. Eric Kincanon, Gonzaga University
Dr. Douglas Ingram, Texas Christian University
Lee H. LaRue, Paris Junior College
Dr. Marc Sher, College of William and Mary
Dr. Ulrich Zurcher, Cleveland State University
Dr. Matthew Adams, Crafton Hills College, San Bernardino Community College District
Dr. Chuck Pearson, Virginia Intermont College

Our Partners

WebAssign

WebAssign is an independent online homework and assessment system that has been available commercially since 1998. WebAssign has recently begun to support the Open Education Resource community by creating a high quality online homework solution for selected open-source textbooks, available at an affordable price to students. These question collections include randomized values and variables, immediate feedback, links to the open-source textbook, and a variety of text-specific resources and tools; as well as the same level of rigorous coding and accuracy-checking as any commercially available online homework solution supporting traditionally available textbooks.

Sapling Learning

Sapling Learning provides the most effective interactive homework and instruction that improve student learning outcomes for the problem-solving disciplines. They offer an enjoyable teaching and effective learning experience that is distinctive in three important ways:

- Ease of Use: Sapling Learning’s easy to use interface keeps students engaged in problem-solving, not struggling with the software.
- Targeted Instructional Content: Sapling Learning increases student engagement and comprehension by delivering immediate feedback and targeted instructional content.
- Unsurpassed Service and Support: Sapling Learning makes teaching more enjoyable by providing a dedicated Masters or PhD level colleague to service instructors’ unique needs throughout the course, including content customization.
NOTES BY T. SATO

Introductory Physics – for KPU PHYS 1100

This book has been derived from "College Physics" by Paul Peter Urone, Roger Hinrichs, Kim Dirks and Manjula Sharma. College Physics is published by OpenStax College at Rice University. "Introductory Physics – for KPU PHYS 1100" represents chapters and sections of College Physics directly relevant to Kwantlen Polytechnic University's Physics 1100 as selected by T. Sato. I wish to thank the original authors and everyone involved in this open resource project whose works make it possible for me to select material in this manner. Special thanks go to my KPU Physics colleagues for supporting my use of College Physics and to Clint Lalonde of BCcampus for giving me the impetus to produce this remix.

Takashi Sato claims no credit for the content of this book other than this note itself.

Takashi Sato – May 2015

Vancouver, Canada
1. INTRODUCTION: THE NATURE OF SCIENCE AND PHYSICS

Figure 1.1 Galaxies are as immense as atoms are small. Yet the same laws of physics describe both, and all the rest of nature—an indication of the underlying unity in the universe. The laws of physics are surprisingly few in number, implying an underlying simplicity to nature’s apparent complexity. (credit: NASA, JPL-Caltech, P. Barmby, Harvard-Smithsonian Center for Astrophysics)

Chapter Outline

1.1. Physics: An Introduction
- Explain the difference between classical physics and modern physics.

1.2. Physical Quantities and Units
- Perform unit conversions both in the SI and English units.
- Explain the most common prefixes in the SI units and be able to write them in scientific notation.

1.3. Accuracy, Precision, and Significant Figures
- Determine the appropriate number of significant figures in both addition and subtraction, as well as multiplication and division calculations.
- Calculate the percent uncertainty of a measurement.

1.4. Approximation
- Make reasonable approximations based on given data.

Introduction to Science and the Realm of Physics, Physical Quantities, and Units

What is your first reaction when you hear the word “physics”? Did you imagine working through difficult equations or memorizing formulas that seem to have no real use in life outside the physics classroom? Many people come to the subject of physics with a bit of fear. But as you begin your exploration of this broad-ranging subject, you may soon come to realize that physics plays a much larger role in your life than you first thought, no matter your life goals or career choice.

For example, take a look at the image above. This image is of the Andromeda Galaxy, which contains billions of individual stars, huge clouds of gas, and dust. Two smaller galaxies are also visible as bright blue spots in the background. At a staggering 2.5 million light years from the Earth, this galaxy is the nearest one to our own galaxy (which is called the Milky Way). The stars and planets that make up Andromeda might seem to be the furthest thing from most people’s regular, everyday lives. But Andromeda is a great starting point to think about the forces that hold together the universe. The forces that cause Andromeda to act as it does are the same forces we contend with here on Earth, whether we are planning to send a rocket into space or simply raise the walls for a new home. The same gravity that causes the stars of Andromeda to rotate and revolve also causes water to flow over hydroelectric dams here on Earth. Tonight, take a moment to look up at the stars. The forces out there are the same as the ones here on Earth. Through a study of physics, you may gain a greater understanding of the interconnectedness of everything we can see and know in this universe.

Think now about all of the technological devices that you use on a regular basis. Computers, smart phones, GPS systems, MP3 players, and satellite radio might come to mind. Next, think about the most exciting modern technologies that you have heard about in the news, such as trains that levitate above tracks, “invisibility cloaks” that bend light around them, and microscopic robots that fight cancer cells in our bodies. All of these groundbreaking advancements, commonplace or unbelievable, rely on the principles of physics. Aside from playing a significant role in technology, professionals such as engineers, pilots, physicians, physical therapists, electricians, and computer programmers apply physics concepts in their daily work. For example, a pilot must understand how wind forces affect a flight path and a physical therapist must understand how the muscles in the body experience forces as they move and bend. As you will learn in this text, physics principles are propelling new, exciting technologies, and these principles are applied in a wide range of careers.

In this text, you will begin to explore the history of the formal study of physics, beginning with natural philosophy and the ancient Greeks, and leading up through a review of Sir Isaac Newton and the laws of physics that bear his name. You will also be introduced to the standards scientists use when they study physical quantities and the interrelated system of measurements most of the scientific community uses to communicate in a single mathematical language. Finally, you will study the limits of our ability to be accurate and precise, and the reasons scientists go to painstaking lengths to be as clear as possible regarding their own limitations.
1.1 Physics: An Introduction

The Evolution of Natural Philosophy into Modern Physics

Physics was not always a separate and distinct discipline. It remains connected to other sciences to this day. The word physics comes from Greek, meaning nature. The study of nature came to be called “natural philosophy.” From ancient times through the Renaissance, natural philosophy encompassed many fields, including astronomy, biology, chemistry, physics, mathematics, and medicine. Over the last few centuries, the growth of knowledge has resulted in ever-increasing specialization and branching of natural philosophy into separate fields, with physics retaining the most basic facets. (See Figure 1.2, Figure 1.3, and Figure 1.4.) Physics as it developed from the Renaissance to the end of the 19th century is called classical physics. It was transformed into modern physics by revolutionary discoveries made starting at the beginning of the 20th century.

Figure 1.2 Over the centuries, natural philosophy has evolved into more specialized disciplines, as illustrated by the contributions of some of the greatest minds in history. The Greek philosopher Aristotle (384–322 B.C.) wrote on a broad range of topics including physics, animals, the soul, politics, and poetry. (credit: Jastrow (2006)/Ludovisi Collection)

Figure 1.3 Galileo Galilei (1564–1642) laid the foundation of modern experimentation and made contributions in mathematics, physics, and astronomy. (credit: Domenico Tintoretto)

Figure 1.4 Niels Bohr (1885–1962) made fundamental contributions to the development of quantum mechanics, one part of modern physics. (credit: United States Library of Congress Prints and Photographs Division)

Classical physics is not an exact description of the universe, but it is an excellent approximation under the following conditions: Matter must be moving at speeds less than about 1% of the speed of light, the objects dealt with must be large enough to be seen with a microscope, and only weak gravitational fields, such as the field generated by the Earth, can be involved. Because humans live under such circumstances, classical physics
seems intuitively reasonable, while many aspects of modern physics seem bizarre. This is why models are so useful in modern physics—they let us conceptualize phenomena we do not ordinarily experience. We can relate to models in human terms and visualize what happens when objects move at high speeds or imagine what objects too small to observe with our senses might be like. For example, we can understand an atom’s properties because we can picture it in our minds, although we have never seen an atom with our eyes. New tools, of course, allow us to better picture phenomena we cannot see. In fact, new instrumentation has allowed us in recent years to actually “picture” the atom.

Limits on the Laws of Classical Physics

For the laws of classical physics to apply, the following criteria must be met: Matter must be moving at speeds less than about 1% of the speed of light, the objects dealt with must be large enough to be seen with a microscope, and only weak gravitational fields (such as the field generated by the Earth) can be involved.

![Atoms](image)

Figure 1.5 Using a scanning tunneling microscope (STM), scientists can see the individual atoms that compose this sheet of gold. (credit: Erwinussen)

Some of the most spectacular advances in science have been made in modern physics. Many of the laws of classical physics have been modified or rejected, and revolutionary changes in technology, society, and our view of the universe have resulted. Like science fiction, modern physics is filled with fascinating objects beyond our normal experiences, but it has the advantage over science fiction of being very real. Why, then, is the majority of this text devoted to topics of classical physics? There are two main reasons: Classical physics gives an extremely accurate description of the universe under a wide range of everyday circumstances, and knowledge of classical physics is necessary to understand modern physics.

Modern physics itself consists of the two revolutionary theories, relativity and quantum mechanics. These theories deal with the very fast and the very small, respectively. **Relativity** must be used whenever an object is traveling at greater than about 1% of the speed of light or experiences a strong gravitational field such as that near the Sun. **Quantum mechanics** must be used for objects smaller than can be seen with a microscope. The combination of these two theories is **relativistic quantum mechanics**, and it describes the behavior of small objects traveling at high speeds or experiencing a strong gravitational field. Relativistic quantum mechanics is the best universally applicable theory we have. Because of its mathematical complexity, it is used only when necessary, and the other theories are used whenever they will produce sufficiently accurate results. We will find, however, that we can do a great deal of modern physics with the algebra and trigonometry used in this text.

1.2 Physical Quantities and Units

![Earth](image)

Figure 1.6 The distance from Earth to the Moon may seem immense, but it is just a tiny fraction of the distances from Earth to other celestial bodies. (credit: NASA)

The range of objects and phenomena studied in physics is immense. From the incredibly short lifetime of a nucleus to the age of the Earth, from the tiny sizes of sub-nuclear particles to the vast distance to the edges of the known universe, from the force exerted by a jumping flea to the force between Earth and the Sun, there are enough factors of 10 to challenge the imagination of even the most experienced scientist. Giving numerical values for physical quantities and equations for physical principles allows us to understand nature much more deeply than does qualitative description alone. To comprehend these vast ranges, we must also have accepted units in which to express them. And we shall find that (even in the potentially mundane discussion of meters, kilograms, and seconds) a profound simplicity of nature appears—all physical quantities can be expressed as combinations of only four fundamental physical quantities: length, mass, time, and electric current.

We define a **physical quantity** either by specifying how it is measured or by stating how it is calculated from other measurements. For example, we define distance and time by specifying methods for measuring them, whereas we define **average speed** by stating that it is calculated as distance traveled divided by time of travel.

Measurements of physical quantities are expressed in terms of **units**, which are standardized values. For example, the length of a race, which is a physical quantity, can be expressed in units of meters (for sprinters) or kilometers (for distance runners). Without standardized units, it would be extremely difficult for scientists to express and compare measured values in a meaningful way. (See **Figure 1.7**.)
There are two major systems of units used in the world: **SI units** (also known as the metric system) and **English units** (also known as the customary or imperial system). **English units** were historically used in nations once ruled by the British Empire and are still widely used in the United States. Virtually every other country in the world now uses SI units as the standard; the metric system is also the standard system agreed upon by scientists and mathematicians. The acronym “SI” is derived from the French Système International.

SI Units: Fundamental and Derived Units

Table 1.1 gives the fundamental SI units that are used throughout this textbook. This text uses non-SI units in a few applications where they are in very common use, such as the measurement of blood pressure in millimeters of mercury (mm Hg). Whenever non-SI units are discussed, they will be tied to SI units through conversions.

<table>
<thead>
<tr>
<th>Length</th>
<th>Mass</th>
<th>Time</th>
<th>Electric Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>meter (m)</td>
<td>kilogram (kg)</td>
<td>second (s)</td>
<td>ampere (A)</td>
</tr>
</tbody>
</table>

It is an intriguing fact that some physical quantities are more fundamental than others and that the most fundamental physical quantities can be defined only in terms of the procedure used to measure them. The units in which they are measured are thus called **fundamental units**. In this textbook, the fundamental physical quantities are taken to be length, mass, time, and electric current. (Note that electric current will not be introduced until much later in this text.) All other physical quantities, such as force and electric charge, can be expressed as algebraic combinations of length, mass, time, and current (for example, speed is length divided by time); these units are called **derived units**.

Units of Time, Length, and Mass: The Second, Meter, and Kilogram

The Second

The SI unit for time, the **second** (abbreviated s), has a long history. For many years it was defined as 1/86,400 of a mean solar day. More recently, a new standard was adopted to gain greater accuracy and to define the second in terms of a non-varying, or constant, physical phenomenon (because the solar day is getting longer due to very gradual slowing of the Earth’s rotation). Cesium atoms can be made to vibrate in a very steady way, and these vibrations can be readily observed and counted. In 1967 the second was redefined as the time required for 9,192,631,770 of these vibrations. (See **Figure 1.8**.) Accuracy in the fundamental units is essential, because all measurements are ultimately expressed in terms of fundamental units and can be no more accurate than are the fundamental units themselves.

Figure 1.8 An atomic clock such as this one uses the vibrations of cesium atoms to keep time to a precision of better than a microsecond per year. The fundamental unit of time, the second, is based on such clocks. This image is looking down from the top of an atomic fountain nearly 30 feet tall! (credit: Steve Jurvetson/Flickr)
The Meter

The SI unit for length is the **meter** (abbreviated m); its definition has also changed over time to become more accurate and precise. The meter was first defined in 1791 as 1/10,000,000 of the distance from the equator to the North Pole. This measurement was improved in 1889 by redefining the meter to be the distance between two engraved lines on a platinum-iridium bar now kept near Paris. By 1983, it had become possible to define the meter even more accurately in terms of the wavelength of light, so it was again redefined as 1,650,763.73 wavelengths of orange light emitted by krypton atoms. In 1983, the meter was given its present definition (partly for greater accuracy) as the distance light travels in a vacuum in 1/299,792,458 of a second. (See Figure 1.9.) This change defines the speed of light to be exactly 299,792,458 meters per second. The length of the meter will change if the speed of light is someday measured with greater accuracy.

The Kilogram

The SI unit for mass is the **kilogram** (abbreviated kg); it is defined to be the mass of a platinum-iridium cylinder kept with the old meter standard at the International Bureau of Weights and Measures near Paris. Exact replicas of the standard kilogram are also kept at the United States' National Institute of Standards and Technology, or NIST, located in Gaithersburg, Maryland outside of Washington D.C., and at other locations around the world. The determination of all other masses can be ultimately traced to a comparison with the standard mass.

![Light travels a distance of 1 meter in 1/299,792,458 seconds](image)

Figure 1.9 The meter is defined to be the distance light travels in 1/299,792,458 of a second in a vacuum. Distance traveled is speed multiplied by time.

Electric current and its accompanying unit, the ampere, will be introduced in Introduction to Electric Current, Resistance, and Ohm's Law when electricity and magnetism are covered. The initial modules in this textbook are concerned with mechanics, fluids, heat, and waves. In these subjects all pertinent physical quantities can be expressed in terms of the fundamental units of length, mass, and time.

Metric Prefixes

SI units are part of the **metric system**. The metric system is convenient for scientific and engineering calculations because the units are categorized by factors of 10. Table 1.2 gives metric prefixes and symbols used to denote various factors of 10.

Metric systems have the advantage that conversions of units involve only powers of 10. There are 100 centimeters in a meter, 1000 meters in a kilometer, and so on. In nonmetric systems, such as the system of U.S. customary units, the relationships are not as simple—there are 12 inches in a foot, 5280 feet in a mile, and so on. Another advantage of the metric system is that the same unit can be used over extremely large ranges of values simply by using an appropriate metric prefix. For example, distances in meters are suitable in construction, while distances in kilometers are appropriate for air travel, and the tiny measure of nanometers are convenient in optical design. With the metric system there is no need to invent new units for particular applications.

The term **order of magnitude** refers to the scale of a value expressed in the metric system. Each power of 10 in the metric system represents a different order of magnitude. For example, \(10^1\), \(10^2\), \(10^3\), and so forth are all different orders of magnitude. All quantities that can be expressed as a product of a specific power of 10 are said to be of the same order of magnitude. For example, the number 800 can be written as \(8 \times 10^2\), and the number 450 can be written as \(4.5 \times 10^2\). Thus, the numbers 800 and 450 are of the same order of magnitude: \(10^2\). Order of magnitude can be thought of as a ballpark estimate for the scale of a value. The diameter of an atom is on the order of \(10^{-9}\) m, while the diameter of the Sun is on the order of \(10^9\) m.

The Quest for Microscopic Standards for Basic Units

The fundamental units described in this chapter are those that produce the greatest accuracy and precision in measurement. There is a sense among physicists that, because there is an underlying microscopic substructure to matter, it would be most satisfying to base our standards of measurement on microscopic objects and fundamental physical phenomena such as the speed of light. A microscopic standard has been accomplished for the standard of time, which is based on the oscillations of the cesium atom.

The standard for length was once based on the wavelength of light (a small-scale length) emitted by a certain type of atom, but it has been supplanted by the more precise measurement of the speed of light. If it becomes possible to measure the mass of atoms or a particular arrangement of atoms such as a silicon sphere to greater precision than the kilogram standard, it may become possible to base mass measurements on the small scale. There are also possibilities that electrical phenomena on the small scale may someday allow us to base a unit of charge on the charge of electrons and protons, but at present current and charge are related to large-scale currents and forces between wires.
Table 1.2 Metric Prefixes for Powers of 10 and their Symbols

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Symbol</th>
<th>Value</th>
<th>Example (some are approximate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>exa</td>
<td>E</td>
<td>10^{18}</td>
<td>exahertz GHz</td>
</tr>
<tr>
<td>peta</td>
<td>P</td>
<td>10^{15}</td>
<td>petahertz Hz</td>
</tr>
<tr>
<td>tera</td>
<td>T</td>
<td>10^{12}</td>
<td>terahertz Hz</td>
</tr>
<tr>
<td>giga</td>
<td>G</td>
<td>10^9</td>
<td>gigahertz GHz</td>
</tr>
<tr>
<td>mega</td>
<td>M</td>
<td>10^6</td>
<td>megarad M</td>
</tr>
<tr>
<td>kilo</td>
<td>k</td>
<td>10^3</td>
<td>kilometer km</td>
</tr>
<tr>
<td>hecto</td>
<td>h</td>
<td>10^2</td>
<td>hectoliter hL</td>
</tr>
<tr>
<td>deka</td>
<td>da</td>
<td>10^1</td>
<td>dekagram dag</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>10^0 (=1)</td>
<td>—</td>
</tr>
<tr>
<td>deci</td>
<td>d</td>
<td>10^{-1}</td>
<td>deciliter dL</td>
</tr>
<tr>
<td>centi</td>
<td>c</td>
<td>10^{-2}</td>
<td>centimeter cm</td>
</tr>
<tr>
<td>milli</td>
<td>m</td>
<td>10^{-3}</td>
<td>millimeter mm</td>
</tr>
<tr>
<td>micro</td>
<td>μ</td>
<td>10^{-6}</td>
<td>micrometer μm</td>
</tr>
<tr>
<td>nano</td>
<td>n</td>
<td>10^{-9}</td>
<td>nanometer nm</td>
</tr>
<tr>
<td>pico</td>
<td>p</td>
<td>10^{-12}</td>
<td>picosecond ps</td>
</tr>
<tr>
<td>femto</td>
<td>f</td>
<td>10^{-15}</td>
<td>femtometer fm</td>
</tr>
<tr>
<td>atto</td>
<td>a</td>
<td>10^{-18}</td>
<td>attosecond as</td>
</tr>
</tbody>
</table>

Known Ranges of Length, Mass, and Time

The vastness of the universe and the breadth over which physics applies are illustrated by the wide range of examples of known lengths, masses, and times in Table 1.3. Examination of this table will give you some feeling for the range of possible topics and numerical values. (See Figure 1.10 and Figure 1.11.)

![Tiny phytoplankton swims among crystals of ice in the Antarctic Sea. They range from a few micrometers to as much as 2 millimeters in length.](https://example.com/image)

Figure 1.10 Tiny phytoplankton swims among crystals of ice in the Antarctic Sea. They range from a few micrometers to as much as 2 millimeters in length. (credit: Prof. Gordon T. Taylor, Stony Brook University; NOAA Corps Collections)

1. See Appendix A for a discussion of powers of 10.
Unit Conversion and Dimensional Analysis

It is often necessary to convert from one type of unit to another. For example, if you are reading a European cookbook, some quantities may be expressed in units of liters and you need to convert them to cups. Or, perhaps you are reading walking directions from one location to another and you are interested in how many miles you will be walking. In this case, you will need to convert units of feet to miles.

Let us consider a simple example of how to convert units. Let us say that we want to convert 80 meters (m) to kilometers (km).

The first thing to do is to list the units that you have and the units that you want to convert to. In this case, we have units in meters and we want to convert to kilometers.

Next, we need to determine a conversion factor relating meters to kilometers. A conversion factor is a ratio expressing how many of one unit are equal to another unit. For example, there are 12 inches in 1 foot, 100 centimeters in 1 meter, 60 seconds in 1 minute, and so on. In this case, we know that there are 1,000 meters in 1 kilometer.

Now we can set up our unit conversion. We will write the units that we have and then multiply them by the conversion factor so that the units cancel out, as shown:

\[
80 \text{ m} \times \frac{1 \text{ km}}{1000 \text{ m}} = 0.080 \text{ km}.
\]

(1.1)

Note that the unwanted m unit cancels, leaving only the desired km unit. You can use this method to convert between any types of unit.

Click Appendix A for a more complete list of conversion factors.
Table 1.3 Approximate Values of Length, Mass, and Time

<table>
<thead>
<tr>
<th>Lengths in meters</th>
<th>Masses in kilograms (more precise values in parentheses)</th>
<th>Times in seconds (more precise values in parentheses)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-18}</td>
<td>Present experimental limit to smallest observable detail</td>
<td>10^{-30} Mass of an electron (9.11×10^{-31} kg)</td>
</tr>
<tr>
<td>10^{-15}</td>
<td>Diameter of a proton</td>
<td>10^{-27} Mass of a hydrogen atom (1.67×10^{-27} kg)</td>
</tr>
<tr>
<td>10^{-14}</td>
<td>Diameter of a uranium nucleus</td>
<td>10^{-15} Mass of a bacterium</td>
</tr>
<tr>
<td>10^{-10}</td>
<td>Diameter of a hydrogen atom</td>
<td>10^{-5} Mass of a mosquito</td>
</tr>
<tr>
<td>10^{-8}</td>
<td>Thickness of membranes in cells of living organisms</td>
<td>10^{-2} Mass of a hummingbird</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>Wavelength of visible light</td>
<td>1 Mass of a liter of water (about a quart)</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>Size of a grain of sand</td>
<td>10^{2} Mass of a person</td>
</tr>
<tr>
<td>1</td>
<td>Height of a 4-year-old child</td>
<td>10^{3} Mass of a car</td>
</tr>
<tr>
<td>10^{2}</td>
<td>Length of a football field</td>
<td>10^{8} Mass of a large ship</td>
</tr>
<tr>
<td>10^{4}</td>
<td>Greatest ocean depth</td>
<td>10^{12} Mass of a large iceberg</td>
</tr>
<tr>
<td>10^{7}</td>
<td>Diameter of the Earth</td>
<td>10^{15} Mass of the nucleus of a comet</td>
</tr>
<tr>
<td>10^{11}</td>
<td>Distance from the Earth to the Sun</td>
<td>10^{23} Mass of the Moon (7.35×10^{22} kg)</td>
</tr>
<tr>
<td>10^{16}</td>
<td>Distance traveled by light in 1 year (a light year)</td>
<td>10^{25} Mass of the Earth (5.97×10^{24} kg)</td>
</tr>
<tr>
<td>10^{21}</td>
<td>Diameter of the Milky Way galaxy</td>
<td>10^{30} Mass of the Sun (1.99×10^{30} kg)</td>
</tr>
<tr>
<td>10^{22}</td>
<td>Distance from the Earth to the nearest large galaxy (Andromeda)</td>
<td>10^{42} Mass of the Milky Way galaxy (current upper limit)</td>
</tr>
<tr>
<td>10^{26}</td>
<td>Distance from the Earth to the edges of the known universe</td>
<td>10^{53} Mass of the known universe (current upper limit)</td>
</tr>
</tbody>
</table>

Example 1.1 Unit Conversions: A Short Drive Home

Suppose that you drive the 10.0 km from your university to home in 20.0 min. Calculate your average speed (a) in kilometers per hour (km/h) and (b) in meters per second (m/s). (Note: Average speed is distance traveled divided by time of travel.)

Strategy

First we calculate the average speed using the given units. Then we can get the average speed into the desired units by picking the correct conversion factor and multiplying by it. The correct conversion factor is the one that cancels the unwanted unit and leaves the desired unit in its place.

Solution for (a)

1. Calculate average speed. Average speed is distance traveled divided by time of travel. (Take this definition as a given for now—average speed and other motion concepts will be covered in a later module.) In equation form,

 \[
 \text{average speed} = \frac{\text{distance}}{\text{time}}. \tag{1.2}
 \]

2. Substitute the given values for distance and time.

 \[
 \text{average speed} = \frac{10.0 \text{ km}}{20.0 \text{ min}} = 0.500 \text{ km/min}. \tag{1.3}
 \]

3. Convert km/min to km/h: multiply by the conversion factor that will cancel minutes and leave hours. That conversion factor is 60 min/hr.

 Thus,

 \[
 \text{average speed} = 0.500 \text{ km/min} \times \frac{60 \text{ min}}{1 \text{ h}} = 30.0 \text{ km/h}. \tag{1.4}
 \]
Discussion for (a)
To check your answer, consider the following:

1. Be sure that you have properly cancelled the units in the unit conversion. If you have written the unit conversion factor upside down, the units will not cancel properly in the equation. If you accidentally get the ratio upside down, then the units will not cancel; rather, they will give you the wrong units as follows:

\[
\frac{\text{km}}{\text{min}} \times \frac{1 \text{ hr}}{60 \text{ min}} = \frac{1}{60} \frac{\text{km} \cdot \text{hr}}{\text{min}^2},
\]

which are obviously not the desired units of km/h.

2. Check that the units of the final answer are the desired units. The problem asked us to solve for average speed in units of km/h and we have indeed obtained these units.

3. Check the significant figures. Because each of the values given in the problem has three significant figures, the answer should also have three significant figures. The answer 30.0 km/hr does indeed have three significant figures, so this is appropriate. Note that the significant figures in the conversion factor are not relevant because an hour is defined to be 60 minutes, so the precision of the conversion factor is perfect.

4. Next, check whether the answer is reasonable. Let us consider some information from the problem—if you travel 10 km in a third of an hour (20 min), you would travel three times that far in an hour. The answer does seem reasonable.

Solution for (b)
There are several ways to convert the average speed into meters per second.

1. Start with the answer to (a) and convert km/h to m/s. Two conversion factors are needed—one to convert hours to seconds, and another to convert kilometers to meters.

2. Multiplying by these yields

\[
\text{Average speed} = 30.0 \frac{\text{km}}{\text{h}} \times \frac{1 \text{ h}}{3600 \text{ s}} \times \frac{1000 \text{ m}}{1 \text{ km}}.
\]

\[
\text{Average speed} = 8.33 \frac{\text{m}}{\text{s}}.
\]

Discussion for (b)
If we had started with 0.500 km/min, we would have needed different conversion factors, but the answer would have been the same: 8.33 m/s.

You may have noted that the answers in the worked example just covered are given to three digits. Why? When do you need to be concerned about the number of digits in something you calculate? Why not write down all the digits your calculator produces? The module Accuracy, Precision, and Significant Figures will help you answer these questions.

Nonstandard Units
While there are numerous types of units that we are all familiar with, there are others that are much more obscure. For example, a firkin is a unit of volume that was once used to measure beer. One firkin equals about 34 liters. To learn more about nonstandard units, use a dictionary or encyclopedia to research different “weights and measures.” Take note of any unusual units, such as a barleycorn, that are not listed in the text. Think about how the unit is defined and state its relationship to SI units.

Check Your Understanding
Some hummingbirds beat their wings more than 50 times per second. A scientist is measuring the time it takes for a hummingbird to beat its wings once. Which fundamental unit should the scientist use to describe the measurement? Which factor of 10 is the scientist likely to use to describe the motion precisely? Identify the metric prefix that corresponds to this factor of 10.

Solution
The scientist will measure the time between each movement using the fundamental unit of seconds. Because the wings beat so fast, the scientist will probably need to measure in milliseconds, or \(10^{-3}\) seconds. (50 beats per second corresponds to 20 milliseconds per beat.)

Check Your Understanding
One cubic centimeter is equal to one milliliter. What does this tell you about the different units in the SI metric system?

Solution
The fundamental unit of length (meter) is probably used to create the derived unit of volume (liter). The measure of a milliliter is dependent on the measure of a centimeter.
1.3 Accuracy, Precision, and Significant Figures

Figure 1.12 A double-pan mechanical balance is used to compare different masses. Usually an object with unknown mass is placed in one pan and objects of known mass are placed in the other pan. When the bar that connects the two pans is horizontal, then the masses in both pans are equal. The “known masses” are typically metal cylinders of standard mass such as 1 gram, 10 grams, and 100 grams. (credit: Serge Melki)

Figure 1.13 Many mechanical balances, such as double-pan balances, have been replaced by digital scales, which can typically measure the mass of an object more precisely. Whereas a mechanical balance may only read the mass of an object to the nearest tenth of a gram, many digital scales can measure the mass of an object up to the nearest thousandth of a gram. (credit: Karel Jakubec)

Accuracy and Precision of a Measurement

Science is based on observation and experiment—that is, on measurements. **Accuracy** is how close a measurement is to the correct value for that measurement. For example, let us say that you are measuring the length of standard computer paper. The packaging in which you purchased the paper states that it is 11.0 inches long. You measure the length of the paper three times and obtain the following measurements: 11.1 in., 11.2 in., and 10.9 in. These measurements are quite accurate because they are very close to the correct value of 11.0 inches. In contrast, if you had obtained a measurement of 12 inches, your measurement would not be very accurate.

The **precision** of a measurement system is refers to how close the agreement is between repeated measurements (which are repeated under the same conditions). Consider the example of the paper measurements. The precision of the measurements refers to the spread of the measured values. One way to analyze the precision of the measurements would be to determine the range, or difference, between the lowest and the highest measured values. In that case, the lowest value was 10.9 in. and the highest value was 11.2 in. Thus, the measured values deviated from each other by at most 0.3 in. These measurements were relatively precise because they did not vary too much in value. However, if the measured values had been 10.9, 11.1, and 11.9, then the measurements would not be very precise because there would be significant variation from one measurement to another.

The measurements in the paper example are both accurate and precise, but in some cases, measurements are accurate but not precise, or they are precise but not accurate. Let us consider an example of a GPS system that is attempting to locate the position of a restaurant in a city. Think of the restaurant location as existing at the center of a bull’s-eye target, and think of each GPS attempt to locate the restaurant as a black dot. In **Figure 1.14**, you can see that the GPS measurements are spread out far apart from each other, but they are all relatively close to the actual location of the restaurant at the center of the target. This indicates a low precision, high accuracy measuring system. However, in **Figure 1.15**, the GPS measurements are concentrated quite closely to one another, but they are far away from the target location. This indicates a high precision, low accuracy measuring system.
Accuracy, Precision, and Uncertainty

The degree of accuracy and precision of a measuring system are related to the uncertainty in the measurements. Uncertainty is a quantitative measure of how much your measured values deviate from a standard or expected value. If your measurements are not very accurate or precise, then the uncertainty of your values will be very high. In more general terms, uncertainty can be thought of as a disclaimer for your measured values. For example, if someone asked you to provide the mileage on your car, you might say that it is 45,000 miles, plus or minus 500 miles. The plus or minus amount is the uncertainty in your value. That is, you are indicating that the actual mileage of your car might be as low as 44,500 miles or as high as 45,500 miles, or anywhere in between. All measurements contain some amount of uncertainty. In our example of measuring the length of the paper, we might say that the length of the paper is 11 in., plus or minus 0.2 in. The uncertainty in a measurement, \(A \), is often denoted as \(\delta A \) ("delta \(A \)"), so the measurement result would be recorded as \(A \pm \delta A \). In our paper example, the length of the paper could be expressed as 11 in. \(\pm \) 0.2.

The factors contributing to uncertainty in a measurement include:

1. Limitations of the measuring device,
2. The skill of the person making the measurement,
3. Irregularities in the object being measured,
4. Any other factors that affect the outcome (highly dependent on the situation).

In our example, such factors contributing to the uncertainty could be the following: the smallest division on the ruler is 0.1 in., the person using the ruler has bad eyesight, or one side of the paper is slightly longer than the other. At any rate, the uncertainty in a measurement must be based on a careful consideration of all the factors that might contribute and their possible effects.

Making Connections: Real-World Connections – Fevers or Chills?

Uncertainty is a critical piece of information, both in physics and in many other real-world applications. Imagine you are caring for a sick child. You suspect the child has a fever, so you check his or her temperature with a thermometer. What if the uncertainty of the thermometer were 3.0°C? If the child’s temperature reading was 37.0°C (which is normal body temperature), the “true” temperature could be anywhere from a hypothermic 34.0°C to a dangerously high 40.0°C. A thermometer with an uncertainty of 3.0°C would be useless.

Percent Uncertainty

One method of expressing uncertainty is as a percent of the measured value. If a measurement \(A \) is expressed with uncertainty, \(\delta A \), the percent uncertainty (\%unc) is defined to be

\[
\text{%unc} = \frac{\delta A}{A} \times 100\%.
\] (1.8)
Example 1.2 Calculating Percent Uncertainty: A Bag of Apples

A grocery store sells 5-lb bags of apples. You purchase four bags over the course of a month and weigh the apples each time. You obtain the following measurements:
- Week 1 weight: 4.8 lb
- Week 2 weight: 5.3 lb
- Week 3 weight: 4.9 lb
- Week 4 weight: 5.4 lb

You determine that the weight of the 5-lb bag has an uncertainty of ±0.4 lb. What is the percent uncertainty of the bag’s weight?

Strategy
First, observe that the expected value of the bag’s weight, \(A \), is 5 lb. The uncertainty in this value, \(\delta A \), is 0.4 lb. We can use the following equation to determine the percent uncertainty of the weight:

\[
\text{% unc} = \frac{\delta A}{A} \times 100\%.
\]

Solution
Plug the known values into the equation:

\[
\text{% unc} = \frac{0.4 \text{ lb}}{5 \text{ lb}} \times 100\% = 8\%.
\]

Discussion
We can conclude that the weight of the apple bag is 5 lb ± 8%. Consider how this percent uncertainty would change if the bag of apples were half as heavy, but the uncertainty in the weight remained the same. Hint for future calculations: when calculating percent uncertainty, always remember that you must multiply the fraction by 100%. If you do not do this, you will have a decimal quantity, not a percent value.

Uncertainties in Calculations
There is an uncertainty in anything calculated from measured quantities. For example, the area of a floor calculated from measurements of its length and width has an uncertainty because the length and width have uncertainties. How big is the uncertainty in something you calculate by multiplication or division? If the measurements going into the calculation have small uncertainties (a few percent or less), then the method of adding percents can be used for multiplication or division. This method says that the percent uncertainty in a quantity calculated by multiplication or division is the sum of the percent uncertainties in the items used to make the calculation. For example, if a floor has a length of 4.00 m and a width of 3.00 m, with uncertainties of 2% and 1%, respectively, then the area of the floor is 12.0 m² and has an uncertainty of 3% (Expressed as an area this is 0.36 m², which we round to 0.4 m² since the area of the floor is given to a tenth of a square meter.)

Check Your Understanding
A high school track coach has just purchased a new stopwatch. The stopwatch manual states that the stopwatch has an uncertainty of ±0.05 s. Runners on the track coach’s team regularly clock 100-m sprints of 11.49 s to 15.01 s. At the school’s last track meet, the first-place sprinter came in at 12.04 s and the second-place sprinter came in at 12.07 s. Will the coach’s new stopwatch be helpful in timing the sprint team?

Why or why not?

Solution
No, the uncertainty in the stopwatch is too great to effectively differentiate between the sprint times.

Precision of Measuring Tools and Significant Figures
An important factor in the accuracy and precision of measurements involves the precision of the measuring tool. In general, a precise measuring tool is one that can measure values in very small increments. For example, a standard ruler can measure length to the nearest millimeter, while a caliper can measure length to the nearest 0.01 millimeter. The caliper is a more precise measuring tool because it can measure extremely small differences in length. The more precise the measuring tool, the more precise and accurate the measurements can be.

When we express measured values, we can only list as many digits as we initially measured with our measuring tool. For example, if you use a standard ruler to measure the length of a stick, you may measure it to be 36.7 cm. You could not express this value as 36.71 cm because your measuring tool was not precise enough to measure a hundredth of a centimeter. It should be noted that the last digit in a measured value has been estimated in some way by the person performing the measurement. For example, the person measuring the length of a stick with a ruler notices that the stick length seems to be somewhere in between 36.6 cm and 36.7 cm, and he or she must estimate the value of the last digit. Using the method of **significant figures**, the rule is that **the last digit written down in a measurement is the first digit with some uncertainty**. In order to determine the number of significant digits in a value, start with the first measured value at the left and count the number of digits through the last digit written on the right. For example, the measured value 36.7 cm has three digits, or significant figures. Significant figures indicate the precision of a measuring tool that was used to measure a value.
Zeros

Special consideration is given to zeros when counting significant figures. The zeros in 0.053 are not significant, because they are only placekeepers that locate the decimal point. There are two significant figures in 0.053. The zeros in 10.053 are not placekeepers but are significant—this number has five significant figures. The zeros in 1300 may or may not be significant depending on the style of writing numbers. They could mean the number is known to the last digit, or they could be placekeepers. So 1300 could have two, three, or four significant figures. (To avoid this ambiguity, write 1300 in scientific notation.) Zeros are significant except when they serve only as placekeepers.

Check Your Understanding

Determine the number of significant figures in the following measurements:

- a. 0.0009
- b. 15,450.0
- c. 6×10^3
- d. 87.990
- e. 30.42

Solution

(a) 1; the zeros in this number are placekeepers that indicate the decimal point
(b) 6; here, the zeros indicate that a measurement was made to the 0.1 decimal point, so the zeros are significant
(c) 1; the value 10^3 signifies the decimal place, not the number of measured values
(d) 5; the final zero indicates that a measurement was made to the 0.001 decimal point, so it is significant
(e) 4; any zeros located in between significant figures in a number are also significant

Significant Figures in Calculations

When combining measurements with different degrees of accuracy and precision, the number of significant digits in the final answer can be no greater than the number of significant digits in the least precise measured value. There are two different rules, one for multiplication and division and the other for addition and subtraction, as discussed below.

1. For multiplication and division: The result should have the same number of significant figures as the quantity having the least significant figures entering into the calculation. For example, the area of a circle can be calculated from its radius using $A = \pi r^2$. Let us see how many significant figures the area has if the radius has only two—say, $r = 1.2$ m. Then,

$$A = \pi r^2 = (3.1415927...)(1.2 \text{ m})^2 = 4.5238934 \text{ m}^2$$

is what you would get using a calculator that has an eight-digit output. But because the radius has only two significant figures, it limits the calculated quantity to two significant figures or

$$A = 4.5 \text{ m}^2$$

even though π is good to at least eight digits.

2. For addition and subtraction: The answer can contain no more decimal places than the least precise measurement. Suppose that you buy 7.56-kg of potatoes in a grocery store as measured with a scale with precision 0.01 kg. Then you drop off 6.052-kg of potatoes at your laboratory as measured by a scale with precision 0.001 kg. Finally, you go home and add 13.7 kg of potatoes as measured by a bathroom scale with precision 0.1 kg. How many kilograms of potatoes do you now have, and how many significant figures are appropriate in the answer? The mass is found by simple addition and subtraction:

$$\begin{align*}
7.56 \text{ kg} \\
-6.052 \text{ kg} \\
+13.7 \text{ kg} \\
\hline
15.208 \text{ kg}
\end{align*}$$

Next, we identify the least precise measurement: 13.7 kg. This measurement is expressed to the 0.1 decimal place, so our final answer must also be expressed to the 0.1 decimal place. Thus, the answer is rounded to the tenths place, giving us 15.2 kg.

Significant Figures in this Text

In this text, most numbers are assumed to have three significant figures. Furthermore, consistent numbers of significant figures are used in all worked examples. You will note that an answer given to three digits is based on input good to at least three digits, for example. If the input has fewer significant figures, the answer will also have fewer significant figures. Care is also taken that the number of significant figures is reasonable for the situation posed. In some topics, particularly in optics, more accurate numbers are needed and more than three significant figures will be used. Finally, if a number is exact, such as the two in the formula for the circumference of a circle, $c = 2\pi r$, it does not affect the number of significant figures in a calculation.
Check Your Understanding

Perform the following calculations and express your answer using the correct number of significant digits.
(a) A woman has two bags weighing 13.5 pounds and one bag with a weight of 10.2 pounds. What is the total weight of the bags?
(b) The force F on an object is equal to its mass m multiplied by its acceleration a. If a wagon with mass 55 kg accelerates at a rate of 0.0255 m/s^2, what is the force on the wagon? (The unit of force is called the newton, and it is expressed with the symbol N.)

Solution
(a) 37.2 pounds; Because the number of bags is an exact value, it is not considered in the significant figures.
(b) 1.4 N; Because the value 55 kg has only two significant figures, the final value must also contain two significant figures.

PhET Explorations: Estimation

Explore size estimation in one, two, and three dimensions! Multiple levels of difficulty allow for progressive skill improvement.

PhET Interactive Simulation

Figure 1.16 Estimation (http://legacy.cnx.org/content/m42120/1.7/estimation_en.jar)

1.4 Approximation

On many occasions, physicists, other scientists, and engineers need to make approximations or "guessestimates" for a particular quantity. What is the distance to a certain destination? What is the approximate density of a given item? About how large a current will there be in a circuit? Many approximate numbers are based on formulae in which the input quantities are known only to a limited accuracy. As you develop problem-solving skills (that can be applied to a variety of fields through a study of Physics), you will also develop skills at approximating. You will develop these skills through thinking more quantitatively, and by being willing to take risks. As with any endeavor, experience helps, as well as familiarity with units. These approximations also allow us to rule out certain scenarios or unrealistic numbers. Approximations also allow us to challenge others and guide us in our approaches to our scientific world. Let us do two examples to illustrate this concept.

Example 1.3 Approximate the Height of a Building

Can you approximate the height of one of the buildings on your campus, or in your neighborhood? Let us make an approximation based upon the height of a person. In this example, we will calculate the height of a 39-story building.

Strategy
Think about the average height of an adult male. We can approximate the height of the building by scaling up from the height of a person.

Solution
Based on information in the example, we know there are 39 stories in the building. If we use the fact that the height of one story is approximately equal to about the length of two adult humans (each human is about 2 m tall), then we can estimate the total height of the building to be

$$\frac{2 \text{ m}}{1 \text{ person}} \times \frac{2 \text{ person}}{1 \text{ story}} \times 39 \text{ stories} = 156 \text{ m.} \quad (1.14)$$

Discussion
You can use known quantities to determine an approximate measurement of unknown quantities. If your hand measures 10 cm across, how many hand lengths equal the width of your desk? What other measurements can you approximate besides length?
Example 1.4 Approximating Vast Numbers: a Trillion Dollars

The U.S. federal deficit in the 2008 fiscal year was a little greater than $10 trillion. Most of us do not have any concept of how much even one trillion actually is. Suppose that you were given a trillion dollars in $100 bills. If you made 100-bill stacks and used them to evenly cover a football field (between the end zones), make an approximation of how high the money pile would become. (We will use feet/inches rather than meters here because football fields are measured in yards.) One of your friends says 3 in., while another says 10 ft. What do you think?

Strategy

When you imagine the situation, you probably envision thousands of small stacks of 100 wrapped $100 bills, such as you might see in movies or at a bank. Since this is an easy-to-approximate quantity, let us start there. We can find the volume of a stack of 100 bills, find out how many stacks make up one trillion dollars, and then set this volume equal to the area of the football field multiplied by the unknown height.

Solution

(1) Calculate the volume of a stack of 100 bills. The dimensions of a single bill are approximately 3 in. by 6 in. A stack of 100 of these is about 0.5 in. thick. So the total volume of a stack of 100 bills is:

\[
\text{volume of stack} = \text{length} \times \text{width} \times \text{height},
\]

\[
\text{volume of stack} = 6 \text{ in.} \times 3 \text{ in.} \times 0.5 \text{ in.},
\]

\[
\text{volume of stack} = 9 \text{ in.}^3.
\]

(2) Calculate the number of stacks. Note that a trillion dollars is equal to \(1 \times 10^{12}\), and a stack of one-hundred $100 bills is equal to $10,000, or \(1 \times 10^4\). The number of stacks you will have is:

\[
\frac{1 \times 10^{12}(\text{a trillion dollars})}{1 \times 10^4 \text{ per stack}} = 1 \times 10^8 \text{ stacks}.
\]

(3) Calculate the area of a football field in square inches. The area of a football field is 100 yd \(\times\) 50 yd, which gives 5,000 yd\(^2\). Because we are working in inches, we need to convert square yards to square inches:

\[
\text{Area} = 5,000 \text{ yd}^2 \times \frac{3 \text{ ft}}{1 \text{ yd}} \times \frac{3 \text{ ft}}{1 \text{ yd}} \times \frac{12 \text{ in.}}{1 \text{ ft}} \times \frac{12 \text{ in.}}{1 \text{ ft}} = 6,480,000 \text{ in.}^2.
\]

\[
\text{Area} \approx 6 \times 10^6 \text{ in.}^2.
\]

This conversion gives us \(6 \times 10^6 \text{ in.}^2\) for the area of the field. (Note that we are using only one significant figure in these calculations.)

(4) Calculate the total volume of the bills. The volume of all the $100 - bill stacks is \(9 \text{ in.}^3 / \text{stack} \times 10^8 \text{ stacks} = 9 \times 10^8 \text{ in.}^3\).

(5) Calculate the height. To determine the height of the bills, use the equation:

\[
\text{volume of bills} = \frac{\text{area of field} \times \text{height of money}}{\text{area of bill}},
\]

\[
\text{Height of money} = \frac{\text{volume of bills}}{\text{area of field}},
\]

\[
\text{Height of money} = \frac{9 \times 10^8 \text{in.}^3}{6 \times 10^6 \text{in.}^2} = 1.33 \times 10^2 \text{in.},
\]

\[
\text{Height of money} \approx 1 \times 10^2 \text{ in.} = 100 \text{ in.}
\]

The height of the money will be about 100 in. high. Converting this value to feet gives

\[
100 \text{ in.} \times \frac{1 \text{ ft}}{12 \text{ in.}} = 8.33 \text{ ft} \approx 8 \text{ ft}.
\]

Discussion
The final approximate value is much higher than the early estimate of 3 in., but the other early estimate of 10 ft (120 in.) was roughly correct. How did the approximation measure up to your first guess? What can this exercise tell you in terms of rough “guesstimates” versus carefully calculated approximations?

Check Your Understanding

Using mental math and your understanding of fundamental units, approximate the area of a regulation basketball court. Describe the process you used to arrive at your final approximation.

Solution

An average male is about two meters tall. It would take approximately 15 men laid out end to end to cover the length, and about 7 to cover the width. That gives an approximate area of 420 m².

Glossary

- **accuracy**: the degree to which a measured value agrees with correct value for that measurement
- **approximation**: an estimated value based on prior experience and reasoning
- **classical physics**: physics that was developed from the Renaissance to the end of the 19th century
- **conversion factor**: a ratio expressing how many of one unit are equal to another unit
- **derived units**: units that can be calculated using algebraic combinations of the fundamental units
- **English units**: system of measurement used in the United States; includes units of measurement such as feet, gallons, and pounds
- **fundamental units**: units that can only be expressed relative to the procedure used to measure them
- **kilogram**: the SI unit for mass, abbreviated (kg)
- **law**: a description, using concise language or a mathematical formula, a generalized pattern in nature that is supported by scientific evidence and repeated experiments
- **meter**: the SI unit for length, abbreviated (m)
- **method of adding percents**: the percent uncertainty in a quantity calculated by multiplication or division is the sum of the percent uncertainties in the items used to make the calculation
- **metric system**: a system in which values can be calculated in factors of 10
- **model**: representation of something that is often too difficult (or impossible) to display directly
- **modern physics**: the study of relativity, quantum mechanics, or both
- **order of magnitude**: refers to the size of a quantity as it relates to a power of 10
- **percent uncertainty**: the ratio of the uncertainty of a measurement to the measured value, expressed as a percentage
- **physical quantity**: a characteristic or property of an object that can be measured or calculated from other measurements
- **physics**: the science concerned with describing the interactions of energy, matter, space, and time; it is especially interested in what fundamental mechanisms underlie every phenomenon
- **precision**: the degree to which repeated measurements agree with each other
- **quantum mechanics**: the study of objects smaller than can be seen with a microscope
- **relativity**: the study of objects moving at speeds greater than about 1% of the speed of light, or of objects being affected by a strong gravitational field
- **second**: the SI unit for time, abbreviated (s)
- **SI units**: the international system of units that scientists in most countries have agreed to use; includes units such as meters, liters, and grams
- **significant figures**: express the precision of a measuring tool used to measure a value
- **theory**: an explanation for patterns in nature that is supported by scientific evidence and verified multiple times by various groups of researchers
- **uncertainty**: a quantitative measure of how much your measured values deviate from a standard or expected value
- **units**: a standard used for expressing and comparing measurements
1.2 Physical Quantities and Units
- Physical quantities are a characteristic or property of an object that can be measured or calculated from other measurements.
- Units are standards for expressing and comparing the measurement of physical quantities. All units can be expressed as combinations of four fundamental units.
- The four fundamental units we will use in this text are the meter (for length), the kilogram (for mass), the second (for time), and the ampere (for electric current). These units are part of the metric system, which uses powers of 10 to relate quantities over the vast ranges encountered in nature.
- The four fundamental units are abbreviated as follows: meter, m; kilogram, kg; second, s; and ampere, A. The metric system also uses a standard set of prefixes to denote each order of magnitude greater than or lesser than the fundamental unit itself.
- Unit conversions involve changing a value expressed in one type of unit to another type of unit. This is done by using conversion factors, which are ratios relating equal quantities of different units.

1.3 Accuracy, Precision, and Significant Figures
- Accuracy of a measured value refers to how close a measurement is to the correct value. The uncertainty in a measurement is an estimate of the amount by which the measurement result may differ from this value.
- Precision of measured values refers to how close the agreement is between repeated measurements.
- The precision of a measuring tool is related to the size of its measurement increments. The smaller the measurement increment, the more precise the tool.
- Significant figures express the precision of a measuring tool.
- When multiplying or dividing measured values, the final answer can contain only as many significant figures as the least precise value.
- When adding or subtracting measured values, the final answer cannot contain more decimal places than the least precise value.

1.4 Approximation
Scientists often approximate the values of quantities to perform calculations and analyze systems.

1.1 Physics: An Introduction
1. Classical physics is a good approximation to modern physics under certain circumstances. What are they?
2. When is it necessary to use relativistic quantum mechanics?
3. Can classical physics be used to accurately describe a satellite moving at a speed of 7500 m/s? Explain why or why not.

1.2 Physical Quantities and Units
4. Identify some advantages of metric units.

1.3 Accuracy, Precision, and Significant Figures
5. What is the relationship between the accuracy and uncertainty of a measurement?
6. Prescriptions for vision correction are given in units called diopters (D). Determine the meaning of that unit. Obtain information (perhaps by calling an optometrist or performing an internet search) on the minimum uncertainty with which corrections in diopters are determined and the accuracy with which corrective lenses can be produced. Discuss the sources of uncertainties in both the prescription and accuracy in the manufacture of lenses.
1.2 Physical Quantities and Units
1. The speed limit on some interstate highways is roughly 100 km/h. (a) What is this in meters per second? (b) How many miles per hour is this?
2. A car is traveling at a speed of 33 m/s. (a) What is its speed in kilometers per hour? (b) Is it exceeding the 90 km/h speed limit?
3. Show that 1.0 m/s = 3.6 km/h. Hint: Show the explicit steps involved in converting 1.0 m/s = 3.6 km/h.
4. American football is played on a 100-yd-long field, excluding the end zones. How long is the field in meters? (Assume that 1 meter equals 3.281 feet.)
5. Soccer fields vary in size. A large soccer field is 115 m long and 85 m wide. What are its dimensions in feet and inches? (Assume that 1 meter equals 3.281 feet.)
6. What is the height in meters of a person who is 6 ft 10 in. tall? (Assume that 1 meter equals 39.37 in.)
7. Mount Everest, at 29,028 feet, is the tallest mountain on the Earth. What is its height in kilometers? (Assume that 1 kilometer equals 3.281 feet.)
8. The speed of sound is measured to be 342 m/s on a certain day. What is this in km/h?
9. Tectonic plates are large segments of the Earth's crust that move slowly. Suppose that one such plate has an average speed of 4.0 cm/year. (a) What distance does it move in 1 s at this speed? (b) What is its speed in kilometers per million years?
10. (a) Refer to Table 1.3 to determine the average distance between the Earth and the Sun. Then calculate the average speed of the Earth in its orbit in kilometers per second. (b) What is this in meters per second?

1.3 Accuracy, Precision, and Significant Figures
Express your answers to problems in this section to the correct number of significant figures and proper units.
11. Suppose that your bathroom scale reads your mass as 65 kg with a 3% uncertainty. What is the uncertainty in your mass (in kilograms)?
12. A good-quality measuring tape can be off by 0.50 cm over a distance of 20 m. What is its percent uncertainty?
13. (a) A car speedometer has a 5.0% uncertainty. What is the range of possible speeds when it reads 90 km/h? (b) Convert this range to miles per hour. (1 km = 0.6214 mi)
14. An infant's pulse rate is measured to be 130 ± 5 beats/min. What is the percent uncertainty in this measurement?
15. (a) Suppose that a person has an average heart rate of 72.0 beats/min. How many beats does he or she have in 2.0 y? (b) In 2.00 y? (c) In 2.000 y?
16. A can contains 375 mL of soda. How much is left after 308 mL is removed?
17. State how many significant figures are proper in the results of the following calculations: (a) (106.7)(98.2) / (46.210)(1.01) (b) (18.7)^3 (c) (1.60x10^{-19})(3712).
18. (a) How many significant figures are in the numbers 99 and 100? (b) If the uncertainty in each number is 1, what is the percent uncertainty in each? (c) Which is a more meaningful way to express the accuracy of these two numbers, significant figures or percent uncertainties?
19. (a) If your speedometer has an uncertainty of 2.0 km/h at a speed of 90 km/h, what is the percent uncertainty? (b) If it has the same percent uncertainty when it reads 60 km/h, what is the range of speeds you could be going?
20. (a) A person's blood pressure is measured to be 120 ± 2 mm Hg. What is its percent uncertainty? (b) Assuming the same percent uncertainty, what is the uncertainty in a blood pressure measurement of 80 mm Hg?
21. A person measures his or her heart rate by counting the number of beats in 30 s. If 40 ± 1 beats are counted in 30.0 ± 0.5 s, what is the heart rate and its uncertainty in beats per minute?
22. What is the area of a circle 3.102 cm in diameter?
23. If a marathon runner averages 9.5 mi/h, how long does it take him or her to run a 26.22-mi marathon?
24. A marathon runner completes a 42.188-km course in 2 h, 30 min, and 12 s. There is an uncertainty of 25 m in the distance traveled and an uncertainty of 1 s in the elapsed time. (a) Calculate the percent uncertainty in the distance. (b) Calculate the uncertainty in the elapsed time. (c) What is the average speed in meters per second? (d) What is the uncertainty in the average speed?
25. The sides of a small rectangular box are measured to be 1.80 ± 0.01 cm, 2.05 ± 0.02 cm, and 3.1 ± 0.1 cm long. Calculate its volume and uncertainty in cubic centimeters.
26. When non-metric units were used in the United Kingdom, a unit of mass called the pound-mass (lbm) was employed, where 1 lbm = 0.4539 kg. (a) If there is an uncertainty of 0.0001 kg in the pound-mass unit, what is its percent uncertainty? (b) Based on that percent uncertainty, what mass in pound-mass has an uncertainty of 1 kg when converted to kilograms?
27. The length and width of a rectangular room are measured to be 3.955 ± 0.005 m and 3.050 ± 0.005 m. Calculate the area of the room and its uncertainty in square meters.
28. A car engine moves a piston with a circular cross section of 7.500 ± 0.002 cm diameter a distance of 3.250 ± 0.001 cm to compress the gas in the cylinder. (a) By what amount is the gas decreased in volume in cubic centimeters? (b) Find the uncertainty in this volume.

1.4 Approximation
29. How many heartbeats are there in a lifetime?
30. A generation is about one-third of a lifetime. Approximately how many generations have passed since the year 0 AD?
31. How many times longer than the mean life of an extremely unstable atomic nucleus is the lifetime of a human? (Hint: The lifetime of an unstable atomic nucleus is on the order of 10^{-22} s.)
32. Calculate the approximate number of atoms in a bacterium. Assume that the average mass of an atom in the bacterium is ten times the mass of a hydrogen atom. (Hint: The mass of a hydrogen atom is on the order of 10^{-27} kg and the mass of a bacterium is on the order of 10^{-15} kg.)
33. Approximately how many atoms thick is a cell membrane, assuming all atoms there average about twice the size of a hydrogen atom?

34. (a) What fraction of Earth's diameter is the greatest ocean depth? (b) The greatest mountain height?

35. (a) Calculate the number of cells in a hummingbird assuming the mass of an average cell is ten times the mass of a bacterium. (b) Making the same assumption, how many cells are there in a human?

36. Assuming one nerve impulse must end before another can begin, what is the maximum firing rate of a nerve in impulses per second?
2 KINEMATICS

Figure 2.1 The motion of an American kestrel through the air can be described by the bird’s displacement, speed, velocity, and acceleration. When it flies in a straight line without any change in direction, its motion is said to be one dimensional. (credit: Vince Maidens, Wikimedia Commons)

Chapter Outline

2.1. Displacement
- Define position, displacement, distance, and distance traveled.
- Explain the relationship between position and displacement.
- Distinguish between displacement and distance traveled.
- Calculate displacement and distance given initial position, final position, and the path between the two.

2.2. Vectors, Scalars, and Coordinate Systems
- Define and distinguish between scalar and vector quantities.
- Assign a coordinate system for a scenario involving one-dimensional motion.

2.3. Time, Velocity, and Speed
- Explain the relationships between instantaneous velocity, average velocity, instantaneous speed, average speed, displacement, and time.
- Calculate velocity and speed given initial position, initial time, final position, and final time.
- Derive a graph of velocity vs. time given a graph of position vs. time.
- Interpret a graph of velocity vs. time.

2.4. Acceleration
- Define and distinguish between instantaneous acceleration, average acceleration, and deceleration.
- Calculate acceleration given initial time, initial velocity, final time, and final velocity.

2.5. Motion Equations for Constant Acceleration in One Dimension
- Calculate displacement of an object that is not accelerating, given initial position and velocity.
- Calculate final velocity of an accelerating object, given initial velocity, acceleration, and time.
- Calculate displacement and final position of an accelerating object, given initial position, initial velocity, time, and acceleration.

2.6. Problem-Solving Basics for One-Dimensional Kinematics
- Apply problem-solving steps and strategies to solve problems of one-dimensional kinematics.
- Apply strategies to determine whether or not the result of a problem is reasonable, and if not, determine the cause.

2.7. Falling Objects
- Describe the effects of gravity on objects in motion.
- Describe the motion of objects that are in free fall.
- Calculate the position and velocity of objects in free fall.

2.8. Graphical Analysis of One-Dimensional Motion
- Describe a straight-line graph in terms of its slope and y-intercept.
- Determine average velocity or instantaneous velocity from a graph of position vs. time.
- Determine average or instantaneous acceleration from a graph of velocity vs. time.
- Derive a graph of velocity vs. time from a graph of position vs. time.
- Derive a graph of acceleration vs. time from a graph of velocity vs. time.
Introduction to One-Dimensional Kinematics

Objects are in motion everywhere we look. Everything from a tennis game to a space-probe flyby of the planet Neptune involves motion. When you are resting, your heart moves blood through your veins. And even in inanimate objects, there is continuous motion in the vibrations of atoms and molecules. Questions about motion are interesting in and of themselves: How long will it take for a space probe to get to Mars? Where will a football land if it is thrown at a certain angle? But an understanding of motion is also key to understanding other concepts in physics. An understanding of acceleration, for example, is crucial to the study of force.

Our formal study of physics begins with kinematics which is defined as the study of motion without considering its causes. The word “kinematics” comes from a Greek term meaning motion and is related to other English words such as “cinema” (movies) and “kinesiology” (the study of human motion). In one-dimensional kinematics and Two-Dimensional Kinematics we will study only the motion of a football, for example, without worrying about what forces cause or change its motion. Such considerations come in other chapters. In this chapter, we examine the simplest type of motion—namely, motion along a straight line, or one-dimensional motion. In Two-Dimensional Kinematics, we apply concepts developed here to study motion along curved paths (two- and three-dimensional motion); for example, that of a car rounding a curve.

2.1 Displacement

![Cyclists](https://example.com/cyclists.jpg)

Figure 2.2 These cyclists in Vietnam can be described by their position relative to buildings and a canal. Their motion can be described by their change in position, or displacement, in the frame of reference. (credit: Suzan Black, Fotopedia)

Position

In order to describe the motion of an object, you must first be able to describe its position—where it is at any particular time. More precisely, you need to specify its position relative to a convenient reference frame. Earth is often used as a reference frame, and we often describe the position of an object as it relates to stationary objects in that reference frame. For example, a rocket launch would be described in terms of the position of the rocket with respect to the Earth as a whole, while a professor’s position could be described in terms of where she is in relation to the nearby white board. (See Figure 2.3.) In other cases, we use reference frames that are not stationary but are in motion relative to the Earth. To describe the position of a person in an airplane, for example, we use the airplane, not the Earth, as the reference frame. (See Figure 2.4.)

Displacement

If an object moves relative to a reference frame (for example, if a professor moves to the right relative to a white board or a passenger moves toward the rear of an airplane), then the object’s position changes. This change in position is known as displacement. The word “displacement” implies that an object has moved, or has been displaced.

Displacement

Displacement is the change in position of an object:

\[\Delta x = x_f - x_0, \]

where \(\Delta x \) is displacement, \(x_f \) is the final position, and \(x_0 \) is the initial position.

In this text the upper case Greek letter \(\Delta \) (delta) always means “change in” whatever quantity follows it; thus, \(\Delta x \) means change in position.

Always solve for displacement by subtracting initial position \(x_0 \) from final position \(x_f \).

Note that the SI unit for displacement is the meter (m) (see Physical Quantities and Units), but sometimes kilometers, miles, feet, and other units of length are used. Keep in mind that when units other than the meter are used in a problem, you may need to convert them into meters to complete the calculation.
Figure 2.3 A professor paces left and right while lecturing. Her position relative to Earth is given by \(x \). The \(+2.0 \text{ m}\) displacement of the professor relative to Earth is represented by an arrow pointing to the right.

\[
\Delta x = x_f - x_0 = +2.0 \text{ m}
\]

Figure 2.4 A passenger moves from his seat to the back of the plane. His location relative to the airplane is given by \(x \). The \(-4.0 \text{ m}\) displacement of the passenger relative to the plane is represented by an arrow toward the rear of the plane. Notice that the arrow representing his displacement is twice as long as the arrow representing the displacement of the professor (he moves twice as far) in Figure 2.3.

Note that displacement has a direction as well as a magnitude. The professor’s displacement is \(2.0 \text{ m} \) to the right, and the airline passenger’s displacement is \(4.0 \text{ m} \) toward the rear. In one-dimensional motion, direction can be specified with a plus or minus sign. When you begin a problem, you should select which direction is positive (usually that will be to the right or up, but you are free to select positive as being any direction). The professor’s initial position is \(x_0 = 1.5 \text{ m} \) and her final position is \(x_f = 3.5 \text{ m} \). Thus her displacement is

\[
\Delta x = x_f - x_0 = 3.5 \text{ m} - 1.5 \text{ m} = +2.0 \text{ m}.
\]

In this coordinate system, motion to the right is positive, whereas motion to the left is negative. Similarly, the airplane passenger’s initial position is \(x_0 = 6.0 \text{ m} \) and his final position is \(x_f = 2.0 \text{ m} \), so his displacement is

\[
\Delta x = x_f - x_0 = 2.0 \text{ m} - 6.0 \text{ m} = -4.0 \text{ m}.
\]

His displacement is negative because his motion is toward the rear of the plane, or in the negative \(x \) direction in our coordinate system.

Distance

Although displacement is described in terms of direction, distance is not. **Distance** is defined to be the magnitude or size of displacement between two positions. Note that the distance between two positions is not the same as the distance traveled between them. **Distance traveled** is the total length of the path traveled between two positions. Distance has no direction and, thus, no sign. For example, the distance the professor walks is \(2.0 \text{ m} \). The distance the airplane passenger walks is \(4.0 \text{ m} \).
Misconception Alert: Distance Traveled vs. Magnitude of Displacement

It is important to note that the distance traveled, however, can be greater than the magnitude of the displacement (by magnitude, we mean just the size of the displacement without regard to its direction; that is, just a number with a unit). For example, the professor could pace back and forth many times, perhaps walking a distance of 150 m during a lecture, yet still end up only 2.0 m to the right of her starting point. In this case her displacement would be +2.0 m, the magnitude of her displacement would be 2.0 m, but the distance she traveled would be 150 m. In kinematics we nearly always deal with displacement and magnitude of displacement, and almost never with distance traveled. One way to think about this is to assume you marked the start of the motion and the end of the motion. The displacement is simply the difference in the position of the two marks and is independent of the path taken in traveling between the two marks. The distance traveled, however, is the total length of the path taken between the two marks.

Check Your Understanding

A cyclist rides 3 km west and then turns around and rides 2 km east. (a) What is her displacement? (b) What distance does she ride? (c) What is the magnitude of her displacement?

Solution

(a) The rider’s displacement is \(\Delta x = x_f - x_0 = -1 \) km. (The displacement is negative because we take east to be positive and west to be negative.)
(b) The distance traveled is \(3 \) km + \(2 \) km = \(5 \) km.
(c) The magnitude of the displacement is \(1 \) km.

2.2 Vectors, Scalars, and Coordinate Systems

Figure 2.6 The motion of this Eclipse Concept jet can be described in terms of the distance it has traveled (a scalar quantity) or its displacement in a specific direction (a vector quantity). In order to specify the direction of motion, its displacement must be described based on a coordinate system. In this case, it may be convenient to choose motion toward the left as positive motion (it is the forward direction for the plane), although in many cases, the \(x \)-coordinate runs from left to right, with motion to the right as positive and motion to the left as negative. (credit: Armchair Aviator, Flickr)

What is the difference between distance and displacement? Whereas displacement is defined by both direction and magnitude, distance is defined only by magnitude. Displacement is an example of a vector quantity. Distance is an example of a scalar quantity. A vector is any quantity with both magnitude and direction. Other examples of vectors include a velocity of 90 km/h east and a force of 500 newtons straight down.

The direction of a vector in one-dimensional motion is given simply by a plus (+) or minus (−) sign. Vectors are represented graphically by arrows. An arrow used to represent a vector has a length proportional to the vector’s magnitude (e.g., the larger the magnitude, the longer the length of the vector) and points in the same direction as the vector.

Some physical quantities, like distance, either have no direction or none is specified. A scalar is any quantity that has a magnitude, but no direction. For example, a 20°C temperature, the 250 kilocalories (250 Calories) of energy in a candy bar, a 90 km/h speed limit, a person’s 1.8 m height, and a distance of 2.0 m are all scalars—quantities with no specified direction. Note, however, that a scalar can be negative, such as a −20°C temperature. In this case, the minus sign indicates a point on a scale rather than a direction. Scalars are never represented by arrows.
Coordinate Systems for One-Dimensional Motion

In order to describe the direction of a vector quantity, you must designate a coordinate system within the reference frame. For one-dimensional motion, this is a simple coordinate system consisting of a one-dimensional coordinate line. In general, when describing horizontal motion, motion to the right is usually considered positive, and motion to the left is considered negative. With vertical motion, motion up is usually positive and motion down is negative. In some cases, however, as with the jet in Figure 2.6, it can be more convenient to switch the positive and negative directions. For example, if you are analyzing the motion of falling objects, it can be useful to define downwards as the positive direction. If people in a race are running to the left, it is useful to define left as the positive direction. It does not matter as long as the system is clear and consistent. Once you assign a positive direction and start solving a problem, you cannot change it.

![Coordinate System Diagram](image)

Figure 2.7 It is usually convenient to consider motion upward or to the right as positive (+) and motion downward or to the left as negative (−).

Check Your Understanding

A person’s speed can stay the same as he or she rounds a corner and changes direction. Given this information, is speed a scalar or a vector quantity? Explain.

Solution

Speed is a scalar quantity. It does not change at all with direction changes; therefore, it has magnitude only. If it were a vector quantity, it would change as direction changes (even if its magnitude remained constant).

2.3 Time, Velocity, and Speed

![Snail Image](image)

Figure 2.8 The motion of these racing snails can be described by their speeds and their velocities. (credit: tobitadflickr, Flickr)

There is more to motion than distance and displacement. Questions such as, “How long does a foot race take?” and “What was the runner’s speed?” cannot be answered without an understanding of other concepts. In this section we add definitions of time, velocity, and speed to expand our description of motion.

Time

As discussed in **Physical Quantities and Units**, the most fundamental physical quantities are defined by how they are measured. This is the case with time. Every measurement of time involves measuring a change in some physical quantity. It may be a number on a digital clock, a heartbeat, or the position of the Sun in the sky. In physics, the definition of time is simple—**time** is **change**, or the interval over which change occurs. It is impossible to know that time has passed unless something changes.

The amount of time or change is calibrated by comparison with a standard. The SI unit for time is the second, abbreviated s. We might, for example, observe that a certain pendulum makes one full swing every 0.75 s. We could then use the pendulum to measure time by counting its swings or, of course, by connecting the pendulum to a clock mechanism that registers time on a dial. This allows us to not only measure the amount of time, but also to determine a sequence of events.

How does time relate to motion? We are usually interested in elapsed time for a particular motion, such as how long it takes an airplane passenger to get from his seat to the back of the plane. To find elapsed time, we note the time at the beginning and end of the motion and subtract the two. For
example, a lecture may start at 11:00 A.M. and end at 11:50 A.M., so that the elapsed time would be 50 min. **Elapsed time** \(\Delta t \) is the difference between the ending time and beginning time,

\[
\Delta t = t_f - t_0,
\]

where \(\Delta t \) is the change in time or elapsed time, \(t_f \) is the time at the end of the motion, and \(t_0 \) is the time at the beginning of the motion. (As usual, the delta symbol, \(\Delta \), means the change in the quantity that follows it.)

Life is simpler if the beginning time \(t_0 \) is taken to be zero, as when we use a stopwatch. If we were using a stopwatch, it would simply read zero at the start of the lecture and 50 min at the end. If \(t_0 = 0 \), then \(\Delta t = t_f \).

In this text, for simplicity’s sake,

- motion starts at time equal to zero \((t_0 = 0) \)
- the symbol \(t \) is used for elapsed time unless otherwise specified \((\Delta t = t_f) \)

Velocity

Your notion of velocity is probably the same as its scientific definition. You know that if you have a large displacement in a small amount of time you have a large velocity, and that velocity has units of distance divided by time, such as miles per hour or kilometers per hour.

Average Velocity

Average velocity is displacement (change in position) divided by the time of travel,

\[
\bar{v} = \frac{\Delta x}{\Delta t} = \frac{x_f - x_0}{t_f - t_0},
\]

where \(\bar{v} \) is the average (indicated by the bar over the \(v \)) velocity, \(\Delta x \) is the change in position (or displacement), and \(x_f \) and \(x_0 \) are the final and beginning positions at times \(t_f \) and \(t_0 \), respectively. If the starting time \(t_0 \) is taken to be zero, then the average velocity is simply

\[
\bar{v} = \frac{\Delta x}{t}.
\]

Notice that this definition indicates that velocity is a vector because displacement is a vector. It has both magnitude and direction. The SI unit for velocity is meters per second or m/s, but many other units, such as km/h, mi/h (also written as mph), and cm/s, are in common use. Suppose, for example, an airplane passenger took 5 seconds to move \(-4 \) m (the negative sign indicates that displacement is toward the back of the plane). His average velocity would be

\[
\bar{v} = \frac{\Delta x}{t} = \frac{-4 \text{ m}}{5 \text{ s}} = -0.8 \text{ m/s}.
\]

The minus sign indicates the average velocity is also toward the rear of the plane.

The average velocity of an object does not tell us anything about what happens to it between the starting point and ending point, however. For example, we cannot tell from average velocity whether the airplane passenger stops momentarily or backs up before he goes to the back of the plane. To get more details, we must consider smaller segments of the trip over smaller time intervals.

![Figure 2.9 A more detailed record of an airplane passenger heading toward the back of the plane, showing smaller segments of his trip.](image)

The smaller the time intervals considered in a motion, the more detailed the information. When we carry this process to its logical conclusion, we are left with an infinitesimally small interval. Over such an interval, the average velocity becomes the instantaneous velocity or the velocity at a specific instant. A car’s speedometer, for example, shows the magnitude (but not the direction) of the instantaneous velocity of the car. (Police give tickets based on instantaneous velocity, but when calculating how long it will take to get from one place to another on a road trip, you need to use average velocity.) **Instantaneous velocity** \(\dot{v} \) is the average velocity at a specific instant in time (or over an infinitesimally small time interval).

Mathematically, finding instantaneous velocity, \(\dot{v} \), at a precise instant \(t \) can involve taking a limit, a calculus operation beyond the scope of this text. However, under many circumstances, we can find precise values for instantaneous velocity without calculus.
Speed

In everyday language, most people use the terms “speed” and “velocity” interchangeably. In physics, however, they do not have the same meaning and they are distinct concepts. One major difference is that speed has no direction. Thus speed is a scalar. Just as we need to distinguish between instantaneous velocity and average velocity, we also need to distinguish between instantaneous speed and average speed.

Instantaneous speed is the magnitude of instantaneous velocity. For example, suppose the airplane passenger at one instant had an instantaneous velocity of \(-3.0\) m/s (the minus meaning toward the rear of the plane). At that same time his instantaneous speed was 3.0 m/s. Or suppose that at one time during a shopping trip your instantaneous velocity is 40 km/h due north. Your instantaneous speed at that instant would be 40 km/h—the same magnitude but without a direction. Average speed, however, is very different from average velocity. **Average speed** is the distance traveled divided by elapsed time.

We have noted that distance traveled can be greater than displacement. So average speed can be greater than average velocity, which is displacement divided by time. For example, if you drive to a store and return home in half an hour, and your car’s odometer shows the total distance traveled was 6 km, then your average speed was 12 km/h. Your average velocity, however, was zero, because your displacement for the round trip is zero. (Displacement is change in position and, thus, is zero for a round trip.) Thus average speed is not simply the magnitude of average velocity.

![Figure 2.10](image.png)

Figure 2.10 During a 30-minute round trip to the store, the total distance traveled is 6 km. The average speed is 12 km/h. The displacement for the round trip is zero, since there was no net change in position. Thus the average velocity is zero.

Another way of visualizing the motion of an object is to use a graph. A plot of position or of velocity as a function of time can be very useful. For example, for this trip to the store, the position, velocity, and speed-vs.-time graphs are displayed in **Figure 2.11**. (Note that these graphs depict a very simplified model of the trip. We are assuming that speed is constant during the trip, which is unrealistic given that we’ll probably stop at the store. But for simplicity’s sake, we will model it with no stops or changes in speed. We are also assuming that the route between the store and the house is a perfectly straight line.)
Figure 2.11 Position vs. time, velocity vs. time, and speed vs. time on a trip. Note that the velocity for the return trip is negative.

Making Connections: Take-Home Investigation—Getting a Sense of Speed

If you have spent much time driving, you probably have a good sense of speeds between about 10 and 70 miles per hour. But what are these in meters per second? What do we mean when we say that something is moving at 10 m/s? To get a better sense of what these values really mean, do some observations and calculations on your own:

- calculate typical car speeds in meters per second
- estimate jogging and walking speed by timing yourself; convert the measurements into both m/s and mph
- determine the speed of an ant, snail, or falling leaf

Check Your Understanding

A commuter train travels from Baltimore to Washington, DC, and back in 1 hour and 45 minutes. The distance between the two stations is approximately 40 miles. What is (a) the average velocity of the train, and (b) the average speed of the train in m/s?

Solution
(a) The average velocity of the train is zero because \(x_f = x_0 \); the train ends up at the same place it starts.

(b) The average speed of the train is calculated below. Note that the train travels 40 miles one way and 40 miles back, for a total distance of 80 miles.

\[
\begin{align*}
\text{distance} & = \frac{80 \text{ miles}}{105 \text{ minutes}} \\
\text{time} & = \frac{80 \text{ miles} \times \frac{5280 \text{ feet}}{1 \text{ mile}} \times \frac{1 \text{ minute}}{60 \text{ seconds}}}{105 \text{ minutes} \times \frac{3.28 \text{ feet}}{1 \text{ meter}}} = 20 \text{ m/s}
\end{align*}
\]

2.4 Acceleration

![Image of airplane](image-url)

Figure 2.12 A plane decelerates, or slows down, as it comes in for landing in St. Maarten. Its acceleration is opposite in direction to its velocity. (credit: Steve Conry, Flickr)

In everyday conversation, to accelerate means to speed up. The accelerator in a car can in fact cause it to speed up. The greater the acceleration, the greater the change in velocity over a given time. The formal definition of acceleration is consistent with these notions, but more inclusive.

Average Acceleration

Average Acceleration is the rate at which velocity changes,

\[
\vec{a} = \frac{\Delta v}{\Delta t} = \frac{v_f - v_0}{t_f - t_0}
\]

where \(\vec{a} \) is average acceleration, \(v \) is velocity, and \(t \) is time. (The bar over the \(a \) means average acceleration.)

Because acceleration is velocity in m/s divided by time in s, the SI units for acceleration are \(\text{m/s}^2 \), meters per second squared or meters per second per second, which literally means by how many meters per second the velocity changes every second.

Recall that velocity is a vector—it has both magnitude and direction. This means that a change in velocity can be a change in magnitude (or speed), but it can also be a change in direction. For example, if a car turns a corner at constant speed, it is accelerating because its direction is changing. The quicker you turn, the greater the acceleration. So there is an acceleration when velocity changes either in magnitude (an increase or decrease in speed) or in direction, or both.

Acceleration as a Vector

Acceleration is a vector in the same direction as the change in velocity, \(\Delta v \). Since velocity is a vector, it can change either in magnitude or in direction. Acceleration is therefore a change in either speed or direction, or both.

Keep in mind that although acceleration is in the direction of the change in velocity, it is not always in the direction of motion. When an object slows down, its acceleration is opposite to the direction of its motion. This is known as **deceleration**.
Misconception Alert: Deceleration vs. Negative Acceleration

Deceleration always refers to acceleration in the direction opposite to the direction of the velocity. Deceleration always reduces speed. Negative acceleration, however, is acceleration in the negative direction in the chosen coordinate system. Negative acceleration may or may not be deceleration, and deceleration may or may not be considered negative acceleration. For example, consider Figure 2.14.

![Diagram](image)

Figure 2.14 (a) This car is speeding up as it moves toward the right. It therefore has positive acceleration in our coordinate system. (b) This car is slowing down as it moves toward the right. Therefore, it has negative acceleration in our coordinate system, because its acceleration is toward the left. The car is also decelerating: the direction of its acceleration is opposite to its direction of motion. (c) This car is moving toward the left, but slowing down over time. Therefore, its acceleration is positive in our coordinate system because it is toward the right. However, the car is decelerating because its acceleration is opposite to its motion. (d) This car is speeding up as it moves toward the left. It has negative acceleration because it is accelerating toward the left. However, because its acceleration is in the same direction as its motion, it is speeding up (not decelerating).
Example 2.1 Calculating Acceleration: A Racehorse Leaves the Gate

A racehorse coming out of the gate accelerates from rest to a velocity of 15.0 m/s due west in 1.80 s. What is its average acceleration?

![Image](credit: Jon Sullivan, PD Photo.org)

Strategy

First we draw a sketch and assign a coordinate system to the problem. This is a simple problem, but it always helps to visualize it. Notice that we assign east as positive and west as negative. Thus, in this case, we have negative velocity.

![Diagram](image)

We can solve this problem by identifying \(\Delta v \) and \(\Delta t \) from the given information and then calculating the average acceleration directly from the equation

\[
\ddot{a} = \frac{\Delta v}{\Delta t} = \frac{v_f - v_0}{t_f - t_0}.
\]

Solution

1. Identify the knowns. \(v_0 = 0 \), \(v_f = -15.0 \text{ m/s} \) (the negative sign indicates direction toward the west), \(\Delta t = 1.80 \text{ s} \).

2. Find the change in velocity. Since the horse is going from zero to \(-15.0 \text{ m/s} \), its change in velocity equals its final velocity:

\[
\Delta v = v_f = -15.0 \text{ m/s}.
\]

3. Plug in the known values (\(\Delta v \) and \(\Delta t \)) and solve for the unknown \(\ddot{a} \).

\[
\ddot{a} = \frac{\Delta v}{\Delta t} = \frac{-15.0 \text{ m/s}}{1.80 \text{ s}} = -8.33 \text{ m/s}^2.
\]

Discussion

The negative sign for acceleration indicates that acceleration is toward the west. An acceleration of \(8.33 \text{ m/s}^2 \) due west means that the horse increases its velocity by 8.33 m/s due west each second, that is, 8.33 meters per second per second, which we write as \(8.33 \text{ m/s}^2 \). This is truly an average acceleration, because the ride is not smooth. We shall see later that an acceleration of this magnitude would require the rider to hang on with a force nearly equal to his weight.

Instantaneous Acceleration

Instantaneous acceleration \(a \), or the acceleration at a specific instant in time, is obtained by the same process as discussed for instantaneous velocity in **Time, Velocity, and Speed**—that is, by considering an infinitesimally small interval of time. How do we find instantaneous acceleration using only algebra? The answer is that we choose an average acceleration that is representative of the motion. **Figure 2.17** shows graphs of instantaneous acceleration versus time for two very different motions. In **Figure 2.17(a)**, the acceleration varies slightly and the average over the entire interval is nearly the same as the instantaneous acceleration at any time. In this case, we should treat this motion as if it had a constant acceleration equal to the average (in this case about \(1.8 \text{ m/s}^2 \)). In **Figure 2.17(b)**, the acceleration varies drastically over time. In such situations it
is best to consider smaller time intervals and choose an average acceleration for each. For example, we could consider motion over the time intervals from 0 to 1.0 s and from 1.0 to 3.0 s as separate motions with accelerations of $+3.0 \text{ m/s}^2$ and -2.0 m/s^2, respectively.

![Graphs of instantaneous acceleration versus time for two different one-dimensional motions.](image)

The next several examples consider the motion of the subway train shown in Figure 2.18. In (a) the shuttle moves to the right, and in (b) it moves to the left. The examples are designed to further illustrate aspects of motion and to illustrate some of the reasoning that goes into solving problems.

![One-dimensional motion of a subway train considered in Example 2.2, Example 2.3, Example 2.4, Example 2.5, Example 2.6, and Example 2.7.](image)

Example 2.2 Calculating Displacement: A Subway Train

What are the magnitude and sign of displacements for the motions of the subway train shown in parts (a) and (b) of Figure 2.18?

Strategy

A drawing with a coordinate system is already provided, so we don’t need to make a sketch, but we should analyze it to make sure we understand what it is showing. Pay particular attention to the coordinate system. To find displacement, we use the equation $\Delta x = x_f - x_0$. This is straightforward since the initial and final positions are given.

Solution
1. Identify the knowns. In the figure we see that \(x_f = 6.70 \text{ km} \) and \(x_0 = 4.70 \text{ km} \) for part (a), and \(x'_f = 3.75 \text{ km} \) and \(x'_0 = 5.25 \text{ km} \) for part (b).

2. Solve for displacement in part (a).

\[
\Delta x = x_f - x_0 = 6.70 \text{ km} - 4.70 \text{ km} = +2.00 \text{ km}
\]

(2.12)

3. Solve for displacement in part (b).

\[
\Delta x' = x'_f - x'_0 = 3.75 \text{ km} - 5.25 \text{ km} = -1.50 \text{ km}
\]

(2.13)

Discussion
The direction of the motion in (a) is to the right and therefore its displacement has a positive sign, whereas motion in (b) is to the left and thus has a negative sign.

Example 2.3 Comparing Distance Traveled with Displacement: A Subway Train

What are the distances traveled for the motions shown in parts (a) and (b) of the subway train in Figure 2.18?

Strategy
To answer this question, think about the definitions of distance and distance traveled, and how they are related to displacement. Distance between two positions is defined to be the magnitude of displacement, which was found in Example 2.2. Distance traveled is the total length of the path traveled between the two positions. (See Displacement.) In the case of the subway train shown in Figure 2.18, the distance traveled is the same as the distance between the initial and final positions of the train.

Solution
1. The displacement for part (a) was +2.00 km. Therefore, the distance between the initial and final positions was 2.00 km, and the distance traveled was 2.00 km.

2. The displacement for part (b) was −1.5 km. Therefore, the distance between the initial and final positions was 1.50 km, and the distance traveled was 1.50 km.

Discussion
Distance is a scalar. It has magnitude but no sign to indicate direction.

Example 2.4 Calculating Acceleration: A Subway Train Speeding Up

Suppose the train in Figure 2.18(a) accelerates from rest to 30.0 km/h in the first 20.0 s of its motion. What is its average acceleration during that time interval?

Strategy
It is worth it at this point to make a simple sketch:

![Diagram of a subway train with initial velocity of 0 km/h and final velocity of 30.0 km/h.](image)

This problem involves three steps. First we must determine the change in velocity, then we must determine the change in time, and finally we use these values to calculate the acceleration.

Solution
1. Identify the knowns. \(v_0 = 0 \) (the trains starts at rest), \(v_f = 30.0 \text{ km/h} \), and \(\Delta t = 20.0 \text{ s} \).

2. Calculate \(\Delta v \). Since the train starts from rest, its change in velocity is \(\Delta v = +30.0 \text{ km/h} \), where the plus sign means velocity to the right.

3. Plug in known values and solve for the unknown, \(\ddot{a} \).

\[
\ddot{a} = \frac{\Delta v}{\Delta t} = \frac{+30.0 \text{ km/h}}{20.0 \text{ s}}
\]

(2.14)

4. Since the units are mixed (we have both hours and seconds for time), we need to convert everything into SI units of meters and seconds. (See Physical Quantities and Units for more guidance.)
\[\ddot{a} = \left(\frac{+30 \text{ km/h}}{20.0 \text{ s}} \right) \left(\frac{10^3 \text{ m}}{1 \text{ km}} \right) \left(\frac{1 \text{ h}}{3600 \text{ s}} \right) = 0.417 \text{ m/s}^2 \]

(2.15)

Discussion

The plus sign means that acceleration is to the right. This is reasonable because the train starts from rest and ends up with a velocity to the right (also positive). So acceleration is in the same direction as the change in velocity, as is always the case.

Example 2.5 Calculate Acceleration: A Subway Train Slowing Down

Now suppose that at the end of its trip, the train in Figure 2.18(a) slows to a stop from a speed of 30.0 km/h in 8.00 s. What is its average acceleration while stopping?

Strategy

\[v_0 = 30.0 \text{ km/h}, \quad v_f = 0 \text{ km/h} \]

\[\Delta t = 8.00 \text{ s} \]

\[\Delta v = v_f - v_0 = 0 - 30.0 \text{ km/h} = -30.0 \text{ km/h} \]

(2.16)

Solution

1. Identify the knowns. \(v_0 = 30.0 \text{ km/h}, \; v_f = 0 \text{ km/h} \) (the train is stopped, so its velocity is 0), and \(\Delta t = 8.00 \text{ s} \).

2. Solve for the change in velocity, \(\Delta v \).

3. Plug in the knowns, \(\Delta v \) and \(\Delta t \), and solve for \(\ddot{a} \).

\[\ddot{a} = \frac{\Delta v}{\Delta t} = \frac{-30.0 \text{ km/h}}{8.00 \text{ s}} \]

(2.17)

4. Convert the units to meters and seconds.

\[\ddot{a} = \frac{\Delta v}{\Delta t} = \left(\frac{-30.0 \text{ km/h}}{8.00 \text{ s}} \right) \left(\frac{10^3 \text{ m}}{1 \text{ km}} \right) \left(\frac{1 \text{ h}}{3600 \text{ s}} \right) = -1.04 \text{ m/s}^2. \]

(2.18)

Discussion

The minus sign indicates that acceleration is to the left. This sign is reasonable because the train initially has a positive velocity in this problem, and a negative acceleration would oppose the motion. Again, acceleration is in the same direction as the change in velocity, which is negative here. This acceleration can be called a deceleration because it has a direction opposite to the velocity.

The graphs of position, velocity, and acceleration vs. time for the trains in Example 2.4 and Example 2.5 are displayed in Figure 2.21. (We have taken the velocity to remain constant from 20 to 40 s, after which the train decelerates.)
Figure 2.21 (a) Position of the train over time. Notice that the train’s position changes slowly at the beginning of the journey, then more and more quickly as it picks up speed. Its position then changes more slowly as it slows down at the end of the journey. In the middle of the journey, while the velocity remains constant, the position changes at a constant rate. (b) Velocity of the train over time. The train’s velocity increases as it accelerates at the beginning of the journey. It remains the same in the middle of the journey (where there is no acceleration). It decreases as the train decelerates at the end of the journey. (c) The acceleration of the train over time. The train has positive acceleration as it speeds up at the beginning of the journey. It has no acceleration as it travels at constant velocity in the middle of the journey. Its acceleration is negative as it slows down at the end of the journey.

Example 2.6 Calculating Average Velocity: The Subway Train

What is the average velocity of the train in part b of Example 2.2, and shown again below, if it takes 5.00 min to make its trip?
Example 2.7 Calculating Deceleration: The Subway Train

Finally, suppose the train in Figure 2.22 slows to a stop from a velocity of 20.0 km/h in 10.0 s. What is its average acceleration?

Strategy

Once again, let’s draw a sketch:

![Sketch of train slowing to a stop](image)

Solution

1. Identify the knowns. \(v_0 = -20 \text{ km/h} \), \(v_f = 0 \text{ km/h} \), \(\Delta t = 10.0 \text{ s} \).

2. Calculate \(\Delta v \). The change in velocity here is actually positive, since

\[
\Delta v = v_f - v_0 = 0 - (-20 \text{ km/h}) = +20 \text{ km/h}.
\] (2.21)

3. Solve for \(\Delta v \).

\[
\Delta a = \frac{\Delta v}{\Delta t} = \frac{+20.0 \text{ km/h}}{10.0 \text{ s}}
\] (2.22)

4. Convert units.

\[
\Delta a = \left(\frac{+20.0 \text{ km/h}}{10.0 \text{ s}} \right) \left(\frac{10^3 \text{ m}}{1 \text{ km}} \right) \left(\frac{1 \text{ h}}{3600 \text{ s}} \right) = +0.556 \text{ m/s}^2
\] (2.23)

Discussion

The plus sign means that acceleration is to the right. This is reasonable because the train initially has a negative velocity (to the left) in this problem and a positive acceleration opposes the motion (and so it is to the right). Again, acceleration is in the same direction as the change in
velocity, which is positive here. As in Example 2.5, this acceleration can be called a deceleration since it is in the direction opposite to the velocity.

Sign and Direction

Perhaps the most important thing to note about these examples is the signs of the answers. In our chosen coordinate system, plus means the quantity is to the right and minus means it is to the left. This is easy to imagine for displacement and velocity. But it is a little less obvious for acceleration. Most people interpret negative acceleration as the slowing of an object. This was not the case in Example 2.7, where a positive acceleration slowed a negative velocity. The crucial distinction was that the acceleration was in the opposite direction from the velocity. In fact, a negative acceleration will increase a negative velocity. For example, the train moving to the left in Figure 2.22 is sped up by an acceleration to the left. In that case, both v and a are negative. The plus and minus signs give the directions of the accelerations. If acceleration has the same sign as the velocity, the object is speeding up. If acceleration has the opposite sign as the velocity, the object is slowing down.

Check Your Understanding

An airplane lands on a runway traveling east. Describe its acceleration.

Solution

If we take east to be positive, then the airplane has negative acceleration, as it is accelerating toward the west. It is also decelerating: its acceleration is opposite in direction to its velocity.

PhET Explorations: Moving Man Simulation

Learn about position, velocity, and acceleration graphs. Move the little man back and forth with the mouse and plot his motion. Set the position, velocity, or acceleration and let the simulation move the man for you.

PhET Interactive Simulation

Figure 2.24 Moving Man (http://legacy.cnx.org/content/m42100/1.4/moving-man_en.jar)

2.5 Motion Equations for Constant Acceleration in One Dimension

We might know that the greater the acceleration of, say, a car moving away from a stop sign, the greater the displacement in a given time. But we have not developed a specific equation that relates acceleration and displacement. In this section, we develop some convenient equations for kinematic relationships, starting from the definitions of displacement, velocity, and acceleration already covered.

Notation: t, x, v, a

First, let us make some simplifications in notation. Taking the initial time to be zero, as if time is measured with a stopwatch, is a great simplification. Since elapsed time is $\Delta t = t_f - t_0$, taking $t_0 = 0$ means that $\Delta t = t_f$, the final time on the stopwatch. When initial time is taken to be zero, we use the subscript 0 to denote initial values of position and velocity. That is, x_0 is the initial position and v_0 is the initial velocity. We put no subscripts on the final values. That is, t is the final time, x is the final position, and v is the final velocity. This gives a simpler expression for elapsed time—now, $\Delta t = t$. It also simplifies the expression for displacement, which is now $\Delta x = x - x_0$. Also, it simplifies the expression for change in velocity, which is now $\Delta v = v - v_0$. To summarize, using the simplified notation, with the initial time taken to be zero,
\[\Delta t = t \]
\[\Delta x = x - x_0 \]
\[\Delta v = v - v_0 \]

where the subscript 0 denotes an initial value and the absence of a subscript denotes a final value in whatever motion is under consideration.

We now make the important assumption that acceleration is constant. This assumption allows us to avoid using calculus to find instantaneous acceleration. Since acceleration is constant, the average and instantaneous accelerations are equal. That is,

\[\ddot{a} = a = \text{constant}, \]

so we use the symbol \(a \) for acceleration at all times. Assuming acceleration to be constant does not seriously limit the situations we can study nor degrade the accuracy of our treatment. For one thing, acceleration is constant in a great number of situations. Furthermore, in many other situations we can accurately describe motion by assuming a constant acceleration equal to the average acceleration for that motion. Finally, in motions where acceleration changes drastically, such as a car accelerating to top speed and then braking to a stop, the motion can be considered in separate parts, each of which has its own constant acceleration.

Solving for Displacement (\(\Delta x \)) and Final Position (\(x \)) from Average Velocity when Acceleration (\(a \)) is Constant

To get our first two new equations, we start with the definition of average velocity:

\[\bar{v} = \frac{\Delta x}{\Delta t} \] \hspace{1cm} (2.26)

Substituting the simplified notation for \(\Delta x \) and \(\Delta t \) yields

\[\bar{v} = \frac{x - x_0}{t}. \] \hspace{1cm} (2.27)

Solving for \(x \) yields

\[x = x_0 + \bar{v} \cdot t, \] \hspace{1cm} (2.28)

where the average velocity is

\[\bar{v} = \frac{v_0 + v}{2} \text{ (constant \(a \)).} \] \hspace{1cm} (2.29)

The equation \(\bar{v} = \frac{v_0 + v}{2} \) reflects the fact that, when acceleration is constant, \(v \) is just the simple average of the initial and final velocities. For example, if you steadily increase your velocity (that is, with constant acceleration) from 30 to 60 km/h, then your average velocity during this steady increase is 45 km/h. Using the equation \(\bar{v} = \frac{v_0 + v}{2} \) to check this, we see that

\[\bar{v} = \frac{v_0 + v}{2} = \frac{30 \text{ km/h} + 60 \text{ km/h}}{2} = 45 \text{ km/h}, \] \hspace{1cm} (2.30)

which seems logical.

Example 2.8 Calculating Displacement: How Far does the Jogger Run?

A jogger runs down a straight stretch of road with an average velocity of 4.00 m/s for 2.00 min. What is his final position, taking his initial position to be zero?

Strategy

Draw a sketch.

![Figure 2.26](image)

The final position \(x \) is given by the equation

\[x = x_0 + \bar{v} \cdot t. \] \hspace{1cm} (2.31)

To find \(x \), we identify the values of \(x_0 \), \(\bar{v} \), and \(t \) from the statement of the problem and substitute them into the equation.
Solution
1. Identify the knowns. \(\dot{v} = 4.00 \text{ m/s} \), \(\Delta t = 2.00 \text{ min} \), and \(x_0 = 0 \text{ m} \).
2. Enter the known values into the equation.

\[
x = x_0 + \dot{v} t = 0 + (4.00 \text{ m/s})(120 \text{ s}) = 480 \text{ m}
\]

Discussion
Velocity and final displacement are both positive, which means they are in the same direction.

The equation \(x = x_0 + \dot{v} t \) gives insight into the relationship between displacement, average velocity, and time. It shows, for example, that displacement is a linear function of average velocity. (By linear function, we mean that displacement depends on \(\dot{v} \) rather than on \(\ddot{v} \) raised to some other power, such as \(\dot{v}^2 \). When graphed, linear functions look like straight lines with a constant slope.) On a car trip, for example, we will get twice as far in a given time if we average 90 km/h than if we average 45 km/h.

![Displacement vs. Velocity for a given time, t](image)

Figure 2.27 There is a linear relationship between displacement and average velocity. For a given time \(t \), an object moving twice as fast as another object will move twice as far as the other object.

Solving for Final Velocity
We can derive another useful equation by manipulating the definition of acceleration.

\[
a = \frac{\Delta v}{\Delta t}
\]

Substituting the simplified notation for \(\Delta v \) and \(\Delta t \) gives us

\[
a = \frac{v - v_0}{t} \quad \text{(constant } a \text{)}.
\]

Solving for \(v \) yields

\[
v = v_0 + at \quad \text{(constant } a \text{)}.
\]

Example 2.9 Calculating Final Velocity: An Airplane Slowing Down after Landing
An airplane lands with an initial velocity of 70.0 m/s and then decelerates at \(1.50 \text{ m/s}^2 \) for 40.0 s. What is its final velocity?

Strategy
Draw a sketch. We draw the acceleration vector in the direction opposite the velocity vector because the plane is decelerating.
Solution
1. Identify the knowns. \(v_0 = 70.0 \text{ m/s} \), \(a = -1.50 \text{ m/s}^2 \), \(t = 40.0 \text{ s} \).
2. Identify the unknown. In this case, it is final velocity, \(v_f \).
3. Determine which equation to use. We can calculate the final velocity using the equation \(v = v_0 + at \).
4. Plug in the known values and solve.
\[
v = v_0 + at = 70.0 \text{ m/s} + (-1.50 \text{ m/s}^2)(40.0 \text{ s}) = 10.0 \text{ m/s}
\] (2.36)

Discussion
The final velocity is much less than the initial velocity, as desired when slowing down, but still positive. With jet engines, reverse thrust could be maintained long enough to stop the plane and start moving it backward. That would be indicated by a negative final velocity, which is not the case here.

In addition to being useful in problem solving, the equation \(v = v_0 + at \) gives us insight into the relationships among velocity, acceleration, and time. From it we can see, for example, that

- final velocity depends on how large the acceleration is and how long it lasts
- if the acceleration is zero, then the final velocity equals the initial velocity \((v = v_0) \), as expected (i.e., velocity is constant)
- if \(a \) is negative, then the final velocity is less than the initial velocity

(All of these observations fit our intuition, and it is always useful to examine basic equations in light of our intuition and experiences to check that they do indeed describe nature accurately.)

Making Connections: Real-World Connection

An intercontinental ballistic missile (ICBM) has a larger average acceleration than the Space Shuttle and achieves a greater velocity in the first minute or two of flight (actual ICBM burn times are classified—short-burn-time missiles are more difficult for an enemy to destroy). But the Space
Shuttle obtains a greater final velocity, so that it can orbit the earth rather than come directly back down as an ICBM does. The Space Shuttle does this by accelerating for a longer time.

Solving for Final Position When Velocity is Not Constant (\(a \neq 0 \))

We can combine the equations above to find a third equation that allows us to calculate the final position of an object experiencing constant acceleration. We start with

\[
v = v_0 + at.
\]

(2.37)

Adding \(v_0 \) to each side of this equation and dividing by 2 gives

\[
\frac{v_0 + v}{2} = v_0 + \frac{1}{2}at.
\]

(2.38)

Since \(\frac{v_0 + v}{2} = \ddot{v} \) for constant acceleration, then

\[
\ddot{v} = v_0 + \frac{1}{2}at.
\]

(2.39)

Now we substitute this expression for \(\ddot{v} \) into the equation for displacement, \(x = x_0 + \ddot{v}t \), yielding

\[
x = x_0 + v_0 t + \frac{1}{2}at^2 \text{ (constant } a).\]

(2.40)

Example 2.10 Calculating Displacement of an Accelerating Object: Dragsters

Dragsters can achieve average accelerations of \(26.0 \text{ m/s}^2 \). Suppose such a dragster accelerates from rest at this rate for 5.56 s. How far does it travel in this time?

![Dragster](image)

Figure 2.31 U.S. Army Top Fuel pilot Tony “The Sarge” Schumacher begins a race with a controlled burnout. (credit: Lt. Col. William Thurmond, Photo Courtesy of U.S. Army.)

Strategy

Draw a sketch.

![Sketch](image)

Figure 2.32

We are asked to find displacement, which is \(x \) if we take \(x_0 \) to be zero. (Think about it like the starting line of a race. It can be anywhere, but we call it 0 and measure all other positions relative to it.) We can use the equation \(x = x_0 + v_0 t + \frac{1}{2}at^2 \) once we identify \(v_0 \), \(a \), and \(t \) from the statement of the problem.

Solution

1. Identify the knowns. Starting from rest means that \(v_0 = 0 \), \(a \) is given as \(26.0 \text{ m/s}^2 \) and \(t \) is given as 5.56 s.
2. Plug the known values into the equation to solve for the unknown x:

$$x = x_0 + v_0 t + \frac{1}{2}at^2. \quad (2.41)$$

Since the initial position and velocity are both zero, this simplifies to

$$x = \frac{1}{2}at^2. \quad (2.42)$$

Substituting the identified values of a and t gives

$$x = \frac{1}{2}(26.0 \text{ m/s}^2)(5.56 \text{ s})^2, \quad (2.43)$$

yielding

$$x = 402 \text{ m}. \quad (2.44)$$

Discussion

If we convert 402 m to miles, we find that the distance covered is very close to one quarter of a mile, the standard distance for drag racing. So the answer is reasonable. This is an impressive displacement in only 5.56 s, but top-notch dragsters can do a quarter mile in even less time than this.

What else can we learn by examining the equation $x = x_0 + v_0 t + \frac{1}{2}at^2$? We see that:

- displacement depends on the square of the elapsed time when acceleration is not zero. In Example 2.10, the dragster covers only one fourth of the total distance in the first half of the elapsed time
- if acceleration is zero, then the initial velocity equals average velocity ($v_0 = \bar{v}$) and $x = x_0 + v_0 t + \frac{1}{2}at^2$ becomes $x = x_0 + v_0 t$

Solving for Final Velocity when Velocity Is Not Constant ($a \neq 0$)

A fourth useful equation can be obtained from another algebraic manipulation of previous equations.

If we solve $v = v_0 + at$ for t, we get

$$t = \frac{v - v_0}{a}. \quad (2.45)$$

Substituting this and $\bar{v} = \frac{v_0 + v}{2}$ into $x = x_0 + \bar{v}t$, we get

$$v^2 = v_0^2 + 2a(x - x_0) \quad \text{(constant a)}. \quad (2.46)$$

Example 2.11 Calculating Final Velocity: Dragsters

Calculate the final velocity of the dragster in Example 2.10 without using information about time.

Strategy

Draw a sketch.

Figure 2.33

The equation $v^2 = v_0^2 + 2a(x - x_0)$ is ideally suited to this task because it relates velocities, acceleration, and displacement, and no time information is required.

Solution

1. Identify the known values. We know that $v_0 = 0$, since the dragster starts from rest. Then we note that $x - x_0 = 402$ m (this was the answer in Example 2.10). Finally, the average acceleration was given to be $a = 26.0 \text{ m/s}^2$.

2. Plug the knowns into the equation $v^2 = v_0^2 + 2a(x - x_0)$ and solve for v.

This content is available for free at https://legacy.cnx.org/content/col11588/1.13
\[v^2 = 0 + 2(26.0 \text{ m/s}^2)(402 \text{ m}). \]
(2.47)

Thus

\[v^2 = 2.09 \times 10^4 \text{ m}^2/\text{s}^2. \]
(2.48)

To get \(v \), we take the square root:

\[v = \sqrt{2.09 \times 10^4 \text{ m}^2/\text{s}^2} = 145 \text{ m/s}. \]
(2.49)

Discussion

145 m/s is about 522 km/h or about 324 mi/h, but even this breakneck speed is short of the record for the quarter mile. Also, note that a square root has two values; we took the positive value to indicate a velocity in the same direction as the acceleration.

An examination of the equation \(v^2 = v_0^2 + 2a(x - x_0) \) can produce further insights into the general relationships among physical quantities:

- The final velocity depends on how large the acceleration is and the distance over which it acts
- For a fixed deceleration, a car that is going twice as fast doesn’t simply stop in twice the distance—it takes much further to stop. (This is why we have reduced speed zones near schools.)

Putting Equations Together

In the following examples, we further explore one-dimensional motion, but in situations requiring slightly more algebraic manipulation. The examples also give insight into problem-solving techniques. The box below provides easy reference to the equations needed.

Summary of Kinematic Equations (constant \(a \))

\[
\begin{align*}
x &= x_0 + \dot{v} t & (2.50) \\
\dot{v} &= \frac{v_0 + v}{2} & (2.51) \\
v &= v_0 + at & (2.52) \\
x &= x_0 + v_0 t + \frac{1}{2}at^2 & (2.53) \\
v^2 &= v_0^2 + 2a(x - x_0) & (2.54)
\end{align*}
\]

Example 2.12 Calculating Displacement: How Far Does a Car Go When Coming to a Halt?

On dry concrete, a car can decelerate at a rate of 7.00 m/s\(^2\), whereas on wet concrete it can decelerate at only 5.00 m/s\(^2\). Find the distances necessary to stop a car moving at 30.0 m/s (about 110 km/h) (a) on dry concrete and (b) on wet concrete. (c) Repeat both calculations, finding the displacement from the point where the driver sees a traffic light turn red, taking into account his reaction time of 0.500 s to get his foot on the brake.

Strategy

Draw a sketch.

![Figure 2.34](image)

In order to determine which equations are best to use, we need to list all of the known values and identify exactly what we need to solve for. We shall do this explicitly in the next several examples, using tables to set them off.

Solution for (a)
1. Identify the knowns and what we want to solve for. We know that \(v_0 = 30.0 \text{ m/s} \); \(v = 0 \); \(a = -7.00 \text{ m/s}^2 \) (\(a \) is negative because it is in a direction opposite to velocity). We take \(x_0 \) to be 0. We are looking for displacement \(\Delta x \), or \(x - x_0 \).

2. Identify the equation that will help us solve the problem. The best equation to use is

\[
v^2 = v_0^2 + 2a(x - x_0).
\]

This equation is best because it includes only one unknown, \(x \). We know the values of all the other variables in this equation. (There are other equations that would allow us to solve for \(x \), but they require us to know the stopping time, \(t \), which we do not know. We could use them but it would entail additional calculations.)

3. Rearrange the equation to solve for \(x \).

\[
x - x_0 = \frac{v^2 - v_0^2}{2a}.
\]

4. Enter known values.

\[
x - 0 = \frac{0^2 - (30.0 \text{ m/s})^2}{2(-7.00 \text{ m/s}^2)}
\]

Thus,

\[
x = 64.3 \text{ m on dry concrete}.
\]

Solution for (b)

This part can be solved in exactly the same manner as Part A. The only difference is that the deceleration is \(-5.00 \text{ m/s}^2 \). The result is

\[
x_{\text{wet}} = 90.0 \text{ m on wet concrete}.
\]

Solution for (c)

Once the driver reacts, the stopping distance is the same as it is in Parts A and B for dry and wet concrete. So to answer this question, we need to calculate how far the car travels during the reaction time, and then add that to the stopping time. It is reasonable to assume that the velocity remains constant during the driver’s reaction time.

1. Identify the knowns and what we want to solve for. We know that \(\ddot{v} = 30.0 \text{ m/s} \); \(t_{\text{reaction}} = 0.500 \text{ s} \); \(a_{\text{reaction}} = 0 \). We take \(x_{0-\text{reaction}} \) to be 0. We are looking for \(x_{\text{reaction}} \).

2. Identify the best equation to use.

\(x = x_0 + \ddot{v} t \) works well because the only unknown value is \(x \), which is what we want to solve for.

3. Plug in the knowns to solve the equation.

\[
x = 0 + (30.0 \text{ m/s})(0.500 \text{ s}) = 15.0 \text{ m}.
\]

This means the car travels 15.0 m while the driver reacts, making the total displacements in the two cases of dry and wet concrete 15.0 m greater than if he reacted instantly.

4. Add the displacement during the reaction time to the displacement when braking.

\[
x_{\text{braking}} + x_{\text{reaction}} = x_{\text{total}}
\]

a. \(64.3 \text{ m} + 15.0 \text{ m} = 79.3 \text{ m when dry} \)

b. \(90.0 \text{ m} + 15.0 \text{ m} = 105 \text{ m when wet} \)
Figure 2.35 The distance necessary to stop a car varies greatly, depending on road conditions and driver reaction time. Shown here are the braking distances for dry and wet pavement, as calculated in this example, for a car initially traveling at 30.0 m/s. Also shown are the total distances traveled from the point where the driver first sees a light turn red, assuming a 0.500 s reaction time.

Discussion
The displacements found in this example seem reasonable for stopping a fast-moving car. It should take longer to stop a car on wet rather than dry pavement. It is interesting that reaction time adds significantly to the displacements. But more important is the general approach to solving problems. We identify the knowns and the quantities to be determined and then find an appropriate equation. There is often more than one way to solve a problem. The various parts of this example can in fact be solved by other methods, but the solutions presented above are the shortest.

Example 2.13 Calculating Time: A Car Merges into Traffic

Suppose a car merges into freeway traffic on a 200-m-long ramp. If its initial velocity is 10.0 m/s and it accelerates at \(2.00 \text{ m/s}^2 \), how long does it take to travel the 200 m up the ramp? (Such information might be useful to a traffic engineer.)

Strategy
Draw a sketch.

![Sketch of a car merging into traffic](image)

We are asked to solve for the time \(t \). As before, we identify the known quantities in order to choose a convenient physical relationship (that is, an equation with one unknown, \(t \)).

Solution
1. Identify the knowns and what we want to solve for. We know that \(v_0 = 10.0 \text{ m/s} \); \(a = 2.00 \text{ m/s}^2 \); and \(x = 200 \text{ m} \).

2. We need to solve for \(t \). Choose the best equation. \(x = x_0 + v_0 t + \frac{1}{2} a t^2 \) works best because the only unknown in the equation is the variable \(t \) for which we need to solve.

3. We will need to rearrange the equation to solve for \(t \). In this case, it will be easier to plug in the knowns first.

\[
200 \text{ m} = 0 \text{ m} + (10.0 \text{ m/s})t + \frac{1}{2}(2.00 \text{ m/s}^2)t^2
\]

4. Simplify the equation. The units of meters (m) cancel because they are in each term. We can get the units of seconds (s) to cancel by taking \(t = t \text{ s} \), where \(t \) is the magnitude of time and \(s \) is the unit. Doing so leaves

\[
200 = 10t + t^2.
\]

5. Use the quadratic formula to solve for \(t \).
(a) Rearrange the equation to get 0 on one side of the equation.
This is a quadratic equation of the form

\[at^2 + bt + c = 0, \]

where the constants are \(a = 1.00, \) \(b = 10.0, \) and \(c = -200. \)

(b) Its solutions are given by the quadratic formula:

\[t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. \]

This yields two solutions for \(t \), which are

\[t = 10.0 \text{ and } -20.0. \]

In this case, then, the time is \(t = t \) in seconds, or

\[t = 10.0 \text{ s and } -20.0 \text{ s}. \]

A negative value for time is unreasonable, since it would mean that the event happened 20 s before the motion began. We can discard that solution. Thus,

\[t = 10.0 \text{ s}. \]

Discussion

Whenever an equation contains an unknown squared, there will be two solutions. In some problems both solutions are meaningful, but in others, such as the above, only one solution is reasonable. The 10.0 s answer seems reasonable for a typical freeway on-ramp.

With the basics of kinematics established, we can go on to many other interesting examples and applications. In the process of developing kinematics, we have also glimpsed a general approach to problem solving that produces both correct answers and insights into physical relationships. Problem-Solving Basics discusses problem-solving basics and outlines an approach that will help you succeed in this invaluable task.

Making Connections: Take-Home Experiment—Breaking News

We have been using SI units of meters per second squared to describe some examples of acceleration or deceleration of cars, runners, and trains. To achieve a better feel for these numbers, one can measure the braking deceleration of a car doing a slow (and safe) stop. Recall that, for average acceleration, \(\ddot{a} = \Delta v / \Delta t \). While traveling in a car, slowly apply the brakes as you come up to a stop sign. Have a passenger note the initial speed in miles per hour and the time taken (in seconds) to stop. From this, calculate the deceleration in miles per hour per second. Convert this to meters per second squared and compare with other decelerations mentioned in this chapter. Calculate the distance traveled in braking.

Check Your Understanding

A manned rocket accelerates at a rate of \(20 \text{ m/s}^2 \) during launch. How long does it take the rocket reach a velocity of \(400 \text{ m/s} \)?

Solution

To answer this, choose an equation that allows you to solve for time \(t \), given only \(a \), \(v_0 \), and \(v \).

\[v = v_0 + at \]

Rearrange to solve for \(t \).

\[t = \frac{v - v_0}{a} = \frac{400 \text{ m/s} - 0 \text{ m/s}}{20 \text{ m/s}^2} = 20 \text{ s} \]
2.6 Problem-Solving Basics for One-Dimensional Kinematics

Problem-solving skills are obviously essential to success in a quantitative course in physics. More importantly, the ability to apply broad physical principles, usually represented by equations, to specific situations is a very powerful form of knowledge. It is much more powerful than memorizing a list of facts. Analytical skills and problem-solving abilities can be applied to new situations, whereas a list of facts cannot be made long enough to contain every possible circumstance. Such analytical skills are useful both for solving problems in this text and for applying physics in everyday and professional life.

Problem-Solving Steps

While there is no simple step-by-step method that works for every problem, the following general procedures facilitate problem solving and make it more meaningful. A certain amount of creativity and insight is required as well.

Step 1

Examine the situation to determine which physical principles are involved. It often helps to draw a simple sketch at the outset. You will also need to decide which direction is positive and note that on your sketch. Once you have identified the physical principles, it is much easier to find and apply the equations representing those principles. Although finding the correct equation is essential, keep in mind that equations represent physical principles, laws of nature, and relationships among physical quantities. Without a conceptual understanding of a problem, a numerical solution is meaningless.

Step 2

Make a list of what is given or can be inferred from the problem as stated (identify the knowns). Many problems are stated very succinctly and require some inspection to determine what is known. A sketch can also be very useful at this point. Formally identifying the knowns is of particular importance in applying physics to real-world situations. Remember, “stopped” means velocity is zero, and we often can take initial time and position as zero.

Step 3

Identify exactly what needs to be determined in the problem (identify the unknowns). In complex problems, especially, it is not always obvious what needs to be found or in what sequence. Making a list can help.

Step 4

Find an equation or set of equations that can help you solve the problem. Your list of knowns and unknowns can help here. It is easiest if you can find equations that contain only one unknown—that is, all of the other variables are known, so you can easily solve for the unknown. If the equation contains more than one unknown, then an additional equation is needed to solve the problem. In some problems, several unknowns must be determined to get at the one needed most. In such problems it is especially important to keep physical principles in mind to avoid going astray in a sea of equations. You may have to use two (or more) different equations to get the final answer.

Step 5

Substitute the knowns along with their units into the appropriate equation, and obtain numerical solutions complete with units. This step produces the numerical answer; it also provides a check on units that can help you find errors. If the units of the answer are incorrect, then an error has been made. However, be warned that correct units do not guarantee that the numerical part of the answer is also correct.

Step 6

Check the answer to see if it is reasonable: Does it make sense? This final step is extremely important—the goal of physics is to accurately describe nature. To see if the answer is reasonable, check both its magnitude and its sign, in addition to its units. Your judgment will improve as you solve more and more physics problems, and it will become possible for you to make finer and finer judgments regarding whether nature is adequately described by the answer to a problem. This step brings the problem back to its conceptual meaning. If you can judge whether the answer is reasonable, you have a deeper understanding of physics than just being able to mechanically solve a problem.

When solving problems, we often perform these steps in different order, and we also tend to do several steps simultaneously. There is no rigid procedure that will work every time. Creativity and insight grow with experience, and the basics of problem solving become almost automatic. One way to get practice is to work out the text’s examples for yourself as you read. Another is to work as many end-of-section problems as possible, starting with the easiest to build confidence and progressing to the more difficult. Once you become involved in physics, you will see it all around you, and you can begin to apply it to situations you encounter outside the classroom, just as is done in many of the applications in this text.
Unreasonable Results

Physics must describe nature accurately. Some problems have results that are unreasonable because one premise is unreasonable or because certain premises are inconsistent with one another. The physical principle applied correctly then produces an unreasonable result. For example, if a person starting a foot race accelerates at 0.40 m/s^2 for 100 s, his final speed will be 40 m/s (about 150 km/h)—clearly unreasonable because the time of 100 s is an unreasonable premise. The physics is correct in a sense, but there is more to describing nature than just manipulating equations correctly. Checking the result of a problem to see if it is reasonable does more than help uncover errors in problem solving—it also builds intuition in judging whether nature is being accurately described.

Use the following strategies to determine whether an answer is reasonable and, if it is not, to determine what is the cause.

Step 1
Solve the problem using strategies as outlined and in the format followed in the worked examples in the text. In the example given in the preceding paragraph, you would identify the givens as the acceleration and time and use the equation below to find the unknown final velocity. That is,

$$v = v_0 + at = 0 + (0.40 \text{ m/s}^2)(100 \text{ s}) = 40 \text{ m/s}. \quad (2.72)$$

Step 2
Check to see if the answer is reasonable. Is it too large or too small, or does it have the wrong sign, improper units, ...? In this case, you may need to convert meters per second into a more familiar unit, such as miles per hour.

$$
\left(\frac{40 \text{ m}}{\text{s}}\right) \left(\frac{3.28 \text{ ft}}{\text{m}}\right) \left(\frac{1 \text{ mi}}{5280 \text{ ft}}\right) \left(\frac{60 \text{ min}}{1 \text{ h}}\right) = 89 \text{ mph}
\quad (2.73)
$$

This velocity is about four times greater than a person can run—so it is too large.

Step 3
If the answer is unreasonable, look for what specifically could cause the identified difficulty. In the example of the runner, there are only two assumptions that are suspect. The acceleration could be too great or the time too long. First look at the acceleration and think about what the number means. If someone accelerates at 0.40 m/s^2, their velocity is increasing by 0.4 m/s each second. Does this seem reasonable? If so, the time must be too long. It is not possible for someone to accelerate at a constant rate of 0.40 m/s^2 for 100 s (almost two minutes).

2.7 Falling Objects

Falling objects form an interesting class of motion problems. For example, we can estimate the depth of a vertical mine shaft by dropping a rock into it and listening for the rock to hit the bottom. By applying the kinematics developed so far to falling objects, we can examine some interesting situations and learn much about gravity in the process.

Gravity

The most remarkable and unexpected fact about falling objects is that, if air resistance and friction are negligible, then in a given location all objects fall toward the center of Earth with the same constant acceleration, independent of their mass. This experimentally determined fact is unexpected, because we are so accustomed to the effects of air resistance and friction that we expect light objects to fall slower than heavy ones.

Figure 2.38 A hammer and a feather will fall with the same constant acceleration if air resistance is considered negligible. This is a general characteristic of gravity not unique to Earth, as astronaut David R. Scott demonstrated on the Moon in 1971, where the acceleration due to gravity is only 1.67 m/s^2.

In the real world, air resistance can cause a lighter object to fall slower than a heavier object of the same size. A tennis ball will reach the ground after a hard baseball dropped at the same time. (It might be difficult to observe the difference if the height is not large.) Air resistance opposes the motion of an object through the air, while friction between objects—such as between clothes and a laundry chute or between a stone and a pool into which it is dropped—also opposes motion between them. For the ideal situations of these first few chapters, an object falling without air resistance or friction is defined to be in free-fall.

The force of gravity causes objects to fall toward the center of Earth. The acceleration of free-falling objects is therefore called the acceleration due to gravity. The acceleration due to gravity is constant, which means we can apply the kinematics equations to any falling object where air resistance and friction are negligible. This opens a broad class of interesting situations to us. The acceleration due to gravity is so important that its magnitude is given its own symbol, g. It is constant at any given location on Earth and has the average value

$$g = 9.80 \text{ m/s}^2. \quad (2.74)$$
Although \(g \) varies from 9.78 m/s\(^2\) to 9.83 m/s\(^2\), depending on latitude, altitude, underlying geological formations, and local topography, the average value of 9.80 m/s\(^2\) will be used in this text unless otherwise specified. The direction of the acceleration due to gravity is \textit{downward} (towards the center of Earth). In fact, its direction \textit{defines} what we call vertical. Note that whether the acceleration \(a \) in the kinematic equations has the value \(+g \) or \(-g\) depends on how we define our coordinate system. If we define the upward direction as positive, then \(a = -g = -9.80 \text{ m/s}^2 \), and if we define the downward direction as positive, then \(a = g = 9.80 \text{ m/s}^2 \).

One-Dimensional Motion Involving Gravity

The best way to see the basic features of motion involving gravity is to start with the simplest situations and then progress toward more complex ones. So we start by considering straight up and down motion with no air resistance or friction. These assumptions mean that the velocity (if there is any) is vertical. If the object is dropped, we know the initial velocity is zero. Once the object has left contact with whatever held or threw it, the object is in free-fall. Under these circumstances, the motion is one-dimensional and has constant acceleration of magnitude \(g \). We will also represent vertical displacement with the symbol \(y \) and use \(x \) for horizontal displacement.

<table>
<thead>
<tr>
<th>Kinematic Equations for Objects in Free-Fall where Acceleration = (-g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v = v_0 - gt)</td>
</tr>
<tr>
<td>(y = y_0 + v_0t - \frac{1}{2}gt^2)</td>
</tr>
<tr>
<td>(v^2 = v_0^2 - 2g(y - y_0))</td>
</tr>
</tbody>
</table>

Example 2.14 Calculating Position and Velocity of a Falling Object: A Rock Thrown Upward

A person standing on the edge of a high cliff throws a rock straight up with an initial velocity of 13.0 m/s. The rock misses the edge of the cliff as it falls back to earth. Calculate the position and velocity of the rock 1.00 s, 2.00 s, and 3.00 s after it is thrown, neglecting the effects of air resistance.

Strategy

Draw a sketch.

![Figure 2.39](image)

We are asked to determine the position \(y \) at various times. It is reasonable to take the initial position \(y_0 \) to be zero. This problem involves one-dimensional motion in the vertical direction. We use plus and minus signs to indicate direction, with up being positive and down negative. Since \(y_0 \) is positive, and the rock is thrown upward, the initial velocity must be positive too. The acceleration due to gravity is downward, so \(a \) is negative. It is crucial that the initial velocity and the acceleration due to gravity have opposite signs. Opposite signs indicate that the acceleration due to gravity opposes the initial motion and will slow and eventually reverse it.

Since we are asked for values of position and velocity at three times, we will refer to these as \(y_1 \) and \(v_1 \); \(y_2 \) and \(v_2 \); and \(y_3 \) and \(v_3 \).

Solution for Position \(y_1 \)

1. **Identify the knowns.** We know that \(y_0 = 0 \); \(v_0 = 13.0 \text{ m/s} \); \(a = -g = -9.80 \text{ m/s}^2 \); and \(t = 1.00 \text{ s} \).
2. **Identify the best equation to use.** We will use \(y = y_0 + v_0t + \frac{1}{2}at^2 \) because it includes only one unknown, \(y \) (or \(y_1 \), here), which is the value we want to find.
3. **Plug in the known values and solve for \(y_1 \).**

\[
y = 0 + (13.0 \text{ m/s})(1.00 \text{ s}) + \frac{1}{2}(-9.80 \text{ m/s}^2)(1.00 \text{ s})^2 = 8.10 \text{ m}
\]
(2.78)

Discussion

The rock is 8.10 m above its starting point at \(t = 1.00 \text{ s} \), since \(y_1 > y_0 \). It could be \textit{moving} up or down; the only way to tell is to calculate \(v_1 \) and find out if it is positive or negative.

Solution for Velocity \(v_1 \)
1. Identify the knowns. We know that \(y_0 = 0 \); \(v_0 = 13.0 \text{ m/s} \); \(a = -g = -9.80 \text{ m/s}^2 \); and \(t = 1.00 \text{ s} \). We also know from the solution above that \(y_f = 8.10 \text{ m} \).

2. Identify the best equation to use. The most straightforward is \(v = v_0 - gt \) (from \(v = v_0 + at \), where \(a = \text{gravitational acceleration} = -g \).)

3. Plug in the knowns and solve.

\[
v_f = v_0 - gt = 13.0 \text{ m/s} - \left(9.80 \text{ m/s}^2\right)(1.00 \text{ s}) = 3.20 \text{ m/s}
\]

(2.79)

Discussion

The positive value for \(v_f \) means that the rock is still heading upward at \(t = 1.00 \text{ s} \). However, it has slowed from its original 13.0 m/s, as expected.

Solution for Remaining Times

The procedures for calculating the position and velocity at \(t = 2.00 \text{ s} \) and \(3.00 \text{ s} \) are the same as those above. The results are summarized in Table 2.1 and illustrated in Figure 2.40.

<table>
<thead>
<tr>
<th>Time, (t)</th>
<th>Position, (y)</th>
<th>Velocity, (v)</th>
<th>Acceleration, (a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00 s</td>
<td>8.10 m</td>
<td>3.20 m/s</td>
<td>-9.80 m/s²</td>
</tr>
<tr>
<td>2.00 s</td>
<td>6.40 m</td>
<td>-6.60 m/s</td>
<td>-9.80 m/s²</td>
</tr>
<tr>
<td>3.00 s</td>
<td>-5.10 m</td>
<td>-16.4 m/s</td>
<td>-9.80 m/s²</td>
</tr>
</tbody>
</table>

Graphing the data helps us understand it more clearly.
Figure 2.40 Vertical position, vertical velocity, and vertical acceleration vs. time for a rock thrown vertically up at the edge of a cliff. Notice that velocity changes linearly with time and that acceleration is constant. Misconception Alert! Notice that the position vs. time graph shows vertical position only. It is easy to get the impression that the graph shows some horizontal motion—the shape of the graph looks like the path of a projectile. But this is not the case; the horizontal axis is time, not space. The actual path of the rock in space is straight up, and straight down.

Discussion
The interpretation of these results is important. At 1.00 s the rock is above its starting point and heading upward, since y_1 and v_1 are both positive. At 2.00 s, the rock is still above its starting point, but the negative velocity means it is moving downward. At 3.00 s, both y_3 and v_3 are negative, meaning the rock is below its starting point and continuing to move downward. Notice that when the rock is at its highest point (at 1.5 s), its velocity is zero, but its acceleration is still -9.80 m/s^2. Its acceleration is -9.80 m/s^2 for the whole trip—while it is moving up and while it is moving down. Note that the values for y are the positions (or displacements) of the rock, not the total distances traveled. Finally, note that free-fall applies to upward motion as well as downward. Both have the same acceleration—the acceleration due to gravity, which remains constant the entire time. Astronauts training in the famous Vomit Comet, for example, experience free-fall while arcing up as well as down, as we will discuss in more detail later.

Making Connections: Take-Home Experiment—Reaction Time
A simple experiment can be done to determine your reaction time. Have a friend hold a ruler between your thumb and index finger, separated by about 1 cm. Note the mark on the ruler that is right between your fingers. Have your friend drop the ruler unexpectedly, and try to catch it between your two fingers. Note the new reading on the ruler. Assuming acceleration is that due to gravity, calculate your reaction time. How far would you travel in a car (moving at 30 m/s) if the time it took your foot to go from the gas pedal to the brake was twice this reaction time?
Example 2.15 Calculating Velocity of a Falling Object: A Rock Thrown Down

What happens if the person on the cliff throws the rock straight down, instead of straight up? To explore this question, calculate the velocity of the rock when it is 5.10 m below the starting point, and has been thrown downward with an initial speed of 13.0 m/s.

Strategy

Draw a sketch.

![Figure 2.41](image)

Figure 2.41

Since up is positive, the final position of the rock will be negative because it finishes below the starting point at \(y_0 = 0 \). Similarly, the initial velocity is downward and therefore negative, as is the acceleration due to gravity. We expect the final velocity to be negative since the rock will continue to move downward.

Solution

1. Identify the knowns. \(y_0 = 0 \); \(y_f = -5.10 \text{ m} \); \(v_0 = -13.0 \text{ m/s} \); \(a = -g = -9.80 \text{ m/s}^2 \).

2. Choose the kinematic equation that makes it easiest to solve the problem. The equation \(v^2 = v_0^2 + 2a(y - y_0) \) works well because the only unknown in it is \(v \). (We will plug \(y_f \) in for \(y \).)

3. Enter the known values

\[
v^2 = (-13.0 \text{ m/s})^2 + 2(-9.80 \text{ m/s}^2)(-5.10 \text{ m} - 0 \text{ m}) = 268.96 \text{ m}^2 / \text{s}^2,
\]

where we have retained extra significant figures because this is an intermediate result. Taking the square root, and noting that a square root can be positive or negative, gives

\[
v = \pm 16.4 \text{ m/s}.
\]

The negative root is chosen to indicate that the rock is still heading down. Thus,

\[
v = -16.4 \text{ m/s}.
\]

Discussion

Note that this is exactly the same velocity the rock had at this position when it was thrown straight upward with the same initial speed. (See Example 2.14 and Figure 2.42(a).) This is not a coincidental result. Because we only consider the acceleration due to gravity in this problem, the speed of a falling object depends only on its initial speed and its vertical position relative to the starting point. For example, if the velocity of the rock is calculated at a height of 8.10 m above the starting point (using the method from Example 2.14) when the initial velocity is 13.0 m/s straight up, a result of \(\pm 3.20 \text{ m/s} \) is obtained. Here both signs are meaningful; the positive value occurs when the rock is at 8.10 m and heading up, and the negative value occurs when the rock is at 8.10 m and heading back down. It has the same speed but the opposite direction.
Another way to look at it is this: In Example 2.14, the rock is thrown up with an initial velocity of 13.0 m/s. It rises and then falls back down. When its position is $y = 0$ on its way back down, its velocity is -13.0 m/s. That is, it has the same speed on its way down as on its way up. We would then expect its velocity at a position of $y = -5.10 \text{ m}$ to be the same whether we have thrown it upwards at $+13.0 \text{ m/s}$ or thrown it downwards at -13.0 m/s. The velocity of the rock on its way down from $y = 0$ is the same whether we have thrown it up or down to start with, as long as the speed with which it was initially thrown is the same.

Example 2.16 Find g from Data on a Falling Object

The acceleration due to gravity on Earth differs slightly from place to place, depending on topography (e.g., whether you are on a hill or in a valley) and subsurface geology (whether there is dense rock like iron ore as opposed to light rock like salt beneath you.) The precise acceleration due to gravity can be calculated from data taken in an introductory physics laboratory course. An object, usually a metal ball for which air resistance is negligible, is dropped and the time it takes to fall a known distance is measured. See, for example, Figure 2.43. Very precise results can be produced with this method if sufficient care is taken in measuring the distance fallen and the elapsed time.
Figure 2.43 Positions and velocities of a metal ball released from rest when air resistance is negligible. Velocity is seen to increase linearly with time while displacement increases with time squared. Acceleration is a constant and is equal to gravitational acceleration.

Suppose the ball falls 1.0000 m in 0.45173 s. Assuming the ball is not affected by air resistance, what is the precise acceleration due to gravity at this location?

Strategy

Draw a sketch.

![Sketch of a falling ball](image)

Figure 2.44

We need to solve for acceleration a. Note that in this case, displacement is downward and therefore negative, as is acceleration.

Solution
1. Identify the knowns. \(y_0 = 0; \ y = -1.0000 \text{ m}; \ t = 0.45173; \ v_0 = 0 \).

2. Choose the equation that allows you to solve for \(a \) using the known values.

\[
y = y_0 + v_0 t + \frac{1}{2} a t^2
\]

(2.83)

3. Substitute 0 for \(v_0 \) and rearrange the equation to solve for \(a \). Substituting 0 for \(v_0 \) yields

\[
y = y_0 + \frac{1}{2} a t^2.
\]

(2.84)

Solving for \(a \) gives

\[
a = \frac{2(y - y_0)}{t^2}.
\]

(2.85)

4. Substitute known values yields

\[
a = \frac{2(-1.0000 \text{ m} - 0)}{(0.45173 \text{ s})^2} = -9.8010 \text{ m/s}^2.
\]

(2.86)

so, because \(a = -g \) with the directions we have chosen,

\[
g = 9.8010 \text{ m/s}^2.
\]

(2.87)

Discussion

The negative value for \(a \) indicates that the gravitational acceleration is downward, as expected. We expect the value to be somewhere around the average value of 9.80 m/s\(^2\), so 9.8010 m/s\(^2\) makes sense. Since the data going into the calculation are relatively precise, this value for \(g \) is more precise than the average value of 9.80 m/s\(^2\); it represents the local value for the acceleration due to gravity.

Check Your Understanding

A chunk of ice breaks off a glacier and falls 30.0 meters before it hits the water. Assuming it falls freely (there is no air resistance), how long does it take to hit the water?

Solution

We know that initial position \(y_0 = 0 \), final position \(y = -30.0 \text{ m} \), and \(a = -g = -9.80 \text{ m/s}^2 \). We can then use the equation

\[
y = y_0 + v_0 t + \frac{1}{2} a t^2
\]

(2.88) to solve for \(t \). Inserting \(a = -g \), we obtain

\[
y = 0 + 0 - \frac{1}{2} g t^2
\]

\[
t^2 = \frac{2y}{g}
\]

\[
t = \pm \sqrt{\frac{2y}{g}} = \pm \sqrt{\frac{2(-30.0 \text{ m})}{-9.80 \text{ m/s}^2}} = \pm \sqrt{6.12 \text{ s}^2} = 2.47 \text{ s} \approx 2.5 \text{ s}
\]

where we take the positive value as the physically relevant answer. Thus, it takes about 2.5 seconds for the piece of ice to hit the water.

PhET Explorations: Equation Grapher

Learn about graphing polynomials. The shape of the curve changes as the constants are adjusted. View the curves for the individual terms (e.g. \(y = bx \)) to see how they add to generate the polynomial curve.

PhET Interactive Simulation

Figure 2.45 Equation Grapher (http://legacy.cnx.org/content/m42102/1.5/equation-grapher_en.jar)

2.8 Graphical Analysis of One-Dimensional Motion

A graph, like a picture, is worth a thousand words. Graphs not only contain numerical information; they also reveal relationships between physical quantities. This section uses graphs of displacement, velocity, and acceleration versus time to illustrate one-dimensional kinematics.
Slopes and General Relationships

First note that graphs in this text have perpendicular axes, one horizontal and the other vertical. When two physical quantities are plotted against one another in such a graph, the horizontal axis is usually considered to be an independent variable and the vertical axis a dependent variable. If we call the horizontal axis the \(x \)-axis and the vertical axis the \(y \)-axis, as in Figure 2.46, a straight-line graph has the general form

\[
y = mx + b. \tag{2.89}
\]

Here \(m \) is the slope, defined to be the rise divided by the run (as seen in the figure) of the straight line. The letter \(b \) is used for the \(y \)-intercept, which is the point at which the line crosses the vertical axis.

Figure 2.46 A straight-line graph. The equation for a straight line is \(y = mx + b \).

Graph of Displacement vs. Time (\(a = 0 \), so \(v \) is constant)

Time is usually an independent variable that other quantities, such as displacement, depend upon. A graph of displacement versus time would, thus, have \(x \) on the vertical axis and \(t \) on the horizontal axis. Figure 2.47 is just such a straight-line graph. It shows a graph of displacement versus time for a jet-powered car on a very flat dry lake bed in Nevada.

Figure 2.47 Graph of displacement versus time for a jet-powered car on the Bonneville Salt Flats.

Using the relationship between dependent and independent variables, we see that the slope in the graph above is average velocity \(\bar{v} \) and the intercept is displacement at time zero—that is, \(x_0 \). Substituting these symbols into \(y = mx + b \) gives

\[
x = \bar{v} t + x_0 \tag{2.90}
\]
or

\[
x = x_0 + \bar{v} t. \tag{2.91}
\]

Thus a graph of displacement versus time gives a general relationship among displacement, velocity, and time, as well as giving detailed numerical information about a specific situation.

The Slope of \(x \) vs. \(t \)

The slope of the graph of displacement \(x \) vs. time \(t \) is velocity \(v \).

\[
\text{slope} = \frac{\Delta x}{\Delta t} = v. \tag{2.92}
\]
Notice that this equation is the same as that derived algebraically from other motion equations in Motion Equations for Constant Acceleration in One Dimension.

From the figure we can see that the car has a displacement of 400 m at time 0.650 m at \(t = 1.0 \) s, and so on. Its displacement at times other than those listed in the table can be read from the graph; furthermore, information about its velocity and acceleration can also be obtained from the graph.

Example 2.17 Determining Average Velocity from a Graph of Displacement versus Time: Jet Car

Find the average velocity of the car whose position is graphed in Figure 2.47.

Strategy

The slope of a graph of \(x \) vs. \(t \) is average velocity, since slope equals rise over run. In this case, rise = change in displacement and run = change in time, so that

\[
\text{slope} = \frac{\Delta x}{\Delta t} = \ddot{v}. \tag{2.93}
\]

Since the slope is constant here, any two points on the graph can be used to find the slope. (Generally speaking, it is most accurate to use two widely separated points on the straight line. This is because any error in reading data from the graph is proportionally smaller if the interval is larger.)

Solution

1. Choose two points on the line. In this case, we choose the points labeled on the graph: (6.4 s, 2000 m) and (0.50 s, 525 m). (Note, however, that you could choose any two points.)
2. Substitute the \(x \) and \(t \) values of the chosen points into the equation. Remember in calculating change (\(\Delta \)) we always use final value minus initial value.

\[
\ddot{v} = \frac{\Delta x}{\Delta t} = \frac{2000 \text{ m} - 525 \text{ m}}{6.4 \text{ s} - 0.50 \text{ s}} \tag{2.94}
\]

yielding

\[
\ddot{v} = 250 \text{ m/s}. \tag{2.95}
\]

Discussion

This is an impressively large land speed (900 km/h, or about 560 mi/h): much greater than the typical highway speed limit of 60 mi/h (27 m/s or 96 km/h), but considerably shy of the record of 343 m/s (1234 km/h or 766 mi/h) set in 1997.

Graphs of Motion when \(a \) is constant but \(a \neq 0 \)

The graphs in Figure 2.48 below represent the motion of the jet-powered car as it accelerates toward its top speed, but only during the time when its acceleration is constant. Time starts at zero for this motion (as if measured with a stopwatch), and the displacement and velocity are initially 200 m and 15 m/s, respectively.
Figure 2.48 Graphs of motion of a jet-powered car during the time span when its acceleration is constant. (a) The slope of an x vs. t graph is velocity. This is shown at two points, and the instantaneous velocities obtained are plotted in the next graph. Instantaneous velocity at any point is the slope of the tangent at that point. (b) The slope of the v vs. t graph is constant for this part of the motion, indicating constant acceleration. (c) Acceleration has the constant value of 5.0 m/s^2 over the time interval plotted.
The graph of displacement versus time in Figure 2.48(a) is a curve rather than a straight line. The slope of the curve becomes steeper as time progresses, showing that the velocity is increasing over time. The slope at any point on a displacement-versus-time graph is the instantaneous velocity at that point. It is found by drawing a straight line tangent to the curve at the point of interest and taking the slope of this straight line. Tangent lines are shown for two points in Figure 2.48(a). If this is done at every point on the curve and the values are plotted against time, then the graph of velocity versus time shown in Figure 2.48(b) is obtained. Furthermore, the slope of the graph of velocity versus time is acceleration, which is shown in Figure 2.48(c).

Example 2.18 Determining Instantaneous Velocity from the Slope at a Point: Jet Car

Calculate the velocity of the jet car at a time of 25 s by finding the slope of the x vs. t graph in the graph below.

![Graph](image)

Figure 2.50 The slope of an x vs. t graph is velocity. This is shown at two points. Instantaneous velocity at any point is the slope of the tangent at that point.

Strategy

The slope of a curve at a point is equal to the slope of a straight line tangent to the curve at that point. This principle is illustrated in Figure 2.50, where Q is the point at $t = 25$ s.

Solution

1. Find the tangent line to the curve at $t = 25$ s.
2. Determine the endpoints of the tangent. These correspond to a position of 1300 m at time 19 s and a position of 3120 m at time 32 s.
3. Plug these endpoints into the equation to solve for the slope, v.

 \[
 \text{slope} = v_Q = \frac{\Delta x_Q}{\Delta t_Q} = \frac{(3120 \text{ m} - 1300 \text{ m})}{(32 \text{ s} - 19 \text{ s})}
 \]

 This gives

 \[
 v_Q = \frac{1820 \text{ m}}{13 \text{ s}} = 140 \text{ m/s}.
 \]

Discussion

This is the value given in this figure’s table for v at $t = 25$ s. The value of 140 m/s for v_Q is plotted in Figure 2.50. The entire graph of v vs. t can be obtained in this fashion.

Carrying this one step further, we note that the slope of a velocity versus time graph is acceleration. Slope is rise divided by run; on a v vs. t graph, rise = change in velocity Δv and run = change in time Δt.

![Image of jet car](image)
The Slope of v vs. t

The slope of a graph of velocity v vs. time t is acceleration a.

$$\text{slope} = \frac{\Delta v}{\Delta t} = a$$ \hspace{1cm} (2.98)

Since the velocity versus time graph in Figure 2.48(b) is a straight line, its slope is the same everywhere, implying that acceleration is constant. Acceleration versus time is graphed in Figure 2.48(c).

Additional general information can be obtained from Figure 2.50 and the expression for a straight line, $y = mx + b$.

In this case, the vertical axis y is V, the intercept b is v_0, the slope m is a, and the horizontal axis x is t. Substituting these symbols yields

$$v = v_0 + at.$$ \hspace{1cm} (2.99)

A general relationship for velocity, acceleration, and time has again been obtained from a graph. Notice that this equation was also derived algebraically from other motion equations in Motion Equations for Constant Acceleration in One Dimension.

It is not accidental that the same equations are obtained by graphical analysis as by algebraic techniques. In fact, an important way to discover physical relationships is to measure various physical quantities and then make graphs of one quantity against another to see if they are correlated in any way. Correlations imply physical relationships and might be shown by smooth graphs such as those above. From such graphs, mathematical relationships can sometimes be postulated. Further experiments are then performed to determine the validity of the hypothesized relationships.

Graphs of Motion Where Acceleration is Not Constant

Now consider the motion of the jet car as it goes from 165 m/s to its top velocity of 250 m/s, graphed in Figure 2.51. Time again starts at zero, and the initial displacement and velocity are 2900 m and 165 m/s, respectively. (These were the final displacement and velocity of the car in the motion graphed in Figure 2.48.) Acceleration gradually decreases from 5.0 m/s^2 to zero when the car hits 250 m/s. The slope of the x vs. t graph increases until $t = 55$ s, after which time the slope is constant. Similarly, velocity increases until 55 s and then becomes constant, since acceleration decreases to zero at 55 s and remains zero afterward.
Figure 2.51 Graphs of motion of a jet-powered car as it reaches its top velocity. This motion begins where the motion in Figure 2.48 ends. (a) The slope of this graph is velocity; it is plotted in the next graph. (b) The velocity gradually approaches its top value. The slope of this graph is acceleration; it is plotted in the final graph. (c) Acceleration gradually declines to zero when velocity becomes constant.

Example 2.19 Calculating Acceleration from a Graph of Velocity versus Time

Calculate the acceleration of the jet car at a time of 25 s by finding the slope of the \(v \) vs. \(t \) graph in Figure 2.51(b).

Strategy
The slope of the curve at \(t = 25 \text{ s} \) is equal to the slope of the line tangent at that point, as illustrated in Figure 2.51(b).

Solution
Determine endpoints of the tangent line from the figure, and then plug them into the equation to solve for slope, \(a \).

\[
\text{slope} = \frac{\Delta v}{\Delta t} = \frac{260 \text{ m/s} - 210 \text{ m/s}}{(51 \text{ s} - 1.0 \text{ s})} \tag{2.100}
\]

\[
a = \frac{50 \text{ m/s}}{50 \text{ s}} = 1.0 \text{ m/s}^2. \tag{2.101}
\]

Discussion
Note that this value for a is consistent with the value plotted in Figure 2.51(c) at $t = 25$ s.

A graph of displacement versus time can be used to generate a graph of velocity versus time, and a graph of velocity versus time can be used to generate a graph of acceleration versus time. We do this by finding the slope of the graphs at every point. If the graph is linear (i.e., a line with a constant slope), it is easy to find the slope at any point and you have the slope for every point. Graphical analysis of motion can be used to describe both specific and general characteristics of kinematics. Graphs can also be used for other topics in physics. An important aspect of exploring physical relationships is to graph them and look for underlying relationships.

Check Your Understanding

A graph of velocity vs. time of a ship coming into a harbor is shown below. (a) Describe the motion of the ship based on the graph. (b) What would a graph of the ship's acceleration look like?

![Graph of velocity vs. time](image)

Figure 2.52

Solution

(a) The ship moves at constant velocity and then begins to decelerate at a constant rate. At some point, its deceleration rate decreases. It maintains this lower deceleration rate until it stops moving.

(b) A graph of acceleration vs. time would show zero acceleration in the first leg, large and constant negative acceleration in the second leg, and constant negative acceleration.

![Graph of acceleration vs. time](image)

Figure 2.53

Glossary

- **acceleration**: the rate of change in velocity; the change in velocity over time
- **acceleration due to gravity**: acceleration of an object as a result of gravity
- **average acceleration**: the change in velocity divided by the time over which it changes
- **average speed**: distance traveled divided by time during which motion occurs
- **average velocity**: displacement divided by time over which displacement occurs
- **deceleration**: acceleration in the direction opposite to velocity; acceleration that results in a decrease in velocity
- **dependent variable**: the variable that is being measured; usually plotted along the y-axis
- **displacement**: the change in position of an object
- **distance**: the magnitude of displacement between two positions
- **distance traveled**: the total length of the path traveled between two positions
- **elapsed time**: the difference between the ending time and beginning time
- **free-fall**: the state of movement that results from gravitational force only
- **independent variable**: the variable that the dependent variable is measured with respect to; usually plotted along the x-axis
- **instantaneous acceleration**: acceleration at a specific point in time
- **instantaneous speed**: magnitude of the instantaneous velocity
instantaneous velocity: velocity at a specific instant, or the average velocity over an infinitesimal time interval

kinematics: the study of motion without considering its causes

model: simplified description that contains only those elements necessary to describe the physics of a physical situation

position: the location of an object at a particular time

scalar: a quantity that is described by magnitude, but not direction

slope: the difference in y-value (the rise) divided by the difference in x-value (the run) of two points on a straight line

time: change, or the interval over which change occurs

vector: a quantity that is described by both magnitude and direction

y-intercept: the y-value when x = 0, or when the graph crosses the y-axis

Section Summary

2.1 Displacement
- Kinematics is the study of motion without considering its causes. In this chapter, it is limited to motion along a straight line, called one-dimensional motion.
- Displacement is the change in position of an object.
- In symbols, displacement Δx is defined to be
 \[\Delta x = x_f - x_0, \]
 where \(x_0 \) is the initial position and \(x_f \) is the final position. In this text, the Greek letter \(\Delta \) (delta) always means “change in” whatever quantity follows it. The SI unit for displacement is the meter (m). Displacement has a direction as well as a magnitude.
- When you start a problem, assign which direction will be positive.
- Distance is the magnitude of displacement between two positions.
- Distance traveled is the total length of the path traveled between two positions.

2.2 Vectors, Scalars, and Coordinate Systems
- A vector is any quantity that has magnitude and direction.
- A scalar is any quantity that has magnitude but no direction.
- Displacement and velocity are vectors, whereas distance and speed are scalars.
- In one-dimensional motion, direction is specified by a plus or minus sign to signify left or right, up or down, and the like.

2.3 Time, Velocity, and Speed
- Time is measured in terms of change, and its SI unit is the second (s). Elapsed time for an event is
 \[\Delta t = t_f - t_0, \]
 where \(t_f \) is the final time and \(t_0 \) is the initial time. The initial time is often taken to be zero, as if measured with a stopwatch; the elapsed time is then just \(t \).
- Average velocity \(\bar{v} \) is defined as displacement divided by the travel time. In symbols, average velocity is
 \[\bar{v} = \frac{\Delta x}{\Delta t} = \frac{x_f - x_0}{t_f - t_0}. \]
- The SI unit for velocity is m/s.
- Velocity is a vector and thus has a direction.
- Instantaneous velocity \(v \) is the velocity at a specific instant or the average velocity for an infinitesimal interval.
- Instantaneous speed is the magnitude of the instantaneous velocity.
- Instantaneous speed is a scalar quantity, as it has no direction specified.
- Average speed is the total distance traveled divided by the elapsed time. (Average speed is not the magnitude of the average velocity.) Speed is a scalar quantity; it has no direction associated with it.

2.4 Acceleration
- Acceleration is the rate at which velocity changes. In symbols, average acceleration \(\bar{a} \) is
 \[\bar{a} = \frac{\Delta v}{\Delta t} = \frac{v_f - v_0}{t_f - t_0}. \]
- The SI unit for acceleration is \(\text{m/s}^2 \).
- Acceleration is a vector, and thus has both a magnitude and direction.
- Acceleration can be caused by either a change in the magnitude or the direction of the velocity.
- Instantaneous acceleration \(a \) is the acceleration at a specific instant in time.
- Deceleration is an acceleration with a direction opposite to that of the velocity.
2.5 Motion Equations for Constant Acceleration in One Dimension

- To simplify calculations we take acceleration to be constant, so that \(\ddot{a} = a \) at all times.
- We also take initial time to be zero.
- Initial position and velocity are given a subscript 0; final values have no subscript. Thus,

\[
\begin{align*}
\Delta t &= t \\
\Delta x &= x - x_0 \\
\Delta v &= v - v_0
\end{align*}
\]

- The following kinematic equations for motion with constant \(a \) are useful:

\[
\begin{align*}
x &= x_0 + \dot{v} t \\
\dot{v} &= \frac{v_0 + v}{2} \\
v &= v_0 + at \\
x &= x_0 + v_0 t + \frac{1}{2}a t^2 \\
v^2 &= v_0^2 + 2a(x - x_0)
\end{align*}
\]

- In vertical motion, \(y \) is substituted for \(x \).

2.6 Problem-Solving Basics for One-Dimensional Kinematics

- The six basic problem solving steps for physics are:
 - Step 1. Examine the situation to determine which physical principles are involved.
 - Step 2. Make a list of what is given or can be inferred from the problem as stated (identify the knowns).
 - Step 3. Identify exactly what needs to be determined in the problem (identify the unknowns).
 - Step 4. Find an equation or set of equations that can help you solve the problem.
 - Step 5. Substitute the knowns along with their units into the appropriate equation, and obtain numerical solutions complete with units.
 - Step 6. Check the answer to see if it is reasonable: Does it make sense?

2.7 Falling Objects

- An object in free-fall experiences constant acceleration if air resistance is negligible.
- On Earth, all free-falling objects have an acceleration due to gravity \(g \), which averages

\[g = 9.80 \text{ m/s}^2 \]

- Whether the acceleration \(a \) should be taken as \(+g \) or \(-g \) is determined by your choice of coordinate system. If you choose the upward direction as positive, \(a = -g = -9.80 \text{ m/s}^2 \) is negative. In the opposite case, \(a = +g = 9.80 \text{ m/s}^2 \) is positive. Since acceleration is constant, the kinematic equations above can be applied with the appropriate \(+g \) or \(-g \) substituted for \(a \).
- For objects in free-fall, up is normally taken as positive for displacement, velocity, and acceleration.

2.8 Graphical Analysis of One-Dimensional Motion

- Graphs of motion can be used to analyze motion.
- Graphical solutions yield identical solutions to mathematical methods for deriving motion equations.
- The slope of a graph of displacement \(x \) vs. time \(t \) is velocity \(v \).
- The slope of a graph of velocity \(v \) vs. time \(t \) graph is acceleration \(a \).
- Average velocity, instantaneous velocity, and acceleration can all be obtained by analyzing graphs.

Conceptual Questions

2.1 Displacement

1. Give an example in which there are clear distinctions among distance traveled, displacement, and magnitude of displacement. Specifically identify each quantity in your example.
2. Under what circumstances does distance traveled equal magnitude of displacement? What is the only case in which magnitude of displacement and displacement are exactly the same?
3. Bacteria move back and forth by using their flagella (structures that look like little tails). Speeds of up to \(50 \mu m/s \left(50 \times 10^{-6} \text{ m/s} \right) \) have been observed. The total distance traveled by a bacterium is large for its size, while its displacement is small. Why is this?

2.2 Vectors, Scalars, and Coordinate Systems

4. A student writes, “A bird that is diving for prey has a speed of \(-10 \text{ m/s} \).” What is wrong with the student’s statement? What has the student actually described? Explain.
5. What is the speed of the bird in Exercise 2.4?

6. Acceleration is the change in velocity over time. Given this information, is acceleration a vector or a scalar quantity? Explain.

7. A weather forecast states that the temperature is predicted to be $-5^\circ C$ the following day. Is this temperature a vector or a scalar quantity? Explain.

2.3 Time, Velocity, and Speed

8. Give an example (but not one from the text) of a device used to measure time and identify what change in that device indicates a change in time.

9. There is a distinction between average speed and the magnitude of average velocity. Give an example that illustrates the difference between these two quantities.

10. Does a car’s odometer measure position or displacement? Does its speedometer measure speed or velocity?

11. If you divide the total distance traveled on a car trip (as determined by the odometer) by the time for the trip, are you calculating the average speed or the magnitude of the average velocity? Under what circumstances are these two quantities the same?

12. How are instantaneous velocity and instantaneous speed related to one another? How do they differ?

2.4 Acceleration

13. Is it possible for speed to be constant while acceleration is not zero? Give an example of such a situation.

14. Is it possible for velocity to be constant while acceleration is not zero? Explain.

15. Give an example in which velocity is zero yet acceleration is not.

16. If a subway train is moving to the left (has a negative velocity) and then comes to a stop, what is the direction of its acceleration? Is the acceleration positive or negative?

17. Plus and minus signs are used in one-dimensional motion to indicate direction. What is the sign of an acceleration that reduces the magnitude of a negative velocity? Of a positive velocity?

2.6 Problem-Solving Basics for One-Dimensional Kinematics

18. What information do you need in order to choose which equation or equations to use to solve a problem? Explain.

19. What is the last thing you should do when solving a problem? Explain.

2.7 Falling Objects

20. What is the acceleration of a rock thrown straight upward on the way up? At the top of its flight? On the way down?

21. An object that is thrown straight up falls back to Earth. This is one-dimensional motion. (a) When is its velocity zero? (b) Does its velocity change direction? (c) Does the acceleration due to gravity have the same sign on the way up as on the way down?

22. Suppose you throw a rock nearly straight up at a coconut in a palm tree, and the rock misses on the way up but hits the coconut on the way down. Neglecting air resistance, how does the speed of the rock when it hits the coconut on the way down compare with what it would have been if it had hit the coconut on the way up? Is it more likely to dislodge the coconut on the way up or down? Explain.

23. If an object is thrown straight up and air resistance is negligible, then its speed when it returns to the starting point is the same as when it was released. If air resistance were not negligible, how would its speed upon return compare with its initial speed? How would the maximum height to which it rises be affected?

24. The severity of a fall depends on your speed when you strike the ground. All factors but the acceleration due to gravity being the same, how many times higher could a safe fall on the Moon be than on Earth (gravitational acceleration on the Moon is about 1/6 that of the Earth)?

25. How many times higher could an astronaut jump on the Moon than on Earth if his takeoff speed is the same in both locations (gravitational acceleration on the Moon is about 1/6 of g on Earth)?

2.8 Graphical Analysis of One-Dimensional Motion

26. (a) Explain how you can use the graph of position versus time in Figure 2.54 to describe the change in velocity over time. Identify (b) the time (t_a, t_b, t_c, t_d, or t_e) at which the instantaneous velocity is greatest, (c) the time at which it is zero, and (d) the time at which it is negative.
27. (a) Sketch a graph of velocity versus time corresponding to the graph of displacement versus time given in Figure 2.55. (b) Identify the time or times \(t_a, t_b, t_c \), etc. at which the instantaneous velocity is greatest. (c) At which times is it zero? (d) At which times is it negative?

Figure 2.55

28. (a) Explain how you can determine the acceleration over time from a velocity versus time graph such as the one in Figure 2.56. (b) Based on the graph, how does acceleration change over time?

Figure 2.56

29. (a) Sketch a graph of acceleration versus time corresponding to the graph of velocity versus time given in Figure 2.57. (b) Identify the time or times \(t_a, t_b, t_c \), etc. at which the acceleration is greatest. (c) At which times is it zero? (d) At which times is it negative?
30. Consider the velocity vs. time graph of a person in an elevator shown in Figure 2.58. Suppose the elevator is initially at rest. It then accelerates for 3 seconds, maintains that velocity for 15 seconds, then decelerates for 5 seconds until it stops. The acceleration for the entire trip is not constant so we cannot use the equations of motion from Motion Equations for Constant Acceleration in One Dimension for the complete trip. (We could, however, use them in the three individual sections where acceleration is a constant.) Sketch graphs of (a) position vs. time and (b) acceleration vs. time for this trip.

31. A cylinder is given a push and then rolls up an inclined plane. If the origin is the starting point, sketch the position, velocity, and acceleration of the cylinder vs. time as it goes up and then down the plane.
2.1 Displacement

![Figure 2.59](image)

1. Find the following for path A in Figure 2.59: (a) The distance traveled. (b) The magnitude of the displacement from start to finish. (c) The displacement from start to finish.

2. Find the following for path B in Figure 2.59: (a) The distance traveled. (b) The magnitude of the displacement from start to finish. (c) The displacement from start to finish.

3. Find the following for path C in Figure 2.59: (a) The distance traveled. (b) The magnitude of the displacement from start to finish. (c) The displacement from start to finish.

4. Find the following for path D in Figure 2.59: (a) The distance traveled. (b) The magnitude of the displacement from start to finish. (c) The displacement from start to finish.

2.3 Time, Velocity, and Speed

5. (a) Calculate Earth’s average speed relative to the Sun. (b) What is its average velocity over a period of one year?

6. A helicopter blade spins at exactly 100 revolutions per minute. Its tip is 5.00 m from the center of rotation. (a) Calculate the average speed of the blade tip in the helicopter’s frame of reference. (b) What is its average velocity over one revolution?

7. The North American and European continents are moving apart at a rate of about 3 cm/yr. At this rate how long will it take them to drift 500 km farther apart than they are at present?

8. Land west of the San Andreas fault in southern California is moving at an average velocity of about 6 cm/yr northwest relative to land east of the fault. Los Angeles is west of the fault and may thus someday be at the same latitude as San Francisco, which is east of the fault. How far in the future will this occur if the displacement to be made is 590 km northwest, assuming the motion remains constant?

9. On May 26, 1934, a streamlined, stainless steel diesel train called the Zephyr set the world’s nonstop long-distance speed record for trains. Its run from Denver to Chicago took 13 hours, 4 minutes, 58 seconds, and was witnessed by more than a million people along the route. The total distance traveled was 1633.8 km. What was its average speed in km/h and m/s?

10. Tidal friction is slowing the rotation of the Earth. As a result, the orbit of the Moon is increasing in radius at a rate of approximately 4 cm/year. Assuming this to be a constant rate, how many years will pass before the radius of the Moon’s orbit increases by 3.84 x 10^6 m (1%)?

11. A student drove to the university from her home and noted that the odometer reading of her car increased by 12.0 km. The trip took 18.0 min. (a) What was her average speed? (b) If the straight-line distance from her home to the university is 10.3 km in a direction 25.0° south of east, what was her average velocity? (c) If she returned home by the same path 7 h 30 min after she left, what were her average speed and velocity for the entire trip?

12. The speed of propagation of the action potential (an electrical signal) in a nerve cell depends (inversely) on the diameter of the axon (nerve fiber). If the nerve cell connecting the spinal cord to your feet is 1.1 m long, and the nerve impulse speed is 18 m/s, how long does it take for the nerve signal to travel this distance?

13. Conversations with astronauts on the lunar surface were characterized by a kind of echo in which the earthbound person’s voice was so loud in the astronaut’s space helmet that it was picked up by the astronaut’s microphone and transmitted back to Earth. It is reasonable to assume that the echo time equals the time necessary for the radio wave to travel from the Earth to the Moon and back (that is, neglecting any time delays in the electronic equipment). Calculate the distance from Earth to the Moon given that the echo time was 2.56 s and that radio waves travel at the speed of light (3.00 x 10^8 m/s).

14. A football quarterback runs 15.0 m straight down the playing field in 2.50 s. He is then hit and pushed 3.00 m straight backward in 1.75 s. He breaks the tackle and runs straight forward another 21.0 m in 5.20 s. Calculate his average velocity (a) for each of the three intervals and (b) for the entire motion.

15. The planetary model of the atom pictures electrons orbiting the atomic nucleus much as planets orbit the Sun. In this model you can view hydrogen, the simplest atom, as having a single electron in a circular orbit 1.06 x 10^{-10} m in diameter. (a) If the average speed of the electron in this orbit is known to be 2.20 x 10^6 m/s, calculate the number of revolutions per second it makes about the nucleus. (b) What is the electron’s average velocity?

2.4 Acceleration

16. A cheetah can accelerate from rest to a speed of 30.0 m/s in 7.00 s. What is its acceleration?

17. Professional Application

Dr. John Paul Stapp was U.S. Air Force officer who studied the effects of extreme deceleration on the human body. On December 10, 1954, Stapp rode a rocket sled, accelerating from rest to a top speed of 282 m/s (1015 km/h) in 5.00 s, and was brought jarring back to rest in only 1.40 s! Calculate his (a) acceleration and (b) deceleration. Express each in multiples of g (9.80 m/s^2) by taking its ratio to the acceleration of gravity.

18. A commuter backs her car out of her garage with an acceleration of 1.40 m/s^2. (a) How long does it take her to reach a speed of 2.00 m/s? (b) If she then brakes to a stop in 0.800 s, what is her deceleration?

19. Assume that an intercontinental ballistic missile goes from rest to a suborbital speed of 6.50 km/s in 60.0 s (the actual speed and time are classified). What is its average acceleration in m/s^2 and in multiples of g (9.80 m/s^2)?

2.5 Motion Equations for Constant Acceleration in One Dimension

20. An Olympic-class sprinter starts a race with an acceleration of 4.50 m/s^2. (a) What is her speed 2.40 s later? (b) Sketch a graph of her position vs. time for this period.

21. A well-thrown ball is caught in a well-padded mitt. If the deceleration of the ball is $2.10 \times 10^4 \text{ m/s}^2$, and 1.85 ms (1 ms = 10^{-3} s) elapses from the time the ball first touches the mitt until it stops, what was the initial velocity of the ball?

22. A bullet in a gun is accelerated from the firing chamber to the end of the barrel at an average rate of $6.20 \times 10^5 \text{ m/s}^2$ for 8.10×10^{-4} s. What is its muzzle velocity (that is, its final velocity)?

23. (a) A light-rail commuter train accelerates at a rate of 1.35 m/s^2. How long does it take to reach its top speed of 80.0 km/h, starting from
rest? (b) The same train ordinarily decelerates at a rate of \(1.65 \text{ m/s}^2 \). How long does it take to come to a stop from its top speed? (c) In emergencies the train can decelerate more rapidly, coming to rest from 80.0 km/h in 8.30 s. What is its emergency deceleration in \(\text{m/s}^2 \)?

24. While entering a freeway, a car accelerates from rest at a rate of \(2.40 \text{ m/s}^2 \) for 12.0 s. (a) Draw a sketch of the situation. (b) List the knowns in this problem. (c) How far does the car travel in those 12.0 s? To solve this part, first identify the unknown, and then discuss how you chose the appropriate equation to solve for it. After choosing the equation, show your steps in solving for the unknown, check your units, and discuss whether the answer is reasonable. (d) What is the car’s final velocity? Solve for this unknown in the same manner as in part (c), showing all steps explicitly.

25. At the end of a race, a runner decelerates from a velocity of 9.00 m/ s at a rate of \(2.00 \text{ m/s}^2 \). (a) How far does she travel in the next 5.00 s? (b) What is her final velocity? (c) Evaluate the result. Does it make sense?

26. Professional Application:
Blood is accelerated from rest to 30.0 cm/s in a distance of 1.80 cm by the left ventricle of the heart. (a) Make a sketch of the situation. (b) List the knowns in this problem. (c) How long does the acceleration take? To solve this part, first identify the unknown, and then discuss how you chose the appropriate equation to solve for it. After choosing the equation, show your steps in solving for the unknown, check your units. (d) Is the answer reasonable when compared with the time for a heartbeat?

27. In a slap shot, a hockey player accelerates the puck from a velocity of 8.00 m/s to 40.0 m/s in the same direction. If this shot takes \(3.33 \times 10^{-2} \text{ s} \), calculate the distance over which the puck accelerates.

28. A powerful motorcycle can accelerate from rest to 26.8 m/s (100 km/ h) in only 3.90 s. (a) What is its average acceleration? (b) How far does it travel in that time?

29. Freight trains can produce only relatively small accelerations and decelerations. (a) What is the final velocity of a freight train that accelerates at a rate of \(0.0500 \text{ m/s}^2 \) for 8.00 min, starting with an initial velocity of 4.00 m/s? (b) If the train can slow down at a rate of \(0.550 \text{ m/s}^2 \), how long will it take to come to a stop from this velocity? (c) How far will it travel in each case?

30. A fireworks shell is accelerated from rest to a velocity of 65.0 m/s over a distance of 0.250 m. (a) How long did the acceleration last? (b) Calculate the acceleration.

31. A swim in a lake gets airborne by flapping its wings and running on top of the water. (a) If the swim must reach a velocity of 6.00 m/s to take off and it accelerates from rest at an average rate of \(0.350 \text{ m/s}^2 \), how far will it travel before becoming airborne? (b) How long does this take?

32. Professional Application:
A woodpecker’s brain is specially protected from large decelerations by tendon-like attachments inside the skull. While pecking on a tree, the woodpecker’s head comes to a stop from an initial velocity of 0.600 m/s in a distance of only 2.00 mm. (a) Find the acceleration in \(\text{m/s}^2 \) and in multiples of \(g \) \((g = 9.80 \text{ m/s}^2) \). (b) Calculate the stopping time. (c) The tendons cradling the brain stretch, making its stopping distance 4.50 mm (greater than the head and, hence, less deceleration of the brain). What is the brain’s deceleration, expressed in multiples of \(g \) ?

33. An unwary football player collides with a padded goalpost while running at a velocity of 7.50 m/s and comes to a full stop after compressing the padding and his body 0.350 m. (a) What is his deceleration? (b) How long does the collision last?

34. In World War II, there were several reported cases of airmen who jumped from their flaming airplanes with no parachute to escape certain death. Some fell about 20,000 feet (6000 m), and some of them survived, with few life-threatening injuries. For these lucky pilots, the tree branches and snow drifts on the ground allowed their deceleration to be relatively small. If we assume that a pilot’s speed upon impact was 123 mph (54 m/s), then what was his deceleration? Assume that the trees and snow stopped him over a distance of 3.0 m.

35. Consider a grey squirrel falling out of a tree to the ground. (a) If we ignore air resistance in this case (only for the sake of this problem), determine a squirrel’s velocity just before hitting the ground, assuming it fell from a height of 3.0 m. (b) If the squirrel stops in a distance of 2.0 cm through bending its limbs, compare its deceleration with that of the airman in the previous problem.

36. An express train passes through a station. It enters with an initial velocity of 22.0 m/s and decelerates at a rate of 0.150 m/s^2 as it goes through. The station is 210 m long. (a) How long is the nose of the train in the station? (b) How fast it is going when the nose leaves the station? (c) If the train is 130 m long, when does the end of the train leave the station? (d) What is the velocity of the end of the train as it leaves?

37. Dragsters can actually reach a top speed of 145 m/s in only 4.45 s—considerably less time than given in Example 2.10 and Example 2.11. (a) Calculate the average acceleration for such a dragster. (b) Find the final velocity of this dragster starting from rest and accelerating at the rate found in (a) for 402 m (a quarter mile) without using any information on time. (c) Why is the final velocity greater than that used to find the average acceleration? Hint: Consider whether the assumption of constant acceleration is valid for a dragster. If not, discuss whether the acceleration would be greater at the beginning or end of the run and what effect that would have on the final velocity.

38. A bicycle racer sprints at the end of a race to clinch a victory. The racer has an initial velocity of 11.5 m/s and accelerates at the rate of \(0.500 \text{ m/s}^2 \) for 7.00 s. (a) What is his final velocity? (b) The racer continues at this velocity to the finish line. If he was 300 m from the finish line when he started to accelerate, how much time did he save? (c) One other racer was 5.00 m ahead when the winner started to accelerate, but he was unable to accelerate, and traveled at 11.8 m/s until the finish line. How far ahead of him (in meters and in seconds) did the winner finish?

39. In 1967, New Zealander Burt Munro set the world record for an Indian motorcycle, on the Bonneville Salt Flats in Utah, with a maximum speed of 183.58 m/h. The one-way course was 5.00 mi long. Acceleration rates are often described by the time it takes to reach 60.0 m/h from rest. If this time was 4.00 s, and Burt accelerated at this rate until he reached his maximum speed, how long did it take Burt to complete the course?

40. (a) A world record was set for the men’s 100-m dash in the 2008 Olympic Games in Beijing by Usain Bolt of Jamaica. Bolt “coasted” across the finish line with a time of 9.69 s. If we assume that Bolt accelerated for 3.00 s to reach his maximum speed, and maintained that speed for the rest of the race, calculate his maximum speed and his acceleration. (b) During the same Olympics, Bolt also set the world record in the 200-m dash with a time of 19.30 s. Using the same assumptions as for the 100-m dash, what was his maximum speed for this race?

2.7 Falling Objects
Assume air resistance is negligible unless otherwise stated.

41. Calculate the displacement and velocity at times of (a) 0.500, (b) 1.00, (c) 1.50, and (d) 2.00 s for a ball thrown straight up with an initial velocity of 15.0 m/s. Take the point of release to be \(y_0 = 0 \).

42. Calculate the displacement and velocity at times of (a) 0.500, (b) 1.00, (c) 1.50, (d) 2.00, and (e) 2.50 s for a rock thrown straight down with an initial velocity of 14.0 m/s from the Verrazano Narrows Bridge in New York City. The roadway of this bridge is 70.0 m above the water.

43. A basketball referee tosses the ball straight up for the starting tip-off. At what velocity must a basketball player leave the ground to rise 1.25 m above the floor in an attempt to get the ball?
44. A rescue helicopter is hovering over a person whose boat has sunk. One of the rescuers throws a life preserver straight down to the victim with an initial velocity of 1.40 m/s and observes that it takes 1.8 s to reach the water. (a) List the knowns in this problem. (b) How high above the water was the preserver released? Note that the downdraft of the helicopter reduces the effects of air resistance on the falling life preserver, so that an acceleration equal to that of gravity is reasonable.

45. A dolphin in an aquatic show jumps straight up out of the water at a velocity of 13.0 m/s. (a) List the knowns in this problem. (b) How high does his body rise above the water? To solve this part, first note that the final velocity is now a known and identify its value. Then identify the unknown, and discuss how you chose the appropriate equation to solve for it. After choosing the equation, show your steps in solving for the unknown, checking units, and discuss whether the answer is reasonable. (c) How long is the dolphin in the air? Neglect any effects due to his size or orientation.

46. A swimmer bounces straight up from a diving board and falls feet first into a pool. She starts with a velocity of 4.00 m/s, and her takeoff point is 1.80 m above the pool. (a) How long are her feet in the air? (b) What is her highest point above the board? (c) What is her velocity when her feet hit the water?

47. (a) Calculate the height of a cliff if it takes 2.35 s for a rock to hit the ground when it is thrown straight up from an initial velocity of 8.00 m/s. (b) How long would it take to reach the ground if it is thrown straight down with the same speed?

48. A very strong, but inept, shot putter puts the shot straight up vertically with an initial velocity of 11.0 m/s. How long does he have to get out of the way if the shot was released at a height of 2.20 m, and he is 1.80 m tall?

49. You throw a ball straight up with an initial velocity of 15.0 m/s. It passes a tree branch on the way up at a height of 7.00 m. How much additional time will pass before the ball passes the tree branch on the way back down?

50. A kangaroo can jump over an object 2.50 m high. (a) Calculate its vertical speed when it leaves the ground. (b) How long is it in the air?

51. Standing at the base of one of the cliffs of Mt. Arapiles in Victoria, Australia, a hiker hears a rock break loose from a height of 105 m. He can't see the rock right away but then does, 1.50 s later. (a) How far above the hiker is the rock when he can see it? (b) How much time does he have to move before the rock hits his head?

52. An object is dropped from a height of 75.0 m above ground level. (a) Determine the distance traveled during the first second. (b) Determine the final velocity at which the object hits the ground. (c) Determine the distance traveled during the last second of motion before hitting the ground.

53. There is a 250-m-high cliff at Half Dome in Yosemite National Park in California. Suppose a boulder breaks loose from the top of this cliff. (a) How fast will it be going when it strikes the ground? (b) Assuming a reaction time of 0.300 s, how long will a tourist at the bottom have to get out of the way after hearing the sound of the rock breaking loose (neglecting the height of the tourist, which would become negligible anyway if hit)? The speed of sound is 335 m/s on this day.

54. A ball is thrown straight up. It passes a 2.00-m-high window 7.50 m off the ground on its path up and takes 1.30 s to go past the window. What was the ball's initial velocity?

55. Suppose you drop a rock into a dark well and, using precision equipment, you measure the time for the sound of a splash to return. (a) Neglecting the time required for sound to travel up the well, calculate the distance to the water if the sound returns in 2.0000 s. (b) Now calculate the distance taking into account the time for sound to travel up the well. The speed of sound is 332.00 m/s in this well.

56. A steel ball is dropped onto a hard floor from a height of 1.50 m and rebounds to a height of 1.45 m. (a) Calculate its velocity just before it strikes the floor. (b) Calculate its velocity just after it leaves the floor on its way back up. (c) Calculate its acceleration during contact with the floor if that contact lasts 0.0800 ms (8.00×10^{-5} s). (d) How much did the ball compress during its collision with the floor, assuming the floor is absolutely rigid?

57. A coin is dropped from a hot-air balloon that is 300 m above the ground and rising at 10.0 m/s upward. For the coin, find (a) the maximum height reached, (b) its position and velocity 4.00 s after being released, and (c) the time before it hits the ground.

58. A soft tennis ball is dropped onto a hard floor from a height of 1.50 m and rebounds to a height of 1.10 m. (a) Calculate its velocity just before it strikes the floor. (b) Calculate its velocity just after it leaves the floor on its way back up. (c) Calculate its acceleration during contact with the floor if that contact lasts 3.50 ms (3.50×10^{-3} s). (d) How much did the ball compress during its collision with the floor, assuming the floor is absolutely rigid?

2.8 Graphical Analysis of One-Dimensional Motion

Note: There is always uncertainty in numbers taken from graphs. If your answers differ from expected values, examine them to see if they are within data extraction uncertainties estimated by you.

59. (a) By taking the slope of the curve in Figure 2.60, verify that the velocity of the jet car is 115 m/s at t = 20 s. (b) By taking the slope of the curve at any point in Figure 2.61, verify that the jet car’s acceleration is 5.0 m/s².

60. Using approximate values, calculate the slope of the curve in Figure 2.62 to verify that the velocity at t = 10.0 s is 0.208 m/s. Assume all values are known to 3 significant figures.
61. Using approximate values, calculate the slope of the curve in Figure 2.62 to verify that the velocity at \(t = 30.0 \text{ s} \) is 0.238 m/s. Assume all values are known to 3 significant figures.

62. By taking the slope of the curve in Figure 2.63, verify that the acceleration is 3.2 m/s\(^2\) at \(t = 10 \text{ s} \).

![Velocity vs. Time](image1)

Figure 2.63

63. Construct the displacement graph for the subway shuttle train as shown in Figure 2.18(a). Your graph should show the position of the train, in kilometers, from \(t = 0 \) to 20 s. You will need to use the information on acceleration and velocity given in the examples for this figure.

64. (a) Take the slope of the curve in Figure 2.64 to find the jogger’s velocity at \(t = 2.5 \text{ s} \). (b) Repeat at 7.5 s. These values must be consistent with the graph in Figure 2.65.

![Position vs. Time](image2)

Figure 2.64

![Velocity vs. Time](image3)

Figure 2.65

65. A graph of \(v(t) \) is shown for a world-class track sprinter in a 100-m race. (See Figure 2.67). (a) What is his average velocity for the first 4 s? (b) What is his instantaneous velocity at \(t = 5 \text{ s} \)? (c) What is his average acceleration between 0 and 4 s? (d) What is his time for the race?

![Runner Velocity vs. Time](image4)

Figure 2.66

66. Figure 2.68 shows the displacement graph for a particle for 5 s. Draw the corresponding velocity and acceleration graphs.

![Position vs. Time](image5)

Figure 2.68
3 TWO-DIMENSIONAL KINEMATICS

Figure 3.1 Everyday motion that we experience is, thankfully, rarely as tortuous as a rollercoaster ride like this—the Dragon Khan in Spain’s Universal Port Aventura Amusement Park. However, most motion is in curved, rather than straight-line, paths. Motion along a curved path is two- or three-dimensional motion, and can be described in a similar fashion to one-dimensional motion. (credit: Borts23/Wikimedia Commons)

Chapter Outline

3.1. Kinematics in Two Dimensions: An Introduction
- Observe that motion in two dimensions consists of horizontal and vertical components.
- Understand the independence of horizontal and vertical vectors in two-dimensional motion.

3.2. Vector Addition and Subtraction: Graphical Methods
- Understand the rules of vector addition, subtraction, and multiplication.
- Apply graphical methods of vector addition and subtraction to determine the displacement of moving objects.

3.3. Vector Addition and Subtraction: Analytical Methods
- Understand the rules of vector addition and subtraction using analytical methods.
- Apply analytical methods to determine vertical and horizontal component vectors.
- Apply analytical methods to determine the magnitude and direction of a resultant vector.

3.4. Projectile Motion
- Identify and explain the properties of a projectile, such as acceleration due to gravity, range, maximum height, and trajectory.
- Determine the location and velocity of a projectile at different points in its trajectory.
- Apply the principle of independence of motion to solve projectile motion problems.

Introduction to Two-Dimensional Kinematics

The arc of a basketball, the orbit of a satellite, a bicycle rounding a curve, a swimmer diving into a pool, blood gushing out of a wound, and a puppy chasing its tail are but a few examples of motions along curved paths. In fact, most motions in nature follow curved paths rather than straight lines. Motion along a curved path on a flat surface or a plane (such as that of a ball on a pool table or a skater on an ice rink) is two-dimensional, and thus described by two-dimensional kinematics. Motion not confined to a plane, such as a car following a winding mountain road, is described by three-
dimensional kinematics. Both two- and three-dimensional kinematics are simple extensions of the one-dimensional kinematics developed for straight-line motion in the previous chapter. This simple extension will allow us to apply physics to many more situations, and it will also yield unexpected insights about nature.

3.1 Kinematics in Two Dimensions: An Introduction

Two-Dimensional Motion: Walking in a City

Suppose you want to walk from one point to another in a city with uniform square blocks, as pictured in Figure 3.3.

![Figure 3.3](image)

Figure 3.3 A pedestrian walks a two-dimensional path between two points in a city. In this scene, all blocks are square and are the same size.

The straight-line path that a helicopter might fly is blocked to you as a pedestrian, and so you are forced to take a two-dimensional path, such as the one shown. You walk 14 blocks in all, 9 east followed by 5 north. What is the straight-line distance?

An old adage states that the shortest distance between two points is a straight line. The two legs of the trip and the straight-line path form a right triangle, and so the Pythagorean theorem, \(a^2 + b^2 = c^2 \), can be used to find the straight-line distance.

\[
c = \sqrt{a^2 + b^2}
\]

Figure 3.4 The Pythagorean theorem relates the length of the legs of a right triangle, labeled \(a \) and \(b \), with the hypotenuse, labeled \(c \). The relationship is given by: \(a^2 + b^2 = c^2 \). This can be rewritten, solving for \(c \): \(c = \sqrt{a^2 + b^2} \).

The hypotenuse of the triangle is the straight-line path, and so in this case its length in units of city blocks is \(\sqrt{(9 \text{ blocks})^2 + (5 \text{ blocks})^2} = 10.3 \text{ blocks} \), considerably shorter than the 14 blocks you walked. (Note that we are using three significant figures in the answer. Although it appears that “9” and “5” have only one significant digit, they are discrete numbers. In this case “9 blocks” is the same as “9.0 or 9.00 blocks.” We have decided to use three significant figures in the answer in order to show the result more precisely.)
The fact that the straight-line distance (10.3 blocks) in Figure 3.5 is less than the total distance walked (14 blocks) is one example of a general characteristic of vectors. (Recall that vectors are quantities that have both magnitude and direction.)

As for one-dimensional kinematics, we use arrows to represent vectors. The length of the arrow is proportional to the vector’s magnitude. The arrow’s length is indicated by hash marks in Figure 3.3 and Figure 3.5. The arrow points in the same direction as the vector. For two-dimensional motion, the path of an object can be represented with three vectors: one vector shows the straight-line path between the initial and final points of the motion, one vector shows the horizontal component of the motion, and one vector shows the vertical component of the motion. The horizontal and vertical components of the motion add together to give the straight-line path. For example, observe the three vectors in Figure 3.5. The first represents a 9-block displacement east. The second represents a 5-block displacement north. These vectors are added to give the third vector, with a 10.3-block total displacement. The third vector is the straight-line path between the two points. Note that in this example, the vectors that we are adding are perpendicular to each other and thus form a right triangle. This means that we can use the Pythagorean theorem to calculate the magnitude of the total displacement. (Note that we cannot use the Pythagorean theorem to add vectors that are not perpendicular. We will develop techniques for adding vectors having any direction, not just those perpendicular to one another, in Vector Addition and Subtraction: Graphical Methods and Vector Addition and Subtraction: Analytical Methods.)

The Independence of Perpendicular Motions

The person taking the path shown in Figure 3.5 walks east and then north (two perpendicular directions). How far he or she walks east is only affected by his or her motion eastward. Similarly, how far he or she walks north is only affected by his or her motion northward.

Independence of Motion

The horizontal and vertical components of two-dimensional motion are independent of each other. Any motion in the horizontal direction does not affect motion in the vertical direction, and vice versa.

This is true in a simple scenario like that of walking in one direction first, followed by another. It is also true of more complicated motion involving movement in two directions at once. For example, let’s compare the motions of two baseballs. One baseball is dropped from rest. At the same instant, another is thrown horizontally from the same height and follows a curved path. A stroboscope has captured the positions of the balls at fixed time intervals as they fall.

Figure 3.6 This shows the motions of two identical balls—one falls from rest, the other has an initial horizontal velocity. Each subsequent position is an equal time interval. Arrows represent horizontal and vertical velocities at each position. The ball on the right has an initial horizontal velocity, while the ball on the left has no horizontal velocity. Despite the difference in horizontal velocities, the vertical velocities and positions are identical for both balls. This shows that the vertical and horizontal motions are independent.

It is remarkable that for each flash of the stroboscope, the vertical positions of the two balls are the same. This similarity implies that the vertical motion is independent of whether or not the ball is moving horizontally. (Assuming no air resistance, the vertical motion of a falling object is influenced by gravity only, and not by any horizontal forces.) Careful examination of the ball thrown horizontally shows that it travels the same horizontal distance between flashes. This is due to the fact that there are no additional forces on the ball in the horizontal direction after it is thrown. This result means that the horizontal velocity is constant, and affected neither by vertical motion nor by gravity (which is vertical). Note that this case is true only for ideal conditions. In the real world, air resistance will affect the speed of the balls in both directions.
The two-dimensional curved path of the horizontally thrown ball is composed of two independent one-dimensional motions (horizontal and vertical). The key to analyzing such motion, called projectile motion, is to resolve (break) it into motions along perpendicular directions. Resolving two-dimensional motion into perpendicular components is possible because the components are independent. We shall see how to resolve vectors in Vector Addition and Subtraction: Graphical Methods and Vector Addition and Subtraction: Analytical Methods. We will find such techniques to be useful in many areas of physics.

PhET Explorations: Ladybug Motion 2D

Learn about position, velocity and acceleration vectors. Move the ladybug by setting the position, velocity or acceleration, and see how the vectors change. Choose linear, circular or elliptical motion, and record and playback the motion to analyze the behavior.

Figure 3.7 Ladybug Motion 2D (http://legacy.cnx.org/content/m42104/1.4/ladybug-motion-2d_en.jar)

3.2 Vector Addition and Subtraction: Graphical Methods

Vectors in Two Dimensions

A vector is a quantity that has magnitude and direction. Displacement, velocity, acceleration, and force, for example, are all vectors. In one-dimensional, or straight-line, motion, the direction of a vector can be given simply by a plus or minus sign. In two dimensions (2-d), however, we specify the direction of a vector relative to some reference frame (i.e., coordinate system), using an arrow having length proportional to the vector’s magnitude and pointing in the direction of the vector.

Figure 3.8 shows such a graphical representation of a vector, using as an example the total displacement for the person walking in a city considered in Kinematics in Two Dimensions: An Introduction. We shall use the notation that a boldface symbol, such as \(\mathbf{D} \), stands for a vector. Its magnitude is represented by the symbol in italics, \(D \), and its direction by \(\theta \).

Vectors in this Text

In this text, we will represent a vector with a boldface variable. For example, we will represent the quantity force with the vector \(\mathbf{F} \), which has both magnitude and direction. The magnitude of the vector will be represented by a variable in italics, such as \(F \), and the direction of the variable will be given by an angle \(\theta \).
Figure 3.9 A person walks 9 blocks east and 5 blocks north. The displacement is 10.3 blocks at an angle 29.1° north of east.

Figure 3.10 To describe the resultant vector for the person walking in a city considered in Figure 3.9 graphically, draw an arrow to represent the total displacement vector \(\mathbf{D} \). Using a protractor, draw a line at an angle \(\theta \) relative to the east-west axis. The length \(D \) of the arrow is proportional to the vector’s magnitude and is measured along the line with a ruler. In this example, the magnitude \(D \) of the vector is 10.3 units, and the direction \(\theta \) is 29.1° north of east.

Vector Addition: Head-to-Tail Method

The head-to-tail method is a graphical way to add vectors, described in Figure 3.11 below and in the steps following. The tail of the vector is the starting point of the vector, and the head (or tip) of a vector is the final, pointed end of the arrow.

Figure 3.11 Head-to-Tail Method: The head-to-tail method of graphically adding vectors is illustrated for the two displacements of the person walking in a city considered in Figure 3.9. (a) Draw a vector representing the displacement to the east. (b) Draw a vector representing the displacement to the north. The tail of this vector should originate from the head of the first, east-pointing vector. (c) Draw a line from the tail of the east-pointing vector to the head of the north-pointing vector to form the sum or resultant vector \(\mathbf{D} \). The length of the arrow \(D \) is proportional to the vector’s magnitude and is measured to be 10.3 units. Its direction, described as the angle with respect to the east (or horizontal axis) \(\theta \) is measured with a protractor to be 29.1°.

Step 1. Draw an arrow to represent the first vector (9 blocks to the east) using a ruler and protractor.
Step 2. Now draw an arrow to represent the second vector (5 blocks to the north). Place the tail of the second vector at the head of the first vector.

Step 3. If there are more than two vectors, continue this process for each vector to be added. Note that in our example, we have only two vectors, so we have finished placing arrows tip to tail.

Step 4. Draw an arrow from the tail of the first vector to the head of the last vector. This is the resultant, or the sum, of the other vectors.

Step 5. To get the magnitude of the resultant, measure its length with a ruler. (Note that in most calculations, we will use the Pythagorean theorem to determine this length.)

Step 6. To get the direction of the resultant, measure the angle it makes with the reference frame using a protractor. (Note that in most calculations, we will use trigonometric relationships to determine this angle.)

The graphical addition of vectors is limited in accuracy only by the precision with which the drawings can be made and the precision of the measuring tools. It is valid for any number of vectors.
Example 3.1 Adding Vectors Graphically Using the Head-to-Tail Method: A Woman Takes a Walk

Use the graphical technique for adding vectors to find the total displacement of a person who walks the following three paths (displacements) on a flat field. First, she walks 25.0 m in a direction 49.0° north of east. Then, she walks 23.0 m heading 15.0° north of east. Finally, she turns and walks 32.0 m in a direction 68.0° south of east.

Strategy

Represent each displacement vector graphically with an arrow, labeling the first \(\vec{A} \), the second \(\vec{B} \), and the third \(\vec{C} \), making the lengths proportional to the distance and the directions as specified relative to an east-west line. The head-to-tail method outlined above will give a way to determine the magnitude and direction of the resultant displacement, denoted \(\vec{R} \).

Solution

(1) Draw the three displacement vectors.

![Figure 3.15](image1.png)

(2) Place the vectors head to tail retaining both their initial magnitude and direction.

![Figure 3.16](image2.png)

(3) Draw the resultant vector, \(\vec{R} \).

![Figure 3.17](image3.png)

(4) Use a ruler to measure the magnitude of \(\vec{R} \), and a protractor to measure the direction of \(\vec{R} \). While the direction of the vector can be specified in many ways, the easiest way is to measure the angle between the vector and the nearest horizontal or vertical axis. Since the resultant vector is south of the eastward pointing axis, we flip the protractor upside down and measure the angle between the eastward axis and the vector.
In this case, the total displacement \(\mathbf{R} \) is seen to have a magnitude of 50.0 m and to lie in a direction 7.0° south of east. By using its magnitude and direction, this vector can be expressed as \(R = 50.0 \text{ m} \) and \(\theta = 7.0^\circ \) south of east.

Discussion

The head-to-tail graphical method of vector addition works for any number of vectors. It is also important to note that the resultant is independent of the order in which the vectors are added. Therefore, we could add the vectors in any order as illustrated in **Figure 3.19** and we will still get the same solution.

Figure 3.19

Here, we see that when the same vectors are added in a different order, the result is the same. This characteristic is true in every case and is an important characteristic of vectors. Vector addition is **commutative**. Vectors can be added in any order.

\[
\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}.
\]

(3.1)

(This is true for the addition of ordinary numbers as well—you get the same result whether you add 2 + 3 or 3 + 2, for example).

Vector Subtraction

Vector subtraction is a straightforward extension of vector addition. To define subtraction (say we want to subtract \(\mathbf{B} \) from \(\mathbf{A} \), written \(\mathbf{A} - \mathbf{B} \)), we must first define what we mean by subtraction. The **negative** of a vector \(\mathbf{B} \) is defined to be \(-\mathbf{B} \); that is, graphically the negative of any vector has the same magnitude but the opposite direction, as shown in **Figure 3.20**. In other words, \(\mathbf{B} \) has the same length as \(-\mathbf{B} \), but points in the opposite direction. Essentially, we just flip the vector so it points in the opposite direction.
The negative of a vector \(\mathbf{B} \) is the vector \(-\mathbf{B}\) of the same magnitude but in the opposite direction. So \(\mathbf{B} \) is the negative of \(-\mathbf{B}\); it has the same length but opposite direction.

The subtraction of vector \(\mathbf{B} \) from vector \(\mathbf{A} \) is then simply defined to be the addition of \(-\mathbf{B}\) to \(\mathbf{A} \). Note that vector subtraction is the addition of a negative vector. The order of subtraction does not affect the results.

\[
\mathbf{A} - \mathbf{B} = \mathbf{A} + (-\mathbf{B}).
\]

(3.2)

This is analogous to the subtraction of scalars (where, for example, \(5 - 2 = 5 + (-2) \)). Again, the result is independent of the order in which the subtraction is made. When vectors are subtracted graphically, the techniques outlined above are used, as the following example illustrates.

Example 3.2 Subtracting Vectors Graphically: A Woman Sailing a Boat

A woman sailing a boat at night is following directions to a dock. The instructions read to first sail 27.5 m in a direction 66.0° north of east from her current location, and then travel 30.0 m in a direction 112° north of east (or 22.0° west of north). If the woman makes a mistake and travels in the opposite direction for the second leg of the trip, where will she end up? Compare this location with the location of the dock.

![Image](https://example.com/image1.png)

Figure 3.21

Strategy

We can represent the first leg of the trip with a vector \(\mathbf{A} \), and the second leg of the trip with a vector \(\mathbf{B} \). The dock is located at a location \(\mathbf{A} + \mathbf{B} \). If the woman mistakenly travels in the opposite direction for the second leg of the journey, she will travel a distance \(\mathbf{B} \) (30.0 m) in the direction 180° – 112° = 68° south of east. We represent this as \(-\mathbf{B}\), as shown below. The vector \(-\mathbf{B}\) has the same magnitude as \(\mathbf{B} \) but is in the opposite direction. Thus, she will end up at a location \(\mathbf{A} + (-\mathbf{B}) \), or \(\mathbf{A} - \mathbf{B} \).

![Image](https://example.com/image2.png)

Figure 3.22

We will perform vector addition to compare the location of the dock, \(\mathbf{A} + \mathbf{B} \), with the location at which the woman mistakenly arrives, \(\mathbf{A} + (-\mathbf{B}) \).

[Note: The diagrams are placeholders and should be replaced with actual images from the textbook.]
Solution

(1) To determine the location at which the woman arrives by accident, draw vectors \mathbf{A} and $-\mathbf{B}$.

(2) Place the vectors head to tail.

(3) Draw the resultant vector \mathbf{R}.

(4) Use a ruler and protractor to measure the magnitude and direction of \mathbf{R}.

![Diagram of vectors A and B with resultant vector R](image)

In this case, $R = 23.0 \text{ m}$ and $\theta = 7.5^\circ$ south of east.

(5) To determine the location of the dock, we repeat this method to add vectors \mathbf{A} and \mathbf{B}. We obtain the resultant vector $\mathbf{R'}$:

![Diagram of vectors A and B with resultant vector R'](image)

In this case $R' = 52.9 \text{ m}$ and $\theta = 90.1^\circ$ north of east.

We can see that the woman will end up a significant distance from the dock if she travels in the opposite direction for the second leg of the trip.

Discussion

Because subtraction of a vector is the same as addition of a vector with the opposite direction, the graphical method of subtracting vectors works the same as for addition.

Multiplication of Vectors and Scalars

If we decided to walk three times as far on the first leg of the trip considered in the preceding example, then we would walk $3 \times 27.5 \text{ m}$, or 82.5 m, in a direction 66.0° north of east. This is an example of multiplying a vector by a positive scalar. Notice that the magnitude changes, but the direction stays the same.

If the scalar is negative, then multiplying a vector by it changes the vector’s magnitude and gives the new vector the opposite direction. For example, if you multiply by -2, the magnitude doubles but the direction changes. We can summarize these rules in the following way: When vector \mathbf{A} is multiplied by a scalar c,

- the magnitude of the vector becomes the absolute value of $c |\mathbf{A}|$,
- if c is positive, the direction of the vector does not change,
- if c is negative, the direction is reversed.

In our case, $c = 3$ and $\mathbf{A} = 27.5 \text{ m}$. Vectors are multiplied by scalars in many situations. Note that division is the inverse of multiplication. For example, dividing by 2 is the same as multiplying by the value $(1/2)$. The rules for multiplication of vectors by scalars are the same for division; simply treat the divisor as a scalar between 0 and 1.
Resolving a Vector into Components

In the examples above, we have been adding vectors to determine the resultant vector. In many cases, however, we will need to do the opposite. We will need to take a single vector and find what other vectors added together produce it. In most cases, this involves determining the perpendicular components of a single vector, for example the x- and y-components, or the north-south and east-west components.

For example, we may know that the total displacement of a person walking in a city is 10.3 blocks in a direction 29.0° north of east and want to find out how many blocks east and north had to be walked. This method is called finding the components (or parts) of the displacement in the east and north directions, and it is the inverse of the process followed to find the total displacement. It is one example of finding the components of a vector. There are many applications in physics where this is a useful thing to do. We will see this soon in Projectile Motion (https://legacy.cnx.org/content/m42042/latest), and much more when we cover forces in Dynamics: Newton’s Laws of Motion. Most of these involve finding components along perpendicular axes (such as north and east), so that right triangles are involved. The analytical techniques presented in Vector Addition and Subtraction: Analytical Methods are ideal for finding vector components.

PhET Explorations: Maze Game

Learn about position, velocity, and acceleration in the “Arena of Pain”. Use the green arrow to move the ball. Add more walls to the arena to make the game more difficult. Try to make a goal as fast as you can.

Figure 3.25 Maze Game (http://legacy.cnx.org/content/m42127/1.7/maze-game_en.jar)

3.3 Vector Addition and Subtraction: Analytical Methods

Analytical methods of vector addition and subtraction employ geometry and simple trigonometry rather than the ruler and protractor of graphical methods. Part of the graphical technique is retained, because vectors are still represented by arrows for easy visualization. However, analytical methods are more concise, accurate, and precise than graphical methods, which are limited by the accuracy with which a drawing can be made. Analytical methods are limited only by the accuracy and precision with which physical quantities are known.

Resolving a Vector into Perpendicular Components

Analytical techniques and right triangles go hand-in-hand in physics because (among other things) motions along perpendicular directions are independent. We very often need to separate a vector into perpendicular components. For example, given a vector like \mathbf{A} in Figure 3.26, we may wish to find which two perpendicular vectors, A_x and A_y, add to produce it.

![Figure 3.26](http://legacy.cnx.org/content/m42127/1.7/maze-game_en.jar)

The vector A, with its tail at the origin of an x, y-coordinate system, is shown together with its x- and y-components, A_x and A_y. These vectors form a right triangle. The analytical relationships among these vectors are summarized below.

A_x and A_y are defined to be the components of A along the x- and y-axes. The three vectors A, A_x, and A_y form a right triangle:

$$A_x + A_y = A.$$

(3.3)

Note that this relationship between vector components and the resultant vector holds only for vector quantities (which include both magnitude and direction). The relationship does not apply for the magnitudes alone. For example, if $A_x = 3\ m$ east, $A_y = 4\ m$ north, and $A = 5\ m$ north-east, then it is true that the vectors $A_x + A_y = A$. However, it is not true that the sum of the magnitudes of the vectors is also equal. That is,

$$3\ m + 4\ m \neq 5\ m.$$

(3.4)

Thus,

$$3\ m + 4\ m = 7\ m.$$
\[A_x + A_y \neq A \] (3.5)

If the vector \(\mathbf{A} \) is known, then its magnitude \(A \) (its length) and its angle \(\theta \) (its direction) are known. To find \(A_x \) and \(A_y \), its \(x \)- and \(y \)-components, we use the following relationships for a right triangle.

\[A_x = A \cos \theta \] (3.6)

and

\[A_y = A \sin \theta. \] (3.7)

Figure 3.27 The magnitudes of the vector components \(A_x \) and \(A_y \) can be related to the resultant vector \(\mathbf{A} \) and the angle \(\theta \) with trigonometric identities. Here we see that \(A_x = A \cos \theta \) and \(A_y = A \sin \theta \).

Suppose, for example, that \(\mathbf{A} \) is the vector representing the total displacement of the person walking in a city considered in *Kinematics in Two Dimensions: An Introduction* and *Vector Addition and Subtraction: Graphical Methods*.

Figure 3.28 We can use the relationships \(A_x = A \cos \theta \) and \(A_y = A \sin \theta \) to determine the magnitude of the horizontal and vertical component vectors in this example.

Then \(A = 10.3 \) blocks and \(\theta = 29.1^\circ \), so that

\[A_x = A \cos \theta = (10.3 \text{ blocks})\cos 29.1^\circ = 9.0 \text{ blocks east} \]

\[A_y = A \sin \theta = (10.3 \text{ blocks})\sin 29.1^\circ = 5.0 \text{ blocks north} \]

Calculating a Resultant Vector

If the perpendicular components \(A_x \) and \(A_y \) of a vector \(\mathbf{A} \) are known, then \(\mathbf{A} \) can also be found analytically. To find the magnitude \(A \) and direction \(\theta \) of a vector from its perpendicular components \(A_x \) and \(A_y \), we use the following relationships:

\[A = \sqrt{A_x^2 + A_y^2} \] (3.10)

\[\theta = \tan^{-1}(A_y/A_x). \] (3.11)
Determining Vectors and Vector Components with Analytical Methods

Equations \(A_x = A \cos \theta \) and \(A_y = A \sin \theta \) are used to find the perpendicular components of a vector—that is, to go from \(A \) and \(\theta \) to \(A_x \) and \(A_y \). Equations \(A = \sqrt{A_x^2 + A_y^2} \) and \(\theta = \tan^{-1}(A_y/A_x) \) are used to find a vector from its perpendicular components—that is, to go from \(A_x \) and \(A_y \) to \(A \) and \(\theta \). Both processes are crucial to analytical methods of vector addition and subtraction.

Adding Vectors Using Analytical Methods

To see how to add vectors using perpendicular components, consider Figure 3.30, in which the vectors \(\mathbf{A} \) and \(\mathbf{B} \) are added to produce the resultant \(\mathbf{R} \).

Figure 3.30 Vectors \(\mathbf{A} \) and \(\mathbf{B} \) are two legs of a walk, and \(\mathbf{R} \) is the resultant or total displacement. You can use analytical methods to determine the magnitude and direction of \(\mathbf{R} \).

If \(\mathbf{A} \) and \(\mathbf{B} \) represent two legs of a walk (two displacements), then \(\mathbf{R} \) is the total displacement. The person taking the walk ends up at the tip of \(\mathbf{R} \). There are many ways to arrive at the same point. In particular, the person could have walked first in the \(x \)-direction and then in the \(y \)-direction. Those paths are the \(x \)- and \(y \)-components of the resultant, \(\mathbf{R}_x \) and \(\mathbf{R}_y \). If we know \(\mathbf{R}_x \) and \(\mathbf{R}_y \), we can find \(\mathbf{R} \) and \(\theta \) using the equations

\[
A = \sqrt{A_x^2 + A_y^2} \quad \text{and} \quad \theta = \tan^{-1}(A_y/A_x) .
\]

When you use the analytical method of vector addition, you can determine the components or the magnitude and direction of a vector.

Step 1. Identify the \(x \)- and \(y \)-axes that will be used in the problem. Then, find the components of each vector to be added along the chosen perpendicular axes. Use the equations \(A_x = A \cos \theta \) and \(A_y = A \sin \theta \) to find the components. In Figure 3.31, these components are \(A_x \), \(A_y \), \(B_x \), and \(B_y \). The angles that vectors \(\mathbf{A} \) and \(\mathbf{B} \) make with the \(x \)-axis are \(\theta_A \) and \(\theta_B \), respectively.
Figure 3.31 To add vectors \mathbf{A} and \mathbf{B}, first determine the horizontal and vertical components of each vector. These are the dotted vectors A_x, A_y, B_x and B_y shown in the image.

Step 2. Find the components of the resultant along each axis by adding the components of the individual vectors along that axis. That is, as shown in Figure 3.32,

$$R_x = A_x + B_x$$ \hspace{1cm} (3.12)

and

$$R_y = A_y + B_y.$$ \hspace{1cm} (3.13)

Figure 3.32 The magnitude of the vectors A_x and B_x add to give the magnitude R_x of the resultant vector in the horizontal direction. Similarly, the magnitudes of the vectors A_y and B_y add to give the magnitude R_y of the resultant vector in the vertical direction.

Components along the same axis, say the x-axis, are vectors along the same line and, thus, can be added to one another like ordinary numbers. The same is true for components along the y-axis. (For example, a 9-block eastward walk could be taken in two legs, the first 3 blocks east and the second 6 blocks east, for a total of 9, because they are along the same direction.) So resolving vectors into components along common axes makes it easier to add them. Now that the components of \mathbf{R} are known, its magnitude and direction can be found.

Step 3. To get the magnitude R of the resultant, use the Pythagorean theorem:

$$R = \sqrt{R_x^2 + R_y^2}.$$ \hspace{1cm} (3.14)

Step 4. To get the direction of the resultant:

$$\theta = \tan^{-1}(R_y/R_x).$$ \hspace{1cm} (3.15)

The following example illustrates this technique for adding vectors using perpendicular components.

Example 3.3 Adding Vectors Using Analytical Methods

Add the vector \mathbf{A} to the vector \mathbf{B} shown in Figure 3.33, using perpendicular components along the x- and y-axes. The x- and y-axes are along the east–west and north–south directions, respectively. Vector \mathbf{A} represents the first leg of a walk in which a person walks 53.0 m in a direction 20.0° north of east. Vector \mathbf{B} represents the second leg, a displacement of 34.0 m in a direction 63.0° north of east.
Figure 3.33 Vector \mathbf{A} has magnitude 53.0 m and direction 20.0° north of the x-axis. Vector \mathbf{B} has magnitude 34.0 m and direction 63.0° north of the x-axis. You can use analytical methods to determine the magnitude and direction of \mathbf{R}.

Strategy
The components of \mathbf{A} and \mathbf{B} along the x- and y-axes represent walking due east and due north to get to the same ending point. Once found, they are combined to produce the resultant.

Solution
Following the method outlined above, we first find the components of \mathbf{A} and \mathbf{B} along the x- and y-axes. Note that $A = 53.0$ m, $\theta_A = 20.0^\circ$, $B = 34.0$ m, and $\theta_B = 63.0^\circ$. We find the x-components by using $A_x = A \cos \theta_A$, which gives

$$A_x = A \cos \theta_A = (53.0 \text{ m})(\cos 20.0^\circ)$$

$$= (53.0 \text{ m})(0.940) = 49.8 \text{ m}$$

and

$$B_x = B \cos \theta_B = (34.0 \text{ m})(\cos 63.0^\circ)$$

$$= (34.0 \text{ m})(0.454) = 15.4 \text{ m}.$$

Similarly, the y-components are found using $A_y = A \sin \theta_A$:

$$A_y = A \sin \theta_A = (53.0 \text{ m})(\sin 20.0^\circ)$$

$$= (53.0 \text{ m})(0.342) = 18.1 \text{ m}$$

and

$$B_y = B \sin \theta_B = (34.0 \text{ m})(\sin 63.0^\circ)$$

$$= (34.0 \text{ m})(0.891) = 30.3 \text{ m}.$$

The x- and y-components of the resultant are thus

$$R_x = A_x + B_x = 49.8 \text{ m} + 15.4 \text{ m} = 65.2 \text{ m}$$

and

$$R_y = A_y + B_y = 18.1 \text{ m} + 30.3 \text{ m} = 48.4 \text{ m}.$$

Now we can find the magnitude of the resultant by using the Pythagorean theorem:

$$R = \sqrt{R_x^2 + R_y^2} = \sqrt{(65.2)^2 + (48.4)^2} \text{ m}$$

so that

$$R = 81.2 \text{ m}.$$

Finally, we find the direction of the resultant:

$$\theta = \tan^{-1}(R_y/R_x) = \tan^{-1}(48.4/65.2).$$

Thus,

$$\theta = \tan^{-1}(0.742) = 36.6^\circ.$$
Figure 3.34 Using analytical methods, we see that the magnitude of \(\mathbf{R} \) is 81.2 m and its direction is 36.6\(^\circ\) north of east.

Discussion

This example illustrates the addition of vectors using perpendicular components. Vector subtraction using perpendicular components is very similar—it is just the addition of a negative vector.

Subtraction of vectors is accomplished by the addition of a negative vector. That is, \(\mathbf{A} - \mathbf{B} \equiv \mathbf{A} + (\mathbf{-B}) \). Thus, the method for the subtraction of vectors using perpendicular components is identical to that for addition. The components of \(-\mathbf{B} \) are the negatives of the components of \(\mathbf{B} \).

The \(x \)- and \(y \)-components of the resultant \(\mathbf{A} - \mathbf{B} = \mathbf{R} \) are thus

\[
R_x = A_x + (-B_x) \quad (3.26)
\]

and

\[
R_y = A_y + (-B_y) \quad (3.27)
\]

and the rest of the method outlined above is identical to that for addition. (See Figure 3.35.)

Analyzing vectors using perpendicular components is very useful in many areas of physics, because perpendicular quantities are often independent of one another. The next module, **Projectile Motion** (https://legacy.cnx.org/content/m42042/latest), is one of many in which using perpendicular components helps make the picture clear and simplifies the physics.

Figure 3.35 The subtraction of the two vectors shown in Figure 3.30. The components of \(-\mathbf{B} \) are the negatives of the components of \(\mathbf{B} \). The method of subtraction is the same as that for addition.

PhET Explorations: Vector Addition

Learn how to add vectors. Drag vectors onto a graph, change their length and angle, and sum them together. The magnitude, angle, and components of each vector can be displayed in several formats.

PhET Interactive Simulation

Figure 3.36 Vector Addition (http://legacy.cnx.org/content/m42128/1.10/vector-addition_en.jar)
3.4 Projectile Motion

Projectile motion is the motion of an object thrown or projected into the air, subject to only the acceleration of gravity. The object is called a projectile, and its path is called its trajectory. The motion of falling objects, as covered in Problem-Solving Basics for One-Dimensional Kinematics, is a simple one-dimensional type of projectile motion in which there is no horizontal movement. In this section, we consider two-dimensional projectile motion, such as that of a football or other object for which air resistance is negligible.

The most important fact to remember here is that motions along perpendicular axes are independent and thus can be analyzed separately. This fact was discussed in Kinematics in Two Dimensions: An Introduction, where vertical and horizontal motions were seen to be independent. The key to analyzing two-dimensional projectile motion is to break it into two motions, one along the horizontal axis and the other along the vertical. (This choice of axes is the most sensible, because acceleration due to gravity is vertical — thus, there will be no acceleration along the horizontal axis when air resistance is negligible.) As is customary, we call the horizontal axis the x-axis and the vertical axis the y-axis. Figure 3.37 illustrates the notation for displacement, where s is defined to be the total displacement and x and y are its components along the horizontal and vertical axes, respectively.

The magnitudes of these vectors are s, x, and y. (Note that in the last section we used the notation A to represent a vector with components A_x and A_y. If we continued this format, we would call displacement s with components s_x and s_y. However, to simplify the notation, we will simply represent the component vectors as x and y.)

Of course, to describe motion we must deal with velocity and acceleration, as well as with displacement. We must find their components along the x- and y-axes, too. We will assume all forces except gravity (such as air resistance and friction, for example) are negligible. The components of acceleration are then very simple: a_y = -g = -9.80 m/s^2. (Note that this definition assumes that the upwards direction is defined as the positive direction. If you arrange the coordinate system instead such that the downwards direction is positive, then acceleration due to gravity takes a positive value.) Because gravity is vertical, a_x = 0. Both accelerations are constant, so the kinematic equations can be used.

Review of Kinematic Equations (constant a)

\[x = x_0 + v_x t \]
\[v_x = \frac{v_0 + v}{2} \]
\[v = v_0 + at \]
\[x = x_0 + v_0 t + \frac{1}{2} at^2 \]
\[v^2 = v_0^2 + 2a(x - x_0) \]

Figure 3.37 The total displacement s of a soccer ball at a point along its path. The vector s has components x and y along the horizontal and vertical axes. Its magnitude is s, and it makes an angle \(\theta \) with the horizontal.

Given these assumptions, the following steps are then used to analyze projectile motion:

Step 1. Resolve or break the motion into horizontal and vertical components along the x- and y-axes. These axes are perpendicular, so A_x = A \cos \theta and A_y = A \sin \theta are used. The magnitude of the components of displacement s along these axes are x and y. The magnitudes of the components of the velocity v are v_x = v \cos \theta and v_y = v \sin \theta, where v is the magnitude of the velocity and \(\theta \) is its direction, as shown in Figure 3.38. Initial values are denoted with a subscript 0, as usual.

Step 2. Treat the motion as two independent one-dimensional motions, one horizontal and the other vertical. The kinematic equations for horizontal and vertical motion take the following forms:

Horizontal Motion (a_x = 0)

\[x = x_0 + v_x t \]
\[v_x = v_{0x} = v_x = \text{velocity is a constant.} \]

Vertical Motion (assuming positive is up a_y = -g = -9.80 m/s^2)

\[x = x_0 + v_x t \]
\[v_x = v_{0x} = v_x = \text{velocity is a constant.} \]

\[v^2 = v_0^2 + 2a(x - x_0) \]
Step 3. Solve for the unknowns in the two separate motions—one horizontal and one vertical. Note that the only common variable between the motions is time \(t \). The problem solving procedures here are the same as for one-dimensional kinematics and are illustrated in the solved examples below.

Step 4. Recombine the two motions to find the total displacement \(\mathbf{s} \) and velocity \(\mathbf{v} \). Because the \(x \)- and \(y \)-motions are perpendicular, we determine these vectors by using the techniques outlined in the Vector Addition and Subtraction: Analytical Methods and employing \(A = \sqrt{A_x^2 + A_y^2} \) and \(\theta = \tan^{-1}(A_y/A_x) \) in the following form, where \(\theta \) is the direction of the displacement \(\mathbf{s} \) and \(\theta_v \) is the direction of the velocity \(\mathbf{v} \):

Total displacement and velocity

\[
\begin{align*}
\mathbf{s} &= \sqrt{x^2 + y^2} \\
\theta &= \tan^{-1}(y/x) \\
\mathbf{v} &= \sqrt{v_x^2 + v_y^2} \\
\theta_v &= \tan^{-1}(v_y/v_x).
\end{align*}
\]
![Diagram of projectile motion](image)

Figure 3.38 (a) We analyze two-dimensional projectile motion by breaking it into two independent one-dimensional motions along the vertical and horizontal axes. (b) The horizontal motion is simple, because $a_x = 0$ and v_x is thus constant. (c) The velocity in the vertical direction begins to decrease as the object rises; at its highest point, the vertical velocity is zero. As the object falls towards the Earth again, the vertical velocity increases again in magnitude but points in the opposite direction to the initial vertical velocity. (d) The x- and y-motions are recombined to give the total velocity at any given point on the trajectory.

Example 3.4 A Fireworks Projectile Explodes High and Away

During a fireworks display, a shell is shot into the air with an initial speed of 70.0 m/s at an angle of 75.0° above the horizontal, as illustrated in Figure 3.39. The fuse is timed to ignite the shell just as it reaches its highest point above the ground. (a) Calculate the height at which the shell explodes. (b) How much time passed between the launch of the shell and the explosion? (c) What is the horizontal displacement of the shell when it explodes?

Strategy

Because air resistance is negligible for the unexploded shell, the analysis method outlined above can be used. The motion can be broken into horizontal and vertical motions in which $a_x = 0$ and $a_y = -g$. We can then define x_0 and y_0 to be zero and solve for the desired quantities.

Solution for (a)

By “height” we mean the altitude or vertical position y above the starting point. The highest point in any trajectory, called the apex, is reached when $v_y = 0$. Since we know the initial and final velocities as well as the initial position, we use the following equation to find y:

$$v_y^2 = v_{0y}^2 - 2g(y - y_0).$$ \hspace{1cm} (3.45)
Because y_0 and v_y are both zero, the equation simplifies to

$$0 = v_{0y}^2 - 2gy.$$ \hspace{1cm} (3.46)

Solving for y gives

$$y = \frac{v_{0y}^2}{2g}.$$ \hspace{1cm} (3.47)

Now we must find v_{0y}, the component of the initial velocity in the y-direction. It is given by $v_{0y} = v_0 \sin \theta$, where v_0 is the initial velocity of 70.0 m/s, and $\theta_0 = 75.0^\circ$ is the initial angle. Thus,

$$v_{0y} = v_0 \sin \theta_0 = (70.0 \text{ m/s})(\sin 75^\circ) = 67.6 \text{ m/s}. \hspace{1cm} (3.48)$$

and y is

$$y = \frac{(67.6 \text{ m/s})^2}{2(9.80 \text{ m/s}^2)},$$

so that

$$y = 233 \text{ m}. \hspace{1cm} (3.50)$$

Discussion for (a)

Note that because up is positive, the initial velocity is positive, as is the maximum height, but the acceleration due to gravity is negative. Note also that the maximum height depends only on the vertical component of the initial velocity, so that any projectile with a 67.6 m/s initial vertical component of velocity will reach a maximum height of 233 m (neglecting air resistance). The numbers in this example are reasonable for large fireworks displays, the shells of which do reach such heights before exploding. In practice, air resistance is not completely negligible, and so the initial velocity would have to be somewhat larger than that given to reach the same height.

Solution for (b)

As in many physics problems, there is more than one way to solve for the time to the highest point. In this case, the easiest method is to use $y = y_0 + \frac{1}{2}(v_{0y} + v_y)t$. Because y_0 is zero, this equation reduces to simply

$$y = \frac{1}{2}(v_{0y} + v_y)t. \hspace{1cm} (3.51)$$

Note that the final vertical velocity, v_y, at the highest point is zero. Thus,

$$t = \frac{2y}{(v_{0y} + v_y)} = \frac{2(233 \text{ m})}{(67.6 \text{ m/s})},$$

$$= 6.90 \text{ s}. \hspace{1cm} (3.52)$$

Discussion for (b)
This time is also reasonable for large fireworks. When you are able to see the launch of fireworks, you will notice several seconds pass before the shell explodes. (Another way of finding the time is by using \(y = y_0 + v_{0y}t - \frac{1}{2}gt^2 \), and solving the quadratic equation for \(t \).)

Solution for (c)
Because air resistance is negligible, \(a_x = 0 \) and the horizontal velocity is constant, as discussed above. The horizontal displacement is horizontal velocity multiplied by time as given by \(x = x_0 + v_x t \), where \(x_0 \) is equal to zero:

\[
x = v_x t, \tag{3.53}
\]

where \(v_x \) is the \(x \)-component of the velocity, which is given by \(v_x = v_0 \cos \theta_0 \). Now,

\[
v_x = v_0 \cos \theta_0 = (70.0 \text{ m/s})(\cos 75.0^\circ) = 18.1 \text{ m/s}. \tag{3.54}
\]

The time \(t \) for both motions is the same, and so \(x \) is

\[
x = (18.1 \text{ m/s})(6.90 \text{ s}) = 125 \text{ m}. \tag{3.55}
\]

Discussion for (c)
The horizontal motion is a constant velocity in the absence of air resistance. The horizontal displacement found here could be useful in keeping the fireworks fragments from falling on spectators. Once the shell explodes, air resistance has a major effect, and many fragments will land directly below.

In solving part (a) of the preceding example, the expression we found for \(y \) is valid for any projectile motion where air resistance is negligible. Call the maximum height \(y = h \); then,

\[
h = \frac{v_0^2}{2g}. \tag{3.56}
\]

This equation defines the **maximum height of a projectile** and depends only on the vertical component of the initial velocity.

Defining a Coordinate System
It is important to set up a coordinate system when analyzing projectile motion. One part of defining the coordinate system is to define an origin for the \(x \) and \(y \) positions. Often, it is convenient to choose the initial position of the object as the origin such that \(x_0 = 0 \) and \(y_0 = 0 \). It is also important to define the positive and negative directions in the \(x \) and \(y \) directions. Typically, we define the positive vertical direction as upwards, and the positive horizontal direction is usually the direction of the object's motion. When this is the case, the vertical acceleration, \(g \), takes a negative value (since it is directed downwards towards the Earth). However, it is occasionally useful to define the coordinates differently. For example, if you are analyzing the motion of a ball thrown downwards from the top of a cliff, it may make sense to define the positive direction downwards since the motion of the ball is solely in the downwards direction. If this is the case, \(g \) takes a positive value.

Example 3.5 Calculating Projectile Motion: Hot Rock Projectile
Kilauea in Hawaii is the world’s most continuously active volcano. Very active volcanoes characteristically eject red-hot rocks and lava rather than smoke and ash. Suppose a large rock is ejected from the volcano with a speed of 25.0 m/s and at an angle 35.0\(^\circ\) above the horizontal, as shown in Figure 3.40. The rock strikes the side of the volcano at an altitude 20.0 m lower than its starting point. (a) Calculate the time it takes the rock to follow this path. (b) What are the magnitude and direction of the rock's velocity at impact?

![Figure 3.40](image-url) The trajectory of a rock ejected from the Kilauea volcano.

Strategy
Again, resolving this two-dimensional motion into two independent one-dimensional motions will allow us to solve for the desired quantities. The time a projectile is in the air is governed by its vertical motion alone. We will solve for \(t \) first. While the rock is rising and falling vertically, the
horizontal motion continues at a constant velocity. This example asks for the final velocity. Thus, the vertical and horizontal results will be recombined to obtain v and θ_v at the final time t determined in the first part of the example.

Solution for (a)

While the rock is in the air, it rises and then falls to a final position 20.0 m lower than its starting altitude. We can find the time for this by using

$$y = y_0 + v_{0y}t - \frac{1}{2}gt^2. \quad (3.57)$$

If we take the initial position y_0 to be zero, then the final position is $y = -20.0$ m. Now the initial vertical velocity is the vertical component of the initial velocity, found from $v_{0y} = v_0 \sin \theta_0 = (25.0 \text{ m/s}) \left(\sin 35.0^\circ \right) = 14.3 \text{ m/s}$. Substituting known values yields

$$-20.0 \text{ m} = (14.3 \text{ m/s})t - \left(4.90 \text{ m/s}^2\right)t^2. \quad (3.58)$$

Rearranging terms gives a quadratic equation in t :

$$\left(4.90 \text{ m/s}^2\right)t^2 - (14.3 \text{ m/s})t - (20.0 \text{ m}) = 0. \quad (3.59)$$

This expression is a quadratic equation of the form $at^2 + bt + c = 0$, where the constants are $a = 4.90$, $b = -14.3$, and $c = -20.0$. Its solutions are given by the quadratic formula:

$$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. \quad (3.60)$$

This equation yields two solutions: $t = 3.96$ and $t = -1.03$. (It is left as an exercise for the reader to verify these solutions.) The time is $t = 3.96$ s or -1.03 s . The negative value of time implies an event before the start of motion, and so we discard it. Thus,

$$t = 3.96 \text{ s}. \quad (3.61)$$

Discussion for (a)

The time for projectile motion is completely determined by the vertical motion. So any projectile that has an initial vertical velocity of 14.3 m/s and lands 20.0 m below its starting altitude will spend 3.96 s in the air.

Solution for (b)

From the information now in hand, we can find the final horizontal and vertical velocities v_x and v_y and combine them to find the total velocity v and the angle θ_v it makes with the horizontal. Of course, v_x is constant so we can solve for it at any horizontal location. In this case, we chose the starting point since we know both the initial velocity and initial angle. Therefore:

$$v_x = v_0 \cos \theta_0 = (25.0 \text{ m/s}) \left(\cos 35^\circ \right) = 20.5 \text{ m/s}. \quad (3.62)$$

The final vertical velocity is given by the following equation:

$$v_y = v_{0y} - gt, \quad (3.63)$$

where v_{0y} was found in part (a) to be 14.3 m/s . Thus,

$$v_y = 14.3 \text{ m/s} - (9.80 \text{ m/s}^2)(3.96 \text{ s}) \quad (3.64)$$

so that

$$v_y = -24.5 \text{ m/s}. \quad (3.65)$$

To find the magnitude of the final velocity v we combine its perpendicular components, using the following equation:

$$v = \sqrt{v_x^2 + v_y^2} = \sqrt{(20.5 \text{ m/s})^2 + (-24.5 \text{ m/s})^2}, \quad (3.66)$$

which gives

$$v = 31.9 \text{ m/s}. \quad (3.67)$$

The direction θ_v is found from the equation:

$$\theta_v = \tan^{-1}(v_y / v_x) \quad (3.68)$$

so that

$$\theta_v = \tan^{-1}(-24.5 / 20.5) = \tan^{-1}(-1.19). \quad (3.69)$$

Thus,

$$\theta_v = -50.1^\circ. \quad (3.70)$$
Discussion for (b)

The negative angle means that the velocity is 50.1° below the horizontal. This result is consistent with the fact that the final vertical velocity is negative and hence downward—as you would expect because the final altitude is 20.0 m lower than the initial altitude. (See Figure 3.40.)

One of the most important things illustrated by projectile motion is that vertical and horizontal motions are independent of each other. Galileo was the first person to fully comprehend this characteristic. He used it to predict the range of a projectile. On level ground, we define range to be the horizontal distance R traveled by a projectile. Galileo and many others were interested in the range of projectiles primarily for military purposes—such as aiming cannons. However, investigating the range of projectiles can shed light on other interesting phenomena, such as the orbits of satellites around the Earth. Let us consider projectile range further.

![Figure 3.41 Trajectories of projectiles on level ground. (a) The greater the initial speed v_0, the greater the range for a given initial angle. (b) The effect of initial angle θ_0 on the range of a projectile with a given initial speed. Note that the range is the same for 15° and 75°, although the maximum heights of those paths are different.](image)

How does the initial velocity of a projectile affect its range? Obviously, the greater the initial speed v_0, the greater the range, as shown in Figure 3.41(a). The initial angle θ_0 also has a dramatic effect on the range, as illustrated in Figure 3.41(b). For a fixed initial speed, such as might be produced by a cannon, the maximum range is obtained with $\theta_0 = 45°$. This is true only for conditions neglecting air resistance. If air resistance is considered, the maximum angle is approximately 38°. Interestingly, for every initial angle except 45°, there are two angles that give the same range—the sum of those angles is 90°. The range also depends on the value of the acceleration of gravity g. The lunar astronaut Alan Shepherd was able to drive a golf ball a great distance on the Moon because gravity is weaker there. The range R of a projectile on level ground for which air resistance is negligible is given by

$$R = \frac{v_0^2 \sin 2\theta_0}{g},$$

where v_0 is the initial speed and θ_0 is the initial angle relative to the horizontal. The proof of this equation is left as an end-of-chapter problem (hints are given), but it does fit the major features of projectile range as described.

When we speak of the range of a projectile on level ground, we assume that R is very small compared with the circumference of the Earth. If, however, the range is large, the Earth curves away below the projectile and acceleration of gravity changes direction along the path. The range is larger than predicted by the range equation given above because the projectile has farther to fall than it would on level ground. (See Figure 3.42.) If the initial speed is great enough, the projectile goes into orbit. This possibility was recognized centuries before it could be accomplished. When an object is in orbit, the Earth curves away from underneath the object at the same rate as it falls. The object thus falls continuously but never hits the surface. These and other aspects of orbital motion, such as the rotation of the Earth, will be covered analytically and in greater depth later in this text.

Once again we see that thinking about one topic, such as the range of a projectile, can lead us to others, such as the Earth orbits. In Addition of Velocities (https://legacy.cnx.org/content/m42045/latest), we will examine the addition of velocities, which is another important aspect of two-dimensional kinematics and will also yield insights beyond the immediate topic.
Figure 3.42 Projectile to satellite. In each case shown here, a projectile is launched from a very high tower to avoid air resistance. With increasing initial speed, the range increases and becomes longer than it would be on level ground because the Earth curves away underneath its path. With a large enough initial speed, orbit is achieved.

PhET Explorations: Projectile Motion
Blast a Buick out of a cannon! Learn about projectile motion by firing various objects. Set the angle, initial speed, and mass. Add air resistance. Make a game out of this simulation by trying to hit a target.

PhET Interactive Simulation

Figure 3.43 Projectile Motion (http://legacy.cnx.org/content/m55663/1.1/projectile-motion_en.jar)

Glossary

air resistance: a frictional force that slows the motion of objects as they travel through the air; when solving basic physics problems, air resistance is assumed to be zero

analytical method: the method of determining the magnitude and direction of a resultant vector using the Pythagorean theorem and trigonometric identities

commutative: refers to the interchangeability of order in a function; vector addition is commutative because the order in which vectors are added together does not affect the final sum

component (of a 2-d vector): a piece of a vector that points in either the vertical or the horizontal direction; every 2-d vector can be expressed as a sum of two vertical and horizontal vector components

direction (of a vector): the orientation of a vector in space

head (of a vector): the end point of a vector; the location of the tip of the vector’s arrowhead; also referred to as the “tip”

head-to-tail method: a method of adding vectors in which the tail of each vector is placed at the head of the previous vector

kinematics: the study of motion without regard to mass or force

magnitude (of a vector): the length or size of a vector; magnitude is a scalar quantity

motion: displacement of an object as a function of time

projectile: an object that travels through the air and experiences only acceleration due to gravity

projectile motion: the motion of an object that is subject only to the acceleration of gravity

range: the maximum horizontal distance that a projectile travels

resultant: the sum of two or more vectors

resultant vector: the vector sum of two or more vectors

scalar: a quantity with magnitude but no direction

tail: the start point of a vector; opposite to the head or tip of the arrow

trajectory: the path of a projectile through the air

vector: a quantity that has both magnitude and direction; an arrow used to represent quantities with both magnitude and direction
3.1 Kinematics in Two Dimensions: An Introduction
- The shortest path between any two points is a straight line. In two dimensions, this path can be represented by a vector with horizontal and vertical components.
- The horizontal and vertical components of a vector are independent of one another. Motion in the horizontal direction does not affect motion in the vertical direction, and vice versa.

3.2 Vector Addition and Subtraction: Graphical Methods
- The graphical method of adding vectors \(\mathbf{A} \) and \(\mathbf{B} \) involves drawing vectors on a graph and adding them using the head-to-tail method. The resultant vector \(\mathbf{R} \) is defined such that \(\mathbf{A} + \mathbf{B} = \mathbf{R} \). The magnitude and direction of \(\mathbf{R} \) are then determined with a ruler and protractor, respectively.
- The graphical method of subtracting vector \(\mathbf{B} \) from \(\mathbf{A} \) involves adding the opposite of vector \(\mathbf{B} \), which is defined as \(-\mathbf{B} \). In this case, \(\mathbf{A} - \mathbf{B} = \mathbf{A} + (-\mathbf{B}) = \mathbf{R} \). Then, the head-to-tail method of addition is followed in the usual way to obtain the resultant vector \(\mathbf{R} \).
- Addition of vectors is commutative such that \(\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A} \).
- The head-to-tail method of adding vectors involves drawing the first vector on a graph and then placing the tail of each subsequent vector at the head of the previous vector. The resultant vector is then drawn from the tail of the first vector to the head of the final vector.
- If a vector \(\mathbf{A} \) is multiplied by a scalar quantity \(c \), the magnitude of the product is given by \(c\mathbf{A} \). If \(c \) is positive, the direction of the product points in the same direction as \(\mathbf{A} \); if \(c \) is negative, the direction of the product points in the opposite direction as \(\mathbf{A} \).

3.3 Vector Addition and Subtraction: Analytical Methods
- The analytical method of vector addition and subtraction involves using the Pythagorean theorem and trigonometric identities to determine the magnitude and direction of a resultant vector.
- The steps to add vectors \(\mathbf{A} \) and \(\mathbf{B} \) using the analytical method are as follows:
 Step 1: Determine the coordinate system for the vectors. Then, determine the horizontal and vertical components of each vector using the equations
 \[
 A_x = A \cos \theta \\
 B_x = B \cos \theta \\
 A_y = A \sin \theta \\
 B_y = B \sin \theta.
 \]
 Step 2: Add the horizontal and vertical components of each vector to determine the components \(R_x \) and \(R_y \) of the resultant vector, \(\mathbf{R} \):
 \[
 R_x = A_x + B_x \\
 R_y = A_y + B_y.
 \]
 Step 3: Use the Pythagorean theorem to determine the magnitude, \(R \), of the resultant vector \(\mathbf{R} \):
 \[
 R = \sqrt{R_x^2 + R_y^2}.
 \]
 Step 4: Use a trigonometric identity to determine the direction, \(\theta \), of \(\mathbf{R} \):
 \[
 \theta = \tan^{-1}(R_y / R_x).
 \]

3.4 Projectile Motion
- Projectile motion is the motion of an object through the air that is subject only to the acceleration of gravity.
- To solve projectile motion problems, perform the following steps:
 1. Determine a coordinate system. Then, resolve the position and/or velocity of the object in the horizontal and vertical components. The components of position \(\mathbf{s} \) are given by the quantities \(x \) and \(y \), and the components of the velocity \(\mathbf{v} \) are given by \(v_x = v \cos \theta \) and \(v_y = v \sin \theta \), where \(v \) is the magnitude of the velocity and \(\theta \) is its direction.
 2. Analyze the motion of the projectile in the horizontal direction using the following equations:
 \[
 \text{Horizontal motion}(a_x = 0) \\
 x = x_0 + v_xt \\
 v_x = v_{0x} = v_x = \text{velocity is a constant}.
 \]
 3. Analyze the motion of the projectile in the vertical direction using the following equations:
 \[
 \text{Vertical motion}(\text{Assuming positive direction is up}; a_y = -g = -9.80 \text{ m/s}^2) \\
 \]
\[y = y_0 + \frac{1}{2} (v_{0y} + v_y) t \]
\[v_y = v_{0y} - gt \]
\[y = y_0 + v_{0y} t - \frac{1}{2} gt^2 \]
\[v_y^2 = v_{0y}^2 - 2g(y - y_0). \]

4. Recombine the horizontal and vertical components of location and/or velocity using the following equations:

\[s = \sqrt{x^2 + y^2} \]
\[\theta = \tan^{-1}(y/x) \]
\[v = \sqrt{v_x^2 + v_y^2} \]
\[\theta_v = \tan^{-1}(v_y/v_x). \]

Conceptual Questions

3.2 Vector Addition and Subtraction: Graphical Methods

1. Which of the following is a vector: a person's height, the altitude on Mt. Everest, the age of the Earth, the boiling point of water, the cost of this book, the Earth's population, the acceleration of gravity?

2. Give a specific example of a vector, stating its magnitude, units, and direction.

3. What do vectors and scalars have in common? How do they differ?

4. Two campers in a national park hike from their cabin to the same spot on a lake, each taking a different path, as illustrated below. The total distance traveled along Path 1 is 7.5 km, and that along Path 2 is 8.2 km. What is the final displacement of each camper?

![Diagram of two paths to a lake]

5. If an airplane pilot is told to fly 123 km in a straight line to get from San Francisco to Sacramento, explain why he could end up anywhere on the circle shown in Figure 3.45. What other information would he need to get to Sacramento?

![Diagram of a circle indicating possible paths from San Francisco to Sacramento]
6. Suppose you take two steps \(\mathbf{A} \) and \(\mathbf{B} \) (that is, two nonzero displacements). Under what circumstances can you end up at your starting point? More generally, under what circumstances can two nonzero vectors add to give zero? Is the maximum distance you can end up from the starting point \(\mathbf{A} + \mathbf{B} \) the sum of the lengths of the two steps?

7. Explain why it is not possible to add a scalar to a vector.

8. If you take two steps of different sizes, can you end up at your starting point? More generally, can two vectors with different magnitudes ever add to zero? Can three or more?

3.3 Vector Addition and Subtraction: Analytical Methods

9. Suppose you add two vectors \(\mathbf{A} \) and \(\mathbf{B} \). What relative direction between them produces the resultant with the greatest magnitude? What is the maximum magnitude? What relative direction between them produces the resultant with the smallest magnitude? What is the minimum magnitude?

10. Give an example of a nonzero vector that has a component of zero.

11. Explain why a vector cannot have a component greater than its own magnitude.

12. If the vectors \(\mathbf{A} \) and \(\mathbf{B} \) are perpendicular, what is the component of \(\mathbf{A} \) along the direction of \(\mathbf{B} \)? What is the component of \(\mathbf{B} \) along the direction of \(\mathbf{A} \)?

3.4 Projectile Motion

13. Answer the following questions for projectile motion on level ground assuming negligible air resistance (the initial angle being neither \(0^\circ \) nor \(90^\circ \)): (a) Is the velocity ever zero? (b) When is the velocity a minimum? A maximum? (c) Can the velocity ever be the same as the initial velocity at a time other than at \(t = 0 \)? (d) Can the speed ever be the same as the initial speed at a time other than at \(t = 0 \)?

14. Answer the following questions for projectile motion on level ground assuming negligible air resistance (the initial angle being neither \(0^\circ \) nor \(90^\circ \)): (a) Is the acceleration ever zero? (b) Is the acceleration ever in the same direction as a component of velocity? (c) Is the acceleration ever opposite in direction to a component of velocity?

15. For a fixed initial speed, the range of a projectile is determined by the angle at which it is fired. For all but the maximum, there are two angles that give the same range. Considering factors that might affect the ability of an archer to hit a target, such as wind, explain why the smaller angle (closer to the horizontal) is preferable. When would it be necessary for the archer to use the larger angle? Why does the punter in a football game use the higher trajectory?

16. During a lecture demonstration, a professor places two coins on the edge of a table. She then flicks one of the coins horizontally off the table, simultaneously nudging the other over the edge. Describe the subsequent motion of the two coins, in particular discussing whether they hit the floor at the same time.
Problems & Exercises

3.2 Vector Addition and Subtraction: Graphical Methods

Use graphical methods to solve these problems. You may assume data taken from graphs is accurate to three digits.

1. Find the following for path A in Figure 3.46: (a) the total distance traveled; and (b) the magnitude and direction of the displacement from start to finish.

Figure 3.46 The various lines represent paths taken by different people walking in a city. All blocks are 120 m on a side.

2. Find the following for path B in Figure 3.46: (a) the total distance traveled; and (b) the magnitude and direction of the displacement from start to finish.

3. Find the north and east components of the displacement for the hikers shown in Figure 3.44.

4. Suppose you walk 18.0 m straight west and then 25.0 m straight north. How far are you from your starting point, and what is the compass direction of a line connecting your starting point to your final position? (If you represent the two legs of the walk as vector displacements A and B, as in Figure 3.47, then this problem asks you to find their sum \(\mathbf{R} = \mathbf{A} + \mathbf{B} \).

Figure 3.47 The two displacements A and B add to give a total displacement R having magnitude \(R \) and direction \(\theta \).

5. Suppose you first walk 12.0 m in a direction 20° west of north and then 20.0 m in a direction 40.0° south of west. How far are you from your starting point, and what is the compass direction of a line connecting your starting point to your final position? (If you represent the two legs of the walk as vector displacements A and B, as in Figure 3.48, then this problem finds their sum \(\mathbf{R} = \mathbf{A} + \mathbf{B} \).)

Figure 3.48

6. Repeat the problem above, but reverse the order of the two legs of the walk; show that you get the same final result. That is, you first walk leg \(\mathbf{B} \), which is 20.0 m in a direction exactly 40° south of west, and then leg \(\mathbf{A} \), which is 12.0 m in a direction exactly 20° west of north. (This problem shows that \(\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A} \).)

7. (a) Repeat the problem two problems prior, but for the second leg you walk 20.0 m in a direction 40.0° north of east (which is equivalent to subtracting \(\mathbf{B} \) from \(\mathbf{A} \)—that is, to finding \(\mathbf{R'} = \mathbf{A} - \mathbf{B} \)). (b) Repeat the problem two problems prior, but now you first walk 20.0 m in a direction 40.0° south of west and then 12.0 m in a direction 20.0° east of south (which is equivalent to subtracting \(\mathbf{A} \) from \(\mathbf{B} \)—that is, to finding \(\mathbf{R''} = \mathbf{B} - \mathbf{A} = -\mathbf{R'} \)). Show that this is the case.

8. Show that the order of addition of three vectors does not affect their sum. Show this property by choosing any three vectors \(\mathbf{A} \), \(\mathbf{B} \), and \(\mathbf{C} \), all having different lengths and directions. Find the sum \(\mathbf{A} + \mathbf{B} + \mathbf{C} \) then find their sum when added in a different order and show the result is the same. (There are five other orders in which \(\mathbf{A} \), \(\mathbf{B} \), and \(\mathbf{C} \) can be added; choose only one.)

9. Show that the sum of the vectors discussed in Example 3.2 gives the result shown in Figure 3.24.

10. Find the magnitudes of velocities \(v_A \) and \(v_B \) in Figure 3.49

Figure 3.49 The two velocities \(v_A \) and \(v_B \) add to give a total \(v_{\text{tot}} \).

11. Find the components of \(v_{\text{tot}} \) along the x- and y-axes in Figure 3.49.

12. Find the components of \(v_{\text{tot}} \) along a set of perpendicular axes rotated 30° counterclockwise relative to those in Figure 3.49.

3.3 Vector Addition and Subtraction: Analytical Methods

13. Find the following for path C in Figure 3.50: (a) the total distance traveled and (b) the magnitude and direction of the displacement from
start to finish. In this part of the problem, explicitly show how you follow the steps of the analytical method of vector addition.

14. Find the following for path D in Figure 3.50: (a) the total distance traveled and (b) the magnitude and direction of the displacement from start to finish. In this part of the problem, explicitly show how you follow the steps of the analytical method of vector addition.

15. Find the north and east components of the displacement from San Francisco to Sacramento shown in Figure 3.51.

16. Solve the following problem using analytical techniques: Suppose you walk 18.0 m straight west and then 25.0 m straight north. How far are you from your starting point, and what is the compass direction of a line connecting your starting point to your final position? (If you represent the two legs of the walk as vector displacements \(\mathbf{A} \) and \(\mathbf{B} \), as in Figure 3.52, then this problem asks you to find their sum \(\mathbf{R} = \mathbf{A} + \mathbf{B} \).)

17. Repeat Exercise 3.16 using analytical techniques, but reverse the order of the two legs of the walk and show that you get the same final result. (This problem shows that adding them in reverse order gives the same result—that is, \(\mathbf{B} + \mathbf{A} = \mathbf{A} + \mathbf{B} \).) Discuss how taking another path to reach the same point might help to overcome an obstacle blocking you other path.

18. You drive 7.50 km in a straight line in a direction 15° east of north. (a) Find the distances you would have to drive straight east and then straight north to arrive at the same point. (This determination is equivalent to finding the components of the displacement along the east and north directions.) (b) Show that you still arrive at the same point if the east and north legs are reversed in order.

19. Do Exercise 3.16 again using analytical techniques and change the second leg of the walk to 25.0 m straight south. (This is equivalent to subtracting \(\mathbf{B} \) from \(\mathbf{A} \)—that is, finding \(\mathbf{R}' = \mathbf{A} - \mathbf{B} \).) Repeat again, but now you first walk 25.0 m north and then 18.0 m east. (This is equivalent to subtract \(\mathbf{A} \) from \(\mathbf{B} \)—that is, to find \(\mathbf{A} = \mathbf{B} + \mathbf{C} \). Is that consistent with your result?)

20. A new landowner has a triangular piece of flat land she wishes to fence. Starting at the west corner, she measures the first side to be 80.0 m long and the next to be 105 m. These sides are represented as displacement vectors \(\mathbf{A} \) from \(\mathbf{B} \) in Figure 3.53. She then correctly calculates the length and orientation of the third side \(\mathbf{C} \). What is her result?

21. You fly 32.0 km in a straight line in still air in the direction 35.0° south of west. (a) Find the distances you would have to fly straight south and then straight west to arrive at the same point. (This determination is equivalent to finding the components of the displacement along the south and west directions.) (b) Find the distances you would have to fly first in a direction 45.0° south of west and then in a direction 45.0° west of north. These are the components of the displacement along a different set of axes—one rotated 45°.

22. A farmer wants to fence off his four-sided plot of flat land. He measures the first three sides, shown as \(\mathbf{A} \), \(\mathbf{B} \), and \(\mathbf{C} \) in Figure 3.54, and then correctly calculates the length and orientation of the fourth side \(\mathbf{D} \). What is his result?

Note that you can also solve this graphically. Discuss why the analytical technique for solving this problem is potentially more accurate than the graphical technique.
23. In an attempt to escape his island, Gilligan builds a raft and sets to sea. The wind shifts a great deal during the day, and he is blown along the following straight lines: 2.50 km 45.0º north of west; then 4.70 km 60.0º south of east; then 1.30 km 25.0º south of west; then 5.10 km straight east; then 1.70 km 5.00º east of north; then 7.20 km 55.0º south of west; and finally 2.80 km 10.0º north of east. What is his final position relative to the island?

24. Suppose a pilot flies 40.0 km in a direction 60º north of east and then flies 30.0 km in a direction 15º north of east as shown in Figure 3.55. Find her total distance R from the starting point and the direction θ of the straight-line path to the final position. Discuss qualitatively how this flight would be altered by a wind from the north and how the effect of the wind would depend on both wind speed and the speed of the plane relative to the air mass.

25. A projectile is launched at ground level with an initial speed of 50.0 m/s at an angle of 30.0º above the horizontal. It strikes a target above the ground 3.00 seconds later. What are the x and y distances from where the projectile was launched to where it lands?

26. A ball is kicked with an initial velocity of 16 m/s in the horizontal direction and 12 m/s in the vertical direction. (a) At what speed does the ball hit the ground? (b) For how long does the ball remain in the air? (c) What maximum height is attained by the ball?

27. A ball is thrown horizontally from the top of a 60.0-m building and lands 100.0 m from the base of the building. Ignore air resistance. (a) How long is the ball in the air? (b) What must have been the initial horizontal component of the velocity? (c) What is the vertical component of the velocity just before the ball hits the ground? (d) What is the velocity (including both the horizontal and vertical components) of the ball just before it hits the ground?

28. (a) A daredevil is attempting to jump his motorcycle over a line of buses parked end to end by driving up a 32º ramp at a speed of 40.0 m/s (144 km/h). How many buses can he clear if the top of the takeoff ramp is at the same height as the bus tops and the buses are 20.0 m long? (b) Discuss what your answer implies about the margin of error in this act—that is, consider how much greater the range is than the horizontal distance he must travel to miss the end of the last bus. (Neglect air resistance.)

29. An archer shoots an arrow at a 75.0 m distant target; the bull’s-eye of the target is at same height as the release height of the arrow. (a) At what angle must the arrow be released to hit the bull’s-eye if its initial speed is 35.0 m/s? In this part of the problem, explicitly show how you follow the steps involved in solving projectile motion problems. (b) There is a large tree halfway between the archer and the target with an overhanging horizontal branch 3.50 m above the release height of the arrow. Will the arrow go over or under the branch?

30. A rugby player passes the ball 7.00 m across the field, where it is caught at the same height as it left his hand. (a) At what angle was the ball thrown if its initial speed was 12.0 m/s, assuming that the smaller of the two possible angles was used? (b) What other angle gives the same range, and why would it not be used? (c) How long did this pass take?

31. Verify the ranges for the projectiles in Figure 3.41(a) for $\theta = 45^\circ$ and the given initial velocities.

32. Verify the ranges shown for the projectiles in Figure 3.41(b) for an initial velocity of 50 m/s at the given initial angles.

33. The cannon on a battleship can fire a shell a maximum distance of 32.0 km. (a) Calculate the initial velocity of the shell. (b) What maximum height does it reach? (At its highest, the shell is above 60% of the atmosphere—but air resistance is not really negligible as assumed to make this problem easier.) (c) The ocean is not flat, because the Earth is curved. Assume that the radius of the Earth is 6.37×10^3 km. How many meters lower will its surface be 32.0 km from the ship along a horizontal line parallel to the surface at the ship? Does your answer imply that error introduced by the assumption of a flat Earth in projectile motion is significant here?

34. An arrow is shot from a height of 1.5 m toward a cliff of height H. It is shot with a velocity of 30 m/s at an angle of 60º above the horizontal. It lands on the top edge of the cliff 4.0 s later. (a) What is the height of the cliff? (b) What is the maximum height reached by the arrow along its trajectory? (c) What is the arrow’s impact speed just before hitting the cliff?

35. In the standing broad jump, one squats and then pushes off with the legs to see how far one can jump. Suppose the extension of the legs from the crouch position is 0.600 m and the acceleration achieved from this position is 1.25 times the acceleration due to gravity, g. How far can they jump? State your assumptions. (Increased range can be achieved by swinging the arms in the direction of the jump.)

36. The world long jump record is 8.95 m (Mike Powell, USA, 1991). Treated as a projectile, what is the maximum range obtainable by a person if he has a take-off speed of 9.5 m/s? State your assumptions.

37. Serving at a speed of 170 km/h, a tennis player hits the ball at a height of 2.5 m and an angle θ below the horizontal. The service line is 11.9 m from the net, which is 0.91 m high. What is the angle θ such that the ball just crosses the net? Will the ball land in the service box, whose out line is 6.40 m from the net?

38. A football quarterback is moving straight backward at a speed of 2.00 m/s when he throws a pass to a player 18.0 m straight downhill. (a) If the ball is thrown at an angle of 25° relative to the ground and is caught at the same height as it is released, what is its initial speed relative to the ground? (b) How long does it take to get to the receiver? (c) What is its maximum height above its point of release?

39. Gun sights are adjusted to aim high to compensate for the effect of gravity, effectively making the gun accurate only for a specific range. (a) If a gun is sighted to hit targets that are at the same height as the gun and 100.0 m away, how low will the bullet hit if aimed directly at a target 150.0 m away? The muzzle velocity of the bullet is 275 m/s. (b) Discuss qualitatively how a larger muzzle velocity would affect this problem and what would be the effect of air resistance.

40. An eagle is flying horizontally at a speed of 3.00 m/s when the fish in her talons wiggles loose and falls into the lake 5.00 m below. Calculate the velocity of the fish relative to the water when it hits the water.

41. An owl is carrying a mouse to the chicks in its nest. Its position at that time is 4.00 m west and 12.0 m above the center of the 30.0 cm diameter nest. The owl is flying east at 3.50 m/s at an angle 30.0° below the horizontal when it accidentally drops the mouse. Is the owl lucky enough to have the mouse hit the nest? To answer this question, calculate the horizontal position of the mouse when it has fallen 12.0 m.

42. Suppose a soccer player kicks the ball from a distance 30 m toward the goal. Find the initial speed of the ball if it just passes over the goal, 2.4 m above the ground, given the initial direction to be 40° above the horizontal.
43. Can a goalkeeper at her/ his goal kick a soccer ball into the opponent's goal without the ball touching the ground? The distance will be about 95 m. A goalkeeper can give the ball a speed of 30 m/s.

44. The free throw line in basketball is 4.57 m (15 ft) from the basket, which is 3.05 m (10 ft) above the floor. A player standing on the free throw line throws the ball with an initial speed of 7.15 m/s, releasing it at a height of 2.44 m (8 ft) above the floor. At what angle above the horizontal must the ball be thrown to exactly hit the basket? Note that most players will use a large initial angle rather than a flat shot because it allows for a larger margin of error. Explicitly show how you follow the steps involved in solving projectile motion problems.

45. In 2007, Michael Carter (U.S.) set a world record in the shot put with a throw of 24.77 m. What was the initial speed of the shot if he released it at a height of 2.10 m and threw it at an angle of 38.0° above the horizontal? (Although the maximum distance for a projectile on level ground is achieved at 45° when air resistance is neglected, the actual angle to achieve maximum range is smaller; thus, 38° will give a longer range than 45° in the shot put.)

46. A basketball player is running at 5.00 m/s directly toward the basket when he jumps into the air to dunk the ball. He maintains his horizontal velocity. (a) What vertical velocity does he need to rise 0.750 m above the floor? (b) How far from the basket (measured in the horizontal direction) must he start his jump to reach his maximum height at the same time as he reaches the basket?

47. A football player punts the ball at a 45.0° angle. Without an effect from the wind, the ball would travel 60.0 m horizontally. (a) What is the initial speed of the ball? (b) When the ball is near its maximum height it experiences a brief gust of wind that reduces its horizontal velocity by 1.50 m/s. What distance does the ball travel horizontally?

48. Prove that the trajectory of a projectile is parabolic, having the form \(y = ax + bx^2 \). To obtain this expression, solve the equation \(x = v_0 t \) for \(t \) and substitute it into the expression for \(y = v_0 t - (1/2)gt^2 \) (These equations describe the \(x \) and \(y \) positions of a projectile that starts at the origin.) You should obtain an equation of the form \(y = ax + bx^2 \) where \(a \) and \(b \) are constants.

49. Derive \(R = \frac{v_0^2 \sin 2\theta_0}{g} \) for the range of a projectile on level ground by finding the time \(t \) at which \(y \) becomes zero and substituting this value of \(t \) into the expression for \(x - x_0 \), noting that \(R = x - x_0 \)

50. Unreasonable Results (a) Find the maximum range of a super cannon that has a muzzle velocity of 4.0 km/s. (b) What is unreasonable about the range you found? (c) Is the premise unreasonable or is the available equation inapplicable? Explain your answer. (d) If such a muzzle velocity could be obtained, discuss the effects of air resistance, thinning air with altitude, and the curvature of the Earth on the range of the super cannon.

51. Construct Your Own Problem Consider a ball tossed over a fence. Construct a problem in which you calculate the ball's needed initial velocity to just clear the fence. Among the things to determine are; the height of the fence, the distance to the fence from the point of release of the ball, and the height at which the ball is released. You should also consider whether it is possible to choose the initial speed for the ball and just calculate the angle at which it is thrown. Also examine the possibility of multiple solutions given the distances and heights you have chosen.
4 DYNAMICS: FORCE AND NEWTON'S LAWS OF MOTION

Chapter Outline

4.1. Development of Force Concept
- Understand the definition of force.

4.2. Newton’s First Law of Motion: Inertia
- Define mass and inertia.
- Understand Newton’s first law of motion.

4.3. Newton’s Second Law of Motion: Concept of a System
- Define net force, external force, and system.
- Understand Newton’s second law of motion.
- Apply Newton’s second law to determine the weight of an object.

4.4. Newton’s Third Law of Motion: Symmetry in Forces
- Understand Newton’s third law of motion.
- Apply Newton’s third law to define systems and solve problems of motion.

4.5. Normal, Tension, and Other Examples of Forces
- Define normal and tension forces.
- Apply Newton’s laws of motion to solve problems involving a variety of forces.
- Use trigonometric identities to resolve weight into components.

Introduction to Dynamics: Newton’s Laws of Motion

Motion draws our attention. Motion itself can be beautiful, causing us to marvel at the forces needed to achieve spectacular motion, such as that of a dolphin jumping out of the water, or a pole vaulter, or the flight of a bird, or the orbit of a satellite. The study of motion is kinematics, but kinematics only describes the way objects move—their velocity and their acceleration. **Dynamics** considers the forces that affect the motion of moving objects and systems. Newton’s laws of motion are the foundation of dynamics. These laws provide an example of the breadth and simplicity of principles under which nature functions. They are also universal laws in that they apply to similar situations on Earth as well as in space.
Issac Newton’s (1642–1727) laws of motion were just one part of the monumental work that has made him legendary. The development of Newton’s laws marks the transition from the Renaissance into the modern era. This transition was characterized by a revolutionary change in the way people thought about the physical universe. For many centuries natural philosophers had debated the nature of the universe based largely on certain rules of logic with great weight given to the thoughts of earlier classical philosophers such as Aristotle (384–322 BC). Among the many great thinkers who contributed to this change were Newton and Galileo.

![Image of Newton's Principia Mathematica](https://legacy.cnx.org/content/m42525/latest)

Figure 4.2 Issac Newton’s monumental work, *Philosophiae Naturalis Principia Mathematica*, was published in 1687. It proposed scientific laws that are still used today to describe the motion of objects. (credit: Service commun de la documentation de l’Université de Strasbourg)

Galileo was instrumental in establishing observation as the absolute determinant of truth, rather than “logical” argument. Galileo’s use of the telescope was his most notable achievement in demonstrating the importance of observation. He discovered moons orbiting Jupiter and made other observations that were inconsistent with certain ancient ideas and religious dogma. For this reason, and because of the manner in which he dealt with those in authority, Galileo was tried by the Inquisition and punished. He spent the final years of his life under a form of house arrest. Because others before Galileo had also made discoveries by observing the nature of the universe, and because repeated observations verified those of Galileo, his work could not be suppressed or denied. After his death, his work was verified by others, and his ideas were eventually accepted by the church and scientific communities.

Galileo also contributed to the formation of what is now called Newton’s first law of motion. Newton made use of the work of his predecessors, which enabled him to develop laws of motion, discover the law of gravity, invent calculus, and make great contributions to the theories of light and color. It is amazing that many of these developments were made with Newton working alone, without the benefit of the usual interactions that take place among scientists today.

It was not until the advent of modern physics early in the 20th century that it was discovered that Newton’s laws of motion produce a good approximation to motion only when the objects are moving at speeds much, much less than the speed of light and when those objects are larger than the size of most molecules (about 10^{-9} m in diameter). These constraints define the realm of classical mechanics, as discussed in *Introduction to the Nature of Science and Physics*. At the beginning of the 20th century, Albert Einstein (1879–1955) developed the theory of relativity and, along with many other scientists, developed quantum theory. This theory does not have the constraints present in classical physics. All of the situations we consider in this chapter, and all those preceding the introduction of relativity in *Special Relativity* ([link](https://legacy.cnx.org/content/m42525/latest)), are in the realm of classical physics.

Making Connections: Past and Present Philosophy

The importance of observation and the concept of cause and effect were not always so entrenched in human thinking. This realization was a part of the evolution of modern physics from natural philosophy. The achievements of Galileo, Newton, Einstein, and others were key milestones in the history of scientific thought. Most of the scientific theories that are described in this book descended from the work of these scientists.

4.1 Development of Force Concept

Dynamics is the study of the forces that cause objects and systems to move. To understand this, we need a working definition of force. Our intuitive definition of force—that is, a push or a pull—is a good place to start. We know that a push or pull has both magnitude and direction (therefore, it is a vector quantity) and can vary considerably in each regard. For example, a cannon exerts a strong force on a cannonball that is launched into the air. In contrast, Earth exerts only a tiny downward pull on a flea. Our everyday experiences also give us a good idea of how multiple forces add. If two people push in different directions on a third person, as illustrated in **Figure 4.3**, we might expect the total force to be in the direction shown. Since force is a vector, it adds just like other vectors, as illustrated in **Figure 4.3**(a) for two ice skaters. Forces, like other vectors, are represented by arrows and can be added using the familiar head-to-tail method or by trigonometric methods. These ideas were developed in **Two-Dimensional Kinematics**.
Figure 4.3 Part (a) shows an overhead view of two ice skaters pushing on a third. Forces are vectors and add like other vectors, so the total force on the third skater is in the direction shown. In part (b), we see a free-body diagram representing the forces acting on the third skater.

Figure 4.3(b) is our first example of a free-body diagram, which is a technique used to illustrate all the external forces acting on a body. The body is represented by a single isolated point (or free body), and only those forces acting on the body from the outside (external forces) are shown. (These forces are the only ones shown, because only external forces acting on the body affect its motion. We can ignore any internal forces within the body.) Free-body diagrams are very useful in analyzing forces acting on a system and are employed extensively in the study and application of Newton’s laws of motion.

A more quantitative definition of force can be based on some standard force, just as distance is measured in units relative to a standard distance. One possibility is to stretch a spring a certain fixed distance, as illustrated in Figure 4.4, and use the force it exerts to pull itself back to its relaxed shape—called a restoring force—as a standard. The magnitude of all other forces can be stated as multiples of this standard unit of force. Many other possibilities exist for standard forces. (One that we will encounter in Magnetism is the magnetic force between two wires carrying electric current.) Some alternative definitions of force will be given later in this chapter.

![Free-body diagram](image)

Figure 4.4 The force exerted by a stretched spring can be used as a standard unit of force. (a) This spring has a length Δx when undistorted. (b) When stretched a distance Δx, the spring exerts a restoring force, F_{restore}, which is reproducible. (c) A spring scale is one device that uses a spring to measure force. The force F_{restore} is exerted on whatever is attached to the hook. Here F_{restore} has a magnitude of 6 units in the force standard being employed.

Take-Home Experiment: Force Standards

To investigate force standards and cause and effect, get two identical rubber bands. Hang one rubber band vertically on a hook. Find a small household item that could be attached to the rubber band using a paper clip, and use this item as a weight to investigate the stretch of the rubber band. Measure the amount of stretch produced in the rubber band with one, two, and four of these (identical) items suspended from the rubber band. What is the relationship between the number of items and the amount of stretch? How large a stretch would you expect for the same number of items suspended from two rubber bands? What happens to the amount of stretch of the rubber band (with the weights attached) if the weights are also pushed to the side with a pencil?

4.2 Newton’s First Law of Motion: Inertia

Experience suggests that an object at rest will remain at rest if left alone, and that an object in motion tends to slow down and stop unless some effort is made to keep it moving. What Newton’s first law of motion states, however, is the following:

Newton’s First Law of Motion

A body at rest remains at rest, or, if in motion, remains in motion at a constant velocity unless acted on by a net external force.

Note the repeated use of the verb “remains.” We can think of this law as preserving the status quo of motion.

Rather than contradicting our experience, Newton’s first law of motion states that there must be a cause (which is a net external force) for there to be any change in velocity (either a change in magnitude or direction). We will define net external force in the next section. An object sliding across a table or floor slows down due to the net force of friction acting on the object. If friction disappeared, would the object still slow down?

The idea of cause and effect is crucial in accurately describing what happens in various situations. For example, consider what happens to an object sliding along a rough horizontal surface. The object quickly grinds to a halt. If we spray the surface with talcum powder to make the surface smoother,
the object slides farther. If we make the surface even smoother by rubbing lubricating oil on it, the object slides farther yet. Extrapolating to a frictionless surface, we can imagine the object sliding in a straight line indefinitely. Friction is thus the cause of the slowing (consistent with Newton’s first law). The object would not slow down at all if friction were completely eliminated. Consider an air hockey table. When the air is turned off, the puck slides only a short distance before friction slows it to a stop. However, when the air is turned on, it creates a nearly frictionless surface, and the puck glides long distances without slowing down. Additionally, if we know enough about the friction, we can accurately predict how quickly the object will slow down. Friction is an external force.

Newton’s first law is completely general and can be applied to anything from an object sliding on a table to a satellite in orbit to blood pumped from the heart. Experiments have thoroughly verified that any change in velocity (speed or direction) must be caused by an external force. The idea of generally applicable or universal laws is important not only here—it is a basic feature of all laws of physics. Identifying these laws is like recognizing patterns in nature from which further patterns can be discovered. The genius of Galileo, who first developed the idea for the first law, and Newton, who clarified it, was to ask the fundamental question, “What is the cause?” Thinking in terms of cause and effect is a worldview fundamentally different from the typical ancient Greek approach when questions such as “Why does a tiger have stripes?” would have been answered in Aristotelian fashion, “That is the nature of the beast.” True perhaps, but not a useful insight.

Mass

The property of a body to remain at rest or to remain in motion with constant velocity is called inertia. Newton’s first law is often called the law of inertia. As we know from experience, some objects have more inertia than others. It is obviously more difficult to change the motion of a large boulder than that of a basketball, for example. The inertia of an object is measured by its mass. Roughly speaking, mass is a measure of the amount of “stuff” (or matter) in something. The quantity or amount of matter in an object is determined by the numbers of atoms and molecules of various types it contains. Unlike weight, mass does not vary with location. The mass of an object is the same on Earth, in orbit, or on the surface of the Moon. In practice, it is very difficult to count and identify all of the atoms and molecules in an object, so masses are not often determined in this manner. Operationally, the masses of objects are determined by comparison with the standard kilogram.

Check Your Understanding

Which has more mass: a kilogram of cotton balls or a kilogram of gold?

Solution

They are equal. A kilogram of one substance is equal in mass to a kilogram of another substance. The quantities that might differ between them are volume and density.

4.3 Newton’s Second Law of Motion: Concept of a System

Newton’s second law of motion is closely related to Newton’s first law of motion. It mathematically states the cause and effect relationship between force and changes in motion. Newton’s second law of motion is more quantitative and is used extensively to calculate what happens in situations involving a force. Before we can write down Newton’s second law as a simple equation giving the exact relationship of force, mass, and acceleration, we need to sharpen some ideas that have already been mentioned.

First, what do we mean by a change in motion? The answer is that a change in motion is equivalent to a change in velocity. A change in velocity means, by definition, that there is an acceleration. Newton’s first law says that a net external force causes a change in motion; thus, we see that a net external force causes acceleration.

Another question immediately arises. What do we mean by an external force? An intuitive notion of external is correct—an external force acts from outside the system of interest. For example, in Figure 4.5(a) the system of interest is the wagon plus the child in it. The two forces exerted by the other children are external forces. An internal force acts between elements of the system. Again looking at Figure 4.5(a), the force the child in the wagon exerts to hang onto the wagon is an internal force between elements of the system of interest. Only external forces affect the motion of a system, according to Newton’s first law. (The internal forces actually cancel, as we shall see in the next section.) You must define the boundaries of the system before you can determine which forces are external. Sometimes the system is obvious, whereas other times identifying the boundaries of a system is more subtle. The concept of a system is fundamental to many areas of physics, as is the correct application of Newton’s laws. This concept will be revisited many times on our journey through physics.
Figure 4.5 Different forces exerted on the same mass produce different accelerations. (a) Two children push a wagon with a child in it. Arrows representing all external forces are shown. The system of interest is the wagon and its rider. The weight \(w \) of the system and the support of the ground \(N \) are also shown for completeness and are assumed to cancel. The vector \(f \) represents the friction acting on the wagon, and it acts to the left, opposing the motion of the wagon. (b) All of the external forces acting on the system add together to produce a net force, \(F_{\text{net}} \). The free-body diagram shows all of the forces acting on the system of interest. The dot represents the center of mass of the system. Each force vector extends from this dot. Because there are two forces acting to the right, we draw the vectors collinearly. (c) A larger net external force produces a larger acceleration (\(a' > a \)) when an adult pushes the child.

Now, it seems reasonable that acceleration should be directly proportional to and in the same direction as the net (total) external force acting on a system. This assumption has been verified experimentally and is illustrated in Figure 4.5. In part (a), a smaller force causes a smaller acceleration than the larger force illustrated in part (c). For completeness, the vertical forces are also shown; they are assumed to cancel since there is no acceleration in the vertical direction. The vertical forces are the weight \(w \) and the support of the ground \(N \), and the horizontal force \(f \) represents the force of friction. These will be discussed in more detail in later sections. For now, we will define friction as a force that opposes the motion past each other of objects that are touching. Figure 4.5(b) shows how vectors representing the external forces add together to produce a net force, \(F_{\text{net}} \).

To obtain an equation for Newton's second law, we first write the relationship of acceleration and net external force as the proportionality

\[
a \propto F_{\text{net}}. \tag{4.1}
\]

where the symbol \(\propto \) means “proportional to,” and \(F_{\text{net}} \) is the net external force. (The net external force is the vector sum of all external forces and can be determined graphically, using the head-to-tail method, or analytically, using components. The techniques are the same as for the addition of other vectors, and are covered in Two-Dimensional Kinematics.) This proportionality states what we have said in words—acceleration is directly proportional to the net external force. Once the system of interest is chosen, it is important to identify the external forces and ignore the internal ones. It is a tremendous simplification not to have to consider the numerous internal forces acting between objects within the system, such as muscular forces within the child’s body, let alone the myriad of forces between atoms in the objects, but by doing so, we can easily solve some very complex problems with only minimal error due to our simplification.

Now, it also seems reasonable that acceleration should be inversely proportional to the mass of the system. In other words, the larger the mass (the inertia), the smaller the acceleration produced by a given force. And indeed, as illustrated in Figure 4.6, the same net external force applied to a car produces a much smaller acceleration than when applied to a basketball. The proportionality is written as

\[
a \propto \frac{1}{m}. \tag{4.2}
\]

where \(m \) is the mass of the system. Experiments have shown that acceleration is exactly inversely proportional to mass, just as it is exactly linearly proportional to the net external force.
The free-body diagrams for both objects are the same.

\[\text{Figure 4.6} \text{ The same force exerted on systems of different masses produces different accelerations. (a) A basketball player pushes on a basketball to make a pass. (The effect of gravity on the ball is ignored.) (b) The same player exerts an identical force on a stalled SUV and produces a far smaller acceleration (even if friction is negligible). (c) The free-body diagrams are identical, permitting direct comparison of the two situations. A series of patterns for the free-body diagram will emerge as you do more problems.} \]

It has been found that the acceleration of an object depends only on the net external force and the mass of the object. Combining the two proportionalities just given yields Newton’s second law of motion.

Newton’s Second Law of Motion

The acceleration of a system is directly proportional to and in the same direction as the net external force acting on the system, and inversely proportional to its mass.

In equation form, Newton’s second law of motion is

\[\mathbf{a} = \frac{\mathbf{F}_{\text{net}}}{m}. \]

This is often written in the more familiar form

\[F_{\text{net}} = ma. \]

When only the magnitude of force and acceleration are considered, this equation is simply

\[F_{\text{net}} = ma. \]

Although these last two equations are really the same, the first gives more insight into what Newton’s second law means. The law is a cause and effect relationship among three quantities that is not simply based on their definitions. The validity of the second law is completely based on experimental verification.

Units of Force

\(F_{\text{net}} = ma \) is used to define the units of force in terms of the three basic units for mass, length, and time. The SI unit of force is called the **newton** (abbreviated N) and is the force needed to accelerate a 1-kg system at the rate of 1 m/s². That is, since \(F_{\text{net}} = ma \),

\[1 \text{ N} = 1 \text{ kg} \cdot \text{m/s}^2. \]

While almost the entire world uses the newton for the unit of force, in the United States the most familiar unit of force is the pound (lb), where \(1 \text{ N} = 0.225 \text{ lb} \).

Weight and the Gravitational Force

When an object is dropped, it accelerates toward the center of Earth. Newton’s second law states that a net force on an object is responsible for its acceleration. If air resistance is negligible, the net force on a falling object is the gravitational force, commonly called its **weight** \(\mathbf{w} \). Weight can be denoted as a vector \(\mathbf{w} \) because it has a direction; down is, by definition, the direction of gravity, and hence weight is a downward force. The magnitude of weight is denoted as \(w \). Galileo was instrumental in showing that, in the absence of air resistance, all objects fall with the same acceleration \(g \). Using Galileo’s result and Newton’s second law, we can derive an equation for weight.

Consider an object with mass \(m \) falling downward toward Earth. It experiences only the downward force of gravity, which has magnitude \(w \). Newton’s second law states that the magnitude of the net external force on an object is \(F_{\text{net}} = ma \).

Since the object experiences only the downward force of gravity, \(F_{\text{net}} = w \). We know that the acceleration of an object due to gravity is \(g \), or \(a = g \). Substituting these into Newton’s second law gives

Weight

This is the equation for **weight**—the gravitational force on a mass \(m \):

\[w = mg. \]

(4.7)
Since $g = 9.80 \text{ m/s}^2$ on Earth, the weight of a 1.0 kg object on Earth is 9.8 N, as we see:

$$w = mg = (1.0 \text{ kg})(9.80 \text{ m/s}^2) = 9.8 \text{ N}. \tag{4.8}$$

Recall that g can take a positive or negative value, depending on the positive direction in the coordinate system. Be sure to take this into consideration when solving problems with weight.

When the net external force on an object is its weight, we say that it is in free-fall. That is, the only force acting on the object is the force of gravity. In the real world, when objects fall downward toward Earth, they are never truly in free-fall because there is always some upward force from the air acting on the object.

The acceleration due to gravity g varies slightly over the surface of Earth, so that the weight of an object depends on location and is not an intrinsic property of the object. Weight varies dramatically if one leaves Earth’s surface. On the Moon, for example, the acceleration due to gravity is only 1.67 m/s^2. A 1.0-kg mass thus has a weight of 9.8 N on Earth and only about 1.7 N on the Moon.

The broadest definition of weight in this sense is that the weight of an object is the gravitational force on it from the nearest large body, such as Earth, the Moon, the Sun, and so on. This is the most common and useful definition of weight in physics. It differs dramatically, however, from the definition of weight used by NASA and the popular media in relation to space travel and exploration. When they speak of “weightlessness” and “microgravity,” they are really referring to the phenomenon we call “free-fall” in physics. We shall use the above definition of weight, and we will make careful distinctions between free-fall and actual weightlessness.

It is important to be aware that weight and mass are very different physical quantities, although they are closely related. Mass is the quantity of matter (how much “stuff”) and does not vary in classical physics, whereas weight is the gravitational force and does vary depending on gravity. It is tempting to equate the two, since most of our examples take place on Earth, where the weight of an object only varies a little with the location of the object. Furthermore, the terms mass and weight are used interchangeably in everyday language; for example, our medical records often show our “weight” in kilograms, but never in the correct units of newtons.

Common Misconceptions: Mass vs. Weight

Mass and weight are often used interchangeably in everyday language. However, in science, these terms are distinctly different from one another. Mass is a measure of how much matter is in an object. The typical measure of mass is the kilogram (or the “slug” in English units). Weight, on the other hand, is a measure of the force of gravity acting on an object. Weight is equal to the mass of an object (m) multiplied by the acceleration due to gravity (g). Like any other force, weight is measured in terms of newtons (or pounds in English units).

Assuming the mass of an object is kept intact, it will remain the same, regardless of its location. However, because weight depends on the acceleration due to gravity, the weight of an object can change when the object enters into a region with stronger or weaker gravity. For example, the acceleration due to gravity on the Moon is 1.67 m/s^2 (which is much less than the acceleration due to gravity on Earth, 9.80 m/s^2). If you measured your weight on Earth and then measured your weight on the Moon, you would find that you “weigh” much less, even though you do not look any skinner. This is because the force of gravity is weaker on the Moon. In fact, when people say that they are “losing weight,” they really mean that they are losing “mass” (which in turn causes them to weigh less).

Take-Home Experiment: Mass and Weight

What do bathroom scales measure? When you stand on a bathroom scale, what happens to the scale? It depresses slightly. The scale contains springs that compress in proportion to your weight—similar to rubber bands expanding when pulled. The springs provide a measure of your weight (for an object which is not accelerating). This is a force in newtons (or pounds). In most countries, the measurement is divided by 9.80 to give a reading in mass units of kilograms. The scale measures weight but is calibrated to provide information about mass. While standing on a bathroom scale, push down on a table next to you. What happens to the reading? Why? Would your scale measure the same “mass” on Earth as on the Moon?

Example 4.1 What Acceleration Can a Person Produce when Pushing a Lawn Mower?

Suppose that the net external force (push minus friction) exerted on a lawn mower is 51 N (about 11 lb) parallel to the ground. The mass of the mower is 24 kg. What is its acceleration?
Strategy

Since \(\mathbf{F}_{\text{net}} \) and \(m \) are given, the acceleration can be calculated directly from Newton’s second law as stated in \(\mathbf{F}_{\text{net}} = ma \).

Solution

The magnitude of the acceleration \(a \) is \(a = \frac{\mathbf{F}_{\text{net}}}{m} \). Entering known values gives

\[
a = \frac{51 \text{ N}}{24 \text{ kg}}
\]

Substituting the units \(\text{kg} \cdot \text{m/s}^2 \) for N yields

\[
a = \frac{51 \text{ kg} \cdot \text{m/s}^2}{24 \text{ kg}} = 2.1 \text{ m/s}^2.
\]

Discussion

The direction of the acceleration is the same direction as that of the net force, which is parallel to the ground. There is no information given in this example about the individual external forces acting on the system, but we can say something about their relative magnitudes. For example, the force exerted by the person pushing the mower must be greater than the friction opposing the motion (since we know the mower moves forward), and the vertical forces must cancel if there is to be no acceleration in the vertical direction (the mower is moving only horizontally). The acceleration found is small enough to be reasonable for a person pushing a mower. Such an effort would not last too long because the person’s top speed would soon be reached.

Example 4.2 What Rocket Thrust Accelerates This Sled?

Prior to manned space flights, rocket sleds were used to test aircraft, missile equipment, and physiological effects on human subjects at high speeds. They consisted of a platform that was mounted on one or two rails and propelled by several rockets. Calculate the magnitude of force exerted by each rocket, called its thrust \(T \), for the four-rocket propulsion system shown in Figure 4.8. The sled’s initial acceleration is \(49 \text{ m/s}^2 \), the mass of the system is 2100 kg, and the force of friction opposing the motion is known to be 650 N.
Figure 4.8 A sled experiences a rocket thrust that accelerates it to the right. Each rocket creates an identical thrust T. As in other situations where there is only horizontal acceleration, the vertical forces cancel. The ground exerts an upward force N on the system that is equal in magnitude and opposite in direction to its weight, w. The system here is the sled, its rockets, and rider, so none of the forces between these objects are considered. The arrow representing friction (f) is drawn larger than scale.

Strategy
Although there are forces acting vertically and horizontally, we assume the vertical forces cancel since there is no vertical acceleration. This leaves us with only horizontal forces and a simpler one-dimensional problem. Directions are indicated with plus or minus signs, with right taken as the positive direction. See the free-body diagram in the figure.

Solution
Since acceleration, mass, and the force of friction are given, we start with Newton’s second law and look for ways to find the thrust of the engines. Since we have defined the direction of the force and acceleration as acting “to the right,” we need to consider only the magnitudes of these quantities in the calculations. Hence we begin with

$$F_{\text{net}} = ma,$$ \hspace{1cm} (4.11)

where F_{net} is the net force along the horizontal direction. We can see from Figure 4.8 that the engine thrusts add, while friction opposes the thrust. In equation form, the net external force is

$$F_{\text{net}} = 4T - f.$$ \hspace{1cm} (4.12)

Substituting this into Newton’s second law gives

$$F_{\text{net}} = ma = 4T - f.$$ \hspace{1cm} (4.13)

Using a little algebra, we solve for the total thrust $4T$:

$$4T = ma + f.$$ \hspace{1cm} (4.14)

Substituting known values yields

$$4T = ma + f = (2100 \text{ kg})(49 \text{ m/s}^2) + 650 \text{ N}.$$ \hspace{1cm} (4.15)

So the total thrust is

$$4T = 1.0 \times 10^5 \text{ N},$$ \hspace{1cm} (4.16)

and the individual thrusts are

$$T = \frac{1.0 \times 10^5 \text{ N}}{4} = 2.6 \times 10^4 \text{ N}.$$ \hspace{1cm} (4.17)

Discussion
The numbers are quite large, so the result might surprise you. Experiments such as this were performed in the early 1960s to test the limits of human endurance and the setup designed to protect human subjects in jet fighter emergency ejections. Speeds of 1000 km/h were obtained, with accelerations of 45 g’s. (Recall that g, the acceleration due to gravity, is 9.80 m/s2. When we say that an acceleration is 45 g’s, it is $45 \times 9.80 \text{ m/s}^2$, which is approximately 440 m/s^2.) While living subjects are not used any more, land speeds of 10,000 km/h have been obtained with rocket sleds. In this example, as in the preceding one, the system of interest is obvious. We will see in later examples that choosing the system of interest is crucial—and the choice is not always obvious.
Newton's second law of motion is more than a definition; it is a relationship among acceleration, force, and mass. It can help us make predictions. Each of those physical quantities can be defined independently, so the second law tells us something basic and universal about nature. The next section introduces the third and final law of motion.

4.4 Newton's Third Law of Motion: Symmetry in Forces

There is a passage in the musical Man of la Mancha that relates to Newton's third law of motion. Sancho, in describing a fight with his wife to Don Quixote, says, “Of course I hit her back, Your Grace, but she’s a lot harder than me and you know what they say, ‘Whether the stone hits the pitcher or the pitcher hits the stone, it’s going to be bad for the pitcher.’” This is exactly what happens whenever one body exerts a force on another—the first also experiences a force (equal in magnitude and opposite in direction). Numerous common experiences, such as stubbing a toe or throwing a ball, confirm this. It is precisely stated in Newton's third law of motion.

Newton's Third Law of Motion

Whenever one body exerts a force on a second body, the first body experiences a force that is equal in magnitude and opposite in direction to the force that it exerts.

This law represents a certain symmetry in nature: Forces always occur in pairs, and one body cannot exert a force on another without experiencing a force itself. We sometimes refer to this law loosely as “action-reaction,” where the force exerted is the action and the force experienced is the reaction. Newton’s third law has practical uses in analyzing the origin of forces and understanding which forces are external to a system.

We can readily see Newton’s third law at work by taking a look at how people move about. Consider a swimmer pushing off from the side of a pool, as illustrated in Figure 4.9. She pushes against the pool wall with her feet and accelerates in the direction opposite to that of her push. The wall has exerted an equal and opposite force back on the swimmer. You might think that two equal and opposite forces would cancel, but they do not because they act on different systems. In this case, there are two systems that we could investigate: the swimmer and the wall. If we select the swimmer to be the system of interest, as in the figure, then \(\mathbf{F}_{\text{wall on feet}} \) is an external force on this system and affects its motion. The swimmer moves in the direction of \(\mathbf{F}_{\text{wall on feet}} \). In contrast, the force \(\mathbf{F}_{\text{feet on wall}} \) acts on the wall and not on our system of interest. Thus \(\mathbf{F}_{\text{feet on wall}} \) does not directly affect the motion of the system and does not cancel \(\mathbf{F}_{\text{wall on feet}} \). Note that the swimmer pushes in the direction opposite to that in which she wishes to move. The reaction to her push is thus in the desired direction.

Figure 4.9 When the swimmer exerts a force \(\mathbf{F}_{\text{feet on wall}} \) on the wall, she accelerates in the direction opposite to that of her push. This means the net external force on her is in the direction opposite to \(\mathbf{F}_{\text{feet on wall}} \). This opposition occurs because, in accordance with Newton’s third law of motion, the wall exerts a force \(\mathbf{F}_{\text{wall on feet}} \) on her, equal in magnitude but in the direction opposite to the one she exerts on it. The line around the swimmer indicates the system of interest. Note that \(\mathbf{F}_{\text{feet on wall}} \) does not act on this system (the swimmer) and, thus, does not cancel \(\mathbf{F}_{\text{wall on feet}} \). Thus the free-body diagram shows only \(\mathbf{F}_{\text{wall on feet}} \), \(\mathbf{w} \), the gravitational force, and \(\mathbf{BF} \), the buoyant force of the water supporting the swimmer’s weight. The vertical forces \(\mathbf{w} \) and \(\mathbf{BF} \) cancel since there is no vertical motion.

Other examples of Newton’s third law are easy to find. As a professor paces in front of a whiteboard, she exerts a force backward on the floor. The floor exerts a reaction force forward on the professor that causes her to accelerate forward. Similarly, a car accelerates because the ground pushes forward on the drive wheels in reaction to the drive wheels pushing backward on the ground. You can see evidence of the wheels pushing backward when tires spin on a gravel road and throw rocks backward. In another example, rockets move forward by expelling gas backward at high velocity. This means the rocket exerts a large backward force on the gas in the rocket combustion chamber, and the gas therefore exerts a large reaction force forward on the rocket. This reaction force is called thrust. It is a common misconception that rockets propel themselves by pushing on the ground or on the air behind them. They actually work better in a vacuum, where they can more readily expel the exhaust gases. Helicopters similarly create lift by pushing air down, thereby experiencing an upward reaction force. Birds and airplanes also fly by exerting force on air in a direction opposite to that of whatever force they need. For example, the wings of a bird force air downward and backward in order to get lift and move forward. An octopus propels itself in the water by ejecting water through a funnel from its body, similar to a jet ski. In a situation similar to Sancho’s, professional cage fighters experience reaction forces when they punch, sometimes breaking their hand by hitting an opponent’s body.
Example 4.3 Getting Up To Speed: Choosing the Correct System

A physics professor pushes a cart of demonstration equipment to a lecture hall, as seen in Figure 4.10. Her mass is 65.0 kg, the cart’s is 12.0 kg, and the equipment’s is 7.0 kg. Calculate the acceleration produced when the professor exerts a backward force of 150 N on the floor. All forces opposing the motion, such as friction on the cart’s wheels and air resistance, total 24.0 N.

Figure 4.10 A professor pushes a cart of demonstration equipment. The lengths of the arrows are proportional to the magnitudes of the forces (except for the forces acting on the outside world. System 2 is chosen for this example so that \(F_{\text{prof}} \) will be an external force and enter into Newton’s second law. Note that the free-body diagrams, which allow us to apply Newton’s second law, vary with the system chosen.

Strategy

Since they accelerate as a unit, we define the system to be the professor, cart, and equipment. This is System 1 in Figure 4.10. The professor pushes backward with a force \(F_{\text{floor}} \) of 150 N. According to Newton’s third law, the floor exerts a forward reaction force \(F_{\text{floor}} \) of 150 N on System 1. Because all motion is horizontal, we can assume there is no net force in the vertical direction. The problem is therefore one-dimensional along the horizontal direction. As noted, \(f \) opposes the motion and is thus in the opposite direction of \(F_{\text{floor}} \). Note that we do not include the forces \(F_{\text{prof}} \) or \(F_{\text{cart}} \) because these are internal forces, and we do not include \(F_{\text{foot}} \) because it acts on the floor, not on the system. There are no other significant forces acting on System 1. If the net external force can be found from all this information, we can use Newton’s second law to find the acceleration as requested. See the free-body diagram in the figure.

Solution

Newton’s second law is given by

\[
a = \frac{F_{\text{net}}}{m}.
\]

The net external force on System 1 is deduced from Figure 4.10 and the discussion above to be

\[
F_{\text{net}} = F_{\text{floor}} - f = 150 \, \text{N} - 24.0 \, \text{N} = 126 \, \text{N}.
\]

The mass of System 1 is

\[
m = (65.0 + 12.0 + 7.0) \, \text{kg} = 84 \, \text{kg}.
\]

These values of \(F_{\text{net}} \) and \(m \) produce an acceleration of

\[
a = \frac{F_{\text{net}}}{m} = \frac{126 \, \text{N}}{84 \, \text{kg}} = 1.5 \, \text{m/s}^2.
\]

Discussion

None of the forces between components of System 1, such as between the professor’s hands and the cart, contribute to the net external force because they are internal to System 1. Another way to look at this is to note that forces between components of a system cancel because they are equal in magnitude and opposite in direction. For example, the force exerted by the professor on the cart results in an equal and opposite
force back on her. In this case both forces act on the same system and, therefore, cancel. Thus internal forces (between components of a system) cancel. Choosing System 1 was crucial to solving this problem.

Example 4.4 Force on the Cart—Choosing a New System

Calculate the force the professor exerts on the cart in Figure 4.10 using data from the previous example if needed.

Strategy
If we now define the system of interest to be the cart plus equipment (System 2 in Figure 4.10), then the net external force on System 2 is the force the professor exerts on the cart minus friction. The force she exerts on the cart, \(F_{\text{prof}} \), is an external force acting on System 2. \(F_{\text{prof}} \) was internal to System 1, but it is external to System 2 and will enter Newton’s second law for System 2.

Solution
Newton’s second law can be used to find \(F_{\text{prof}} \). Starting with

\[
a = \frac{F_{\text{net}}}{m}
\]
(4.22)

and noting that the magnitude of the net external force on System 2 is

\[
F_{\text{net}} = F_{\text{prof}} - f,
\]
(4.23)

we solve for \(F_{\text{prof}} \), the desired quantity:

\[
F_{\text{prof}} = F_{\text{net}} + f.
\]
(4.24)

The value of \(f \) is given, so we must calculate net \(F_{\text{net}} \). That can be done since both the acceleration and mass of System 2 are known. Using Newton’s second law we see that

\[
F_{\text{net}} = ma,
\]
(4.25)

where the mass of System 2 is 19.0 kg (\(m = 12.0 \text{ kg} + 7.0 \text{ kg} \)) and its acceleration was found to be \(a = 1.5 \text{ m/s}^2 \) in the previous example. Thus,

\[
F_{\text{net}} = ma,
\]
(4.26)

\[
F_{\text{net}} = (19.0 \text{ kg})(1.5 \text{ m/s}^2) = 29 \text{ N}.
\]
(4.27)

Now we can find the desired force:

\[
F_{\text{prof}} = F_{\text{net}} + f,
\]
(4.28)

\[
F_{\text{prof}} = 29 \text{ N} + 24.0 \text{ N} = 53 \text{ N}.
\]
(4.29)

Discussion
It is interesting that this force is significantly less than the 150-N force the professor exerted backward on the floor. Not all of that 150-N force is transmitted to the cart; some of it accelerates the professor.

The choice of a system is an important analytical step both in solving problems and in thoroughly understanding the physics of the situation (which is not necessarily the same thing).

PhET Explorations: Gravity Force Lab

Visualize the gravitational force that two objects exert on each other. Change properties of the objects in order to see how it changes the gravity force.

PhET Interactive Simulation

Figure 4.11 Gravity Force Lab [http://legacy.cnx.org/content/m42074/1.5/gravity-force-lab_en.jar]

4.5 Normal, Tension, and Other Examples of Forces

Forces are given many names, such as push, pull, thrust, lift, weight, friction, and tension. Traditionally, forces have been grouped into several categories and given names relating to their source, how they are transmitted, or their effects. The most important of these categories are discussed in this section, together with some interesting applications. Further examples of forces are discussed later in this text.
Normal Force

Weight (also called force of gravity) is a pervasive force that acts at all times and must be counteracted to keep an object from falling. You definitely notice that you must support the weight of a heavy object by pushing up on it when you hold it stationary, as illustrated in Figure 4.12(a). But how do inanimate objects like a table support the weight of a mass placed on them, such as shown in Figure 4.12(b)? When the bag of dog food is placed on the table, the table actually sags slightly under the load. This would be noticeable if the load were placed on a card table, but even rigid objects deform when a force is applied to them. Unless the object is deformed beyond its limit, it will exert a restoring force much like a deformed spring (or trampoline or diving board). The greater the deformation, the greater the restoring force. So when the load is placed on the table, the table sags until the restoring force becomes as large as the weight of the load. At this point the net external force on the load is zero. That is the situation when the load is stationary on the table. The table sags quickly, and the sag is slight so we do not notice it. But it is similar to the sagging of a trampoline when you climb onto it.

![Free-body diagrams](image)

Figure 4.12 (a) The person holding the bag of dog food must supply an upward force \(F_{\text{hand}} \) equal in magnitude and opposite in direction to the weight of the food \(w \). (b) The card table sags when the dog food is placed on it, much like a stiff trampoline. Elastic restoring forces in the table grow as it sags until they supply a force \(N \) equal in magnitude and opposite in direction to the weight of the load.

We must conclude that whatever supports a load, be it animate or not, must supply an upward force equal to the weight of the load, as we assumed in a few of the previous examples. If the force supporting a load is perpendicular to the surface of contact between the load and its support, this force is defined to be a **normal force** and here is given the symbol \(N \). (This is not the unit for force N.) The word normal means perpendicular to a surface. The normal force can be less than the object’s weight if the object is on an incline, as you will see in the next example.

Common Misconception: Normal Force (N) vs. Newton (N)

In this section we have introduced the quantity normal force, which is represented by the variable \(N \). This should not be confused with the symbol for the newton, which is also represented by the letter N. These symbols are particularly important to distinguish because the units of a normal force (\(N \)) happen to be newtons (N). For example, the normal force \(N \) that the floor exerts on a chair might be \(N = 100 \) N. One important difference is that normal force is a vector, while the newton is simply a unit. Be careful not to confuse these letters in your calculations! You will encounter more similarities among variables and units as you proceed in physics. Another example of this is the quantity work (\(W \)) and the unit watts (W).

Example 4.5 Weight on an Incline, a Two-Dimensional Problem

Consider the skier on a slope shown in Figure 4.13. Her mass including equipment is 60.0 kg. (a) What is her acceleration if friction is negligible? (b) What is her acceleration if friction is known to be 45.0 N?
Figure 4.13 Since motion and friction are parallel to the slope, it is most convenient to project all forces onto a coordinate system where one axis is parallel to the slope and the other is perpendicular (axes shown to left of skier). N is perpendicular to the slope and \(f \) is parallel to the slope, but \(\mathbf{w} \) has components along both axes, namely \(\mathbf{w}_\perp \) and \(\mathbf{w}_|| \). N is equal in magnitude to \(\mathbf{w}_\perp \), so that there is no motion perpendicular to the slope, but \(f \) is less than \(\mathbf{w}_|| \), so that there is a downslope acceleration (along the parallel axis).

Strategy

This is a two-dimensional problem, since the forces on the skier (the system of interest) are not parallel. The approach we have used in two-dimensional kinematics also works very well here. Choose a convenient coordinate system and project the vectors onto its axes, creating two connected one-dimensional problems to solve. The most convenient coordinate system for motion on an incline is one that has one coordinate parallel to the slope and one perpendicular to the slope. (Remember that motions along mutually perpendicular axes are independent.) We use the symbols \(\perp \) and \(|| \) to represent perpendicular and parallel, respectively. This choice of axes simplifies this type of problem, because there is no motion perpendicular to the slope and because friction is always parallel to the surface between two objects. The only external forces acting on the system are the skier’s weight, friction, and the support of the slope, respectively labeled \(\mathbf{w} \), \(\mathbf{f} \), and \(\mathbf{N} \) in Figure 4.13. \(\mathbf{N} \) is always perpendicular to the slope, and \(\mathbf{f} \) is parallel to it. But \(\mathbf{w} \) is not in the direction of either axis, and so the first step we take is to project it into components along the chosen axes, defining \(\mathbf{w}_|| \) to be the component of weight parallel to the slope and \(\mathbf{w}_\perp \) the component of weight perpendicular to the slope. Once this is done, we can consider the two separate problems of forces parallel to the slope and forces perpendicular to the slope.

Solution

The magnitude of the component of the weight parallel to the slope is \(\mathbf{w}_|| = w \sin (25^\circ) = mg \sin (25^\circ) \), and the magnitude of the component of the weight perpendicular to the slope is \(\mathbf{w}_\perp = w \cos (25^\circ) = mg \cos (25^\circ) \).

(a) Neglecting friction. Since the acceleration is parallel to the slope, we need only consider forces parallel to the slope. (Forces perpendicular to the slope add to zero, since there is no friction in that direction.) The forces parallel to the slope are the amount of the skier’s weight parallel to the slope \(\mathbf{w}_|| \) and friction \(\mathbf{f} \). Using Newton’s second law, with subscripts to denote quantities parallel to the slope,

\[
a_\parallel = \frac{F_{\text{net}}} m
\]

where \(F_{\text{net}} = w \parallel = mg \sin (25^\circ) \), assuming no friction for this part, so that

\[
a_\parallel = \frac{F_{\text{net}}} m = \frac{mg \sin (25^\circ)} m = g \sin (25^\circ)
\]

\[
(9.80 \text{ m/s}^2)(0.4226) = 4.14 \text{ m/s}^2
\]

is the acceleration.

(b) Including friction. We now have a given value for friction, and we know its direction is parallel to the slope and it opposes motion between surfaces in contact. So the net external force is now

\[
F_{\text{net}} = w \parallel - f,
\]

and substituting this into Newton’s second law, \(a_\parallel = \frac{F_{\text{net}}} m \), gives

\[
a_\parallel = \frac{F_{\text{net}}} m = \frac{w \parallel - f} m = \frac{mg \sin (25^\circ) - f} m
\]

We substitute known values to obtain

\[
a_\parallel = \frac{(60.0 \text{ kg})(9.80 \text{ m/s}^2)(0.4226) - 45.0 \text{ N}}{60.0 \text{ kg}}
\]

which yields
which is the acceleration parallel to the incline when there is 45.0 N of opposing friction.

Discussion
Since friction always opposes motion between surfaces, the acceleration is smaller when there is friction than when there is none. In fact, it is a general result that if friction on an incline is negligible, then the acceleration down the incline is \(a = g \sin\theta \), regardless of mass. This is related to the previously discussed fact that all objects fall with the same acceleration in the absence of air resistance. Similarly, all objects, regardless of mass, slide down a frictionless incline with the same acceleration (if the angle is the same).

Resolving Weight into Components

When an object rests on an incline that makes an angle \(\theta \) with the horizontal, the force of gravity acting on the object is divided into two components: a force acting perpendicular to the plane, \(w_\perp \), and a force acting parallel to the plane, \(w_\parallel \). The perpendicular force of weight, \(w_\perp \), is typically equal in magnitude and opposite in direction to the normal force, \(N \). The force acting parallel to the plane, \(w_\parallel \), causes the object to accelerate down the incline. The force of friction, \(f \), opposes the motion of the object, so it acts upward along the plane.

It is important to be careful when resolving the weight of the object into components. If the angle of the incline is at an angle \(\theta \) to the horizontal, then the magnitudes of the weight components are

\[
\begin{align*}
w_\parallel &= w \sin(\theta) = mg \sin(\theta) \\
w_\perp &= w \cos(\theta) = mg \cos(\theta)
\end{align*}
\]

Instead of memorizing these equations, it is helpful to be able to determine them from reason. To do this, draw the right triangle formed by the three weight vectors. Notice that the angle \(\theta \) of the incline is the same as the angle formed between \(w \) and \(w_\perp \). Knowing this property, you can use trigonometry to determine the magnitude of the weight components:

\[
\begin{align*}
\cos(\theta) &= \frac{w_\perp}{w} \\
w_\perp &= w \cos(\theta) = mg \cos(\theta) \\
\sin(\theta) &= \frac{w_\parallel}{w} \\
w_\parallel &= w \sin(\theta) = mg \sin(\theta)
\end{align*}
\]

Take-Home Experiment: Force Parallel

To investigate how a force parallel to an inclined plane changes, find a rubber band, some objects to hang from the end of the rubber band, and a board you can position at different angles. How much does the rubber band stretch when you hang the object from the end of the board? Now place the board at an angle so that the object slides off when placed on the board. How much does the rubber band extend if it is lined up parallel to the board and used to hold the object stationary on the board? Try two more angles. What does this show?

Tension

A **tension** is a force along the length of a medium, especially a force carried by a flexible medium, such as a rope or cable. The word “tension” comes from a Latin word meaning “to stretch.” Not coincidentally, the flexible cords that carry muscle forces to other parts of the body are called tendons. Any flexible connector, such as a string, rope, chain, wire, or cable, can exert pulls only parallel to its length; thus, a force carried by a flexible connector is a tension with direction parallel to the connector. It is important to understand that tension is a pull in a connector. In contrast, consider the phrase: “You can't push a rope.” The tension force pulls outward along the two ends of a rope.

Consider a person holding a mass on a rope as shown in **Figure 4.15**.
Figure 4.15 When a perfectly flexible connector (one requiring no force to bend it) such as this rope transmits a force \(T \), that force must be parallel to the length of the rope, as shown. The pull such a flexible connector exerts is a tension. Note that the rope pulls with equal force but in opposite directions on the hand and the supported mass (neglecting the weight of the rope). This is an example of Newton’s third law. The rope is the medium that carries the equal and opposite forces between the two objects. The tension anywhere in the rope between the hand and the mass is equal. Once you have determined the tension in one location, you have determined the tension at all locations along the rope.

Tension in the rope must equal the weight of the supported mass, as we can prove using Newton’s second law. If the 5.00-kg mass in the figure is stationary, then its acceleration is zero, and thus \(F_{\text{net}} = 0 \). The only external forces acting on the mass are its weight \(w \) and the tension \(T \) supplied by the rope. Thus,

\[
F_{\text{net}} = T - w = 0,
\]

where \(T \) and \(w \) are the magnitudes of the tension and weight and their signs indicate direction, with up being positive here. Thus, just as you would expect, the tension equals the weight of the supported mass:

\[
T = w = mg. \tag{4.42}
\]

For a 5.00-kg mass, then (neglecting the mass of the rope) we see that

\[
T = mg = (5.00 \text{ kg})(9.80 \text{ m/s}^2) = 49.0 \text{ N}. \tag{4.43}
\]

If we cut the rope and insert a spring, the spring would extend a length corresponding to a force of 49.0 N, providing a direct observation and measure of the tension force in the rope.

Flexible connectors are often used to transmit forces around corners, such as in a hospital traction system, a finger joint, or a bicycle brake cable. If there is no friction, the tension is transmitted undiminished. Only its direction changes, and it is always parallel to the flexible connector. This is illustrated in Figure 4.16 (a) and (b).
Example 4.6 What Is the Tension in a Tightrope?

Calculate the tension in the wire supporting the 70.0-kg tightrope walker shown in Figure 4.17.

![Tightrope Walker](image)

Figure 4.17 The weight of a tightrope walker causes a wire to sag by 5.0 degrees. The system of interest here is the point in the wire at which the tightrope walker is standing.

Strategy

As you can see in the figure, the wire is not perfectly horizontal (it cannot be!), but is bent under the person’s weight. Thus, the tension on either side of the person has an upward component that can support his weight. As usual, forces are vectors represented pictorially by arrows having the same directions as the forces and lengths proportional to their magnitudes. The system is the tightrope walker, and the only external forces acting on him are his weight \(w \) and the two tensions \(T_L \) (left tension) and \(T_R \) (right tension), as illustrated. It is reasonable to neglect the weight of the wire itself. The net external force is zero since the system is stationary. A little trigonometry can now be used to find the tensions. One conclusion is possible at the outset—we can see from part (b) of the figure that the magnitudes of the tensions \(T_L \) and \(T_R \) must be equal. This is because there is no horizontal acceleration in the rope, and the only forces acting to the left and right are \(T_L \) and \(T_R \). Thus, the magnitude of those forces must be equal so that they cancel each other out.

Whenever we have two-dimensional vector problems in which no two vectors are parallel, the easiest method of solution is to pick a convenient coordinate system and project the vectors onto its axes. In this case the best coordinate system has one axis horizontal and the other vertical. We call the horizontal the \(x \)-axis and the vertical the \(y \)-axis.

Solution

First, we need to resolve the tension vectors into their horizontal and vertical components. It helps to draw a new free-body diagram showing all of the horizontal and vertical components of each force acting on the system.
Consider the horizontal components of the forces (denoted with a subscript \(x \)): \[F_{\text{net}x} = T_{Lx} - T_{Rx}. \] (4.44)
The net external horizontal force \(F_{\text{net}x} = 0 \), since the person is stationary. Thus, \[F_{\text{net}x} = 0 = T_{Lx} - T_{Rx}. \] (4.45)

Now, observe Figure 4.18. You can use trigonometry to determine the magnitude of \(T_L \) and \(T_R \). Notice that:

\[
\cos (5.0^\circ) = \frac{T_{Lx}}{T_L} \\
T_{Lx} = T_L \cos (5.0^\circ) \\
\cos (5.0^\circ) = \frac{T_{Rx}}{T_R} \\
T_{Rx} = T_R \cos (5.0^\circ).
\]

Equating \(T_{Lx} \) and \(T_{Rx} \):

\[T_L \cos (5.0^\circ) = T_R \cos (5.0^\circ). \] (4.47)

Thus,

\[T_L = T_R = T, \] (4.48)
as predicted. Now, considering the vertical components (denoted by a subscript \(y \)), we can solve for \(T \). Again, since the person is stationary, Newton’s second law implies that net \(F_y = 0 \). Thus, as illustrated in the free-body diagram in Figure 4.18,

\[F_{\text{net}y} = T_{Ly} + T_{Ry} - w = 0. \] (4.49)

Observing Figure 4.18, we can use trigonometry to determine the relationship between \(T_{Ly} \), \(T_{Ry} \), and \(T \). As we determined from the analysis in the horizontal direction, \(T_L = T_R = T \):

\[
\sin (5.0^\circ) = \frac{T_{Ly}}{T_L} \\
T_{Ly} = T_L \sin (5.0^\circ) = T \sin (5.0^\circ) \\
\sin (5.0^\circ) = \frac{T_{Ry}}{T_R} \\
T_{Ry} = T_R \sin (5.0^\circ) = T \sin (5.0^\circ).
\]

Now, we can substitute the values for \(T_{Ly} \) and \(T_{Ry} \), into the net force equation in the vertical direction:

\[F_{\text{net}y} = T_{Ly} + T_{Ry} - w = 0 \] (4.51)

\[
F_{\text{net}y} = T \sin (5.0^\circ) + T \sin (5.0^\circ) - w = 0 \\
2 \ T \sin (5.0^\circ) - w = 0 \\
2 \ T \sin (5.0^\circ) = w
\]

and

\[F_{\text{net}y} = T \sin (5.0^\circ) + T \sin (5.0^\circ) - w = 0 \]

\[2 \ T \sin (5.0^\circ) - w = 0 \]

\[2 \ T \sin (5.0^\circ) = w \]
\[T = \frac{w}{2 \sin (\theta)} = \frac{mg}{2 \sin (\theta)}. \]

so that

\[T = \frac{(70.0 \text{ kg})(9.80 \text{ m/s}^2)}{2(0.0872)}, \]

and the tension is

\[T = 3900 \text{ N}. \]

Discussion

Note that the vertical tension in the wire acts as a normal force that supports the weight of the tightrope walker. The tension is almost six times the 686-N weight of the tightrope walker. Since the wire is nearly horizontal, the vertical component of its tension is only a small fraction of the tension in the wire. The large horizontal components are in opposite directions and cancel, and so most of the tension in the wire is not used to support the weight of the tightrope walker.

If we wish to create a very large tension, all we have to do is exert a force perpendicular to a flexible connector, as illustrated in Figure 4.19. As we saw in the last example, the weight of the tightrope walker acted as a force perpendicular to the rope. We saw that the tension in the roped related to the weight of the tightrope walker in the following way:

\[T = \frac{w}{2 \sin (\theta)}. \]

We can extend this expression to describe the tension \(T \) created when a perpendicular force (\(F_\perp \)) is exerted at the middle of a flexible connector:

\[T = \frac{F_\perp}{2 \sin (\theta)}. \]

Note that \(\theta \) is the angle between the horizontal and the bent connector. In this case, \(T \) becomes very large as \(\theta \) approaches zero. Even the relatively small weight of any flexible connector will cause it to sag, since an infinite tension would result if it were horizontal (i.e., \(\theta = 0 \) and \(\sin \theta = 0 \)). (See Figure 4.19.)

Figure 4.19 We can create a very large tension in the chain by pushing on it perpendicular to its length, as shown. Suppose we wish to pull a car out of the mud when no tow truck is available. Each time the car moves forward, the chain is tightened to keep it as nearly straight as possible. The tension in the chain is given by \(T = \frac{F_\perp}{2 \sin (\theta)} \); since \(\theta \) is small, \(T \) is very large. This situation is analogous to the tightrope walker shown in Figure 4.17, except that the tensions shown here are those transmitted to the car and the tree rather than those acting at the point where \(F_\perp \) is applied.

Figure 4.20 Unless an infinite tension is exerted, any flexible connector—such as the chain at the bottom of the picture—will sag under its own weight, giving a characteristic curve when the weight is evenly distributed along the length. Suspension bridges—such as the Golden Gate Bridge shown in this image—are essentially very heavy flexible connectors. The weight of the bridge is evenly distributed along the length of flexible connectors, usually cables, which take on the characteristic shape. (credit: Leaflet, Wikimedia Commons)
Extended Topic: Real Forces and Inertial Frames

There is another distinction among forces in addition to the types already mentioned. Some forces are real, whereas others are not. **Real forces** are those that have some physical origin, such as the gravitational pull. Contrastingly, **fictitious forces** are those that arise simply because an observer is in an accelerating frame of reference, such as one that rotates (like a merry-go-round) or undergoes linear acceleration (like a car slowing down). For example, if a satellite is heading due north above Earth’s northern hemisphere, then to an observer on Earth it will appear to experience a force to the west that has no physical origin. Of course, what is happening here is that Earth is rotating toward the east and moves east under the satellite. In Earth’s frame this looks like a westward force on the satellite, or it can be interpreted as a violation of Newton’s first law (the law of inertia). An **inertial frame of reference** is one in which all forces are real and, equivalently, one in which Newton’s laws have the simple forms given in this chapter.

Earth’s rotation is slow enough that Earth is nearly an inertial frame. You ordinarily must perform precise experiments to observe fictitious forces and the slight departures from Newton’s laws, such as the effect just described. On the large scale, such as for the rotation of weather systems and ocean currents, the effects can be easily observed.

The crucial factor in determining whether a frame of reference is inertial is whether it accelerates or rotates relative to a known inertial frame. Unless stated otherwise, all phenomena discussed in this text are considered in inertial frames.

All the forces discussed in this section are real forces, but there are a number of other real forces, such as lift and thrust, that are not discussed in this section. They are more specialized, and it is not necessary to discuss every type of force. It is natural, however, to ask where the basic simplicity we seek to find in physics is in the long list of forces. Are some more basic than others? Are some different manifestations of the same underlying force? The answer to both questions is yes, as will be seen in the next (extended) section and in the treatment of modern physics later in the text.

Glossary

acceleration: the rate at which an object's velocity changes over a period of time

dynamics: the study of how forces affect the motion of objects and systems

external force: a force acting on an object or system that originates outside of the object or system

force: a push or pull on an object with a specific magnitude and direction; can be represented by vectors; can be expressed as a multiple of a standard force

free-body diagram: a sketch showing all of the external forces acting on an object or system; the system is represented by a dot, and the forces are represented by vectors extending outward from the dot

free-fall: a situation in which the only force acting on an object is the force due to gravity

friction: a force past each other of objects that are touching; examples include rough surfaces and air resistance

inertia: the tendency of an object to remain at rest or remain in motion

inertial frame of reference: a coordinate system that is not accelerating; all forces acting in an inertial frame of reference are real forces, as opposed to fictitious forces that are observed due to an accelerating frame of reference

law of inertia: see Newton’s first law of motion

mass: the quantity of matter in a substance; measured in kilograms

net external force: the vector sum of all external forces acting on an object or system; causes a mass to accelerate

Newton’s first law of motion: a body at rest remains at rest, or, if in motion, remains in motion at a constant velocity unless acted on by a net external force; also known as the law of inertia

Newton’s second law of motion: the net external force F_{net} on an object with mass m is proportional to and in the same direction as the acceleration of the object, a, and inversely proportional to the mass; defined mathematically as $a = \frac{F_{\text{net}}}{m}$

Newton’s third law of motion: whenever one body exerts a force on a second body, the first body experiences a force that is equal in magnitude and opposite in direction to the force that the first body exerts
normal force: the force that a surface applies to an object to support the weight of the object; acts perpendicular to the surface on which the object rests

system: defined by the boundaries of an object or collection of objects being observed; all forces originating from outside of the system are considered external forces

tension: the pulling force that acts along a medium, especially a stretched flexible connector, such as a rope or cable; when a rope supports the weight of an object, the force on the object due to the rope is called a tension force

thrust: a reaction force that pushes a body forward in response to a backward force; rockets, airplanes, and cars are pushed forward by a thrust reaction force

weight: the force \(w \) due to gravity acting on an object of mass \(m \); defined mathematically as: \(w = mg \), where \(g \) is the magnitude and direction of the acceleration due to gravity

Section Summary

4.1 Development of Force Concept
- **Dynamics** is the study of how forces affect the motion of objects.
- **Force** is a push or pull that can be defined in terms of various standards, and it is a vector having both magnitude and direction.
- **External forces** are any outside forces that act on a body. A free-body diagram is a drawing of all external forces acting on a body.

4.2 Newton’s First Law of Motion: Inertia
- **Newton’s first law of motion** states that a body at rest remains at rest, or, if in motion, remains in motion at a constant velocity unless acted on by a net external force. This is also known as the law of inertia.
- **Inertia** is the tendency of an object to remain at rest or remain in motion. Inertia is related to an object’s mass.
- **Mass** is the quantity of matter in a substance.

4.3 Newton’s Second Law of Motion: Concept of a System
- Acceleration, \(a \), is defined as a change in velocity, meaning a change in its magnitude or direction, or both.
- An external force is one acting on a system from outside the system, as opposed to internal forces, which act between components within the system.
- Newton’s second law of motion states that the acceleration of a system is directly proportional to and in the same direction as the net external force acting on the system, and inversely proportional to its mass.
- In equation form, Newton’s second law of motion is \(a = \frac{F_{\text{net}}}{m} \).
- This is often written in the more familiar form: \(F_{\text{net}} = ma \).
- The weight \(w \) of an object is defined as the force of gravity acting on an object of mass \(m \). The object experiences an acceleration due to gravity \(g \):
 \[w = mg. \]
- If the only force acting on an object is due to gravity, the object is in free fall.
- Friction is a force that opposes the motion past each other of objects that are touching.

4.4 Newton’s Third Law of Motion: Symmetry in Forces
- **Newton’s third law of motion** represents a basic symmetry in nature. It states: Whenever one body exerts a force on a second body, the first body experiences a force that is equal in magnitude and opposite in direction to the force that the first body exerts.
- A **thrust** is a reaction force that pushes a body forward in response to a backward force. Rockets, airplanes, and cars are pushed forward by a thrust reaction force.

4.5 Normal, Tension, and Other Examples of Forces
- When objects rest on a surface, the surface applies a force to the object that supports the weight of the object. This supporting force acts perpendicular to and away from the surface. It is called a normal force, \(N \).
- When objects rest on a non-accelerating horizontal surface, the magnitude of the normal force is equal to the weight of the object:
 \[N = mg. \]
- When objects rest on an inclined plane that makes an angle \(\theta \) with the horizontal surface, the weight of the object can be resolved into components that act perpendicular (\(w_{\perp} \)) and parallel (\(w_{\parallel} \)) to the surface of the plane. These components can be calculated using:
 \[w_{\parallel} = w \sin (\theta) = mg \sin (\theta) \]
 \[w_{\perp} = w \cos (\theta) = mg \cos (\theta). \]
- The pulling force that acts along a stretched flexible connector, such as a rope or cable, is called tension, \(T \). When a rope supports the weight of an object that is at rest, the tension in the rope is equal to the weight of the object:
 \[T = mg. \]
- In any inertial frame of reference (one that is not accelerated or rotated), Newton’s laws have the simple forms given in this chapter and all forces are real forces having a physical origin.
4.1 Development of Force Concept

1. Propose a force standard different from the example of a stretched spring discussed in the text. Your standard must be capable of producing the same force repeatedly.

2. What properties do forces have that allow us to classify them as vectors?

4.2 Newton’s First Law of Motion: Inertia

3. How are inertia and mass related?

4. What is the relationship between weight and mass? Which is an intrinsic, unchanging property of a body?

4.3 Newton’s Second Law of Motion: Concept of a System

5. Which statement is correct? (a) Net force causes motion. (b) Net force causes change in motion. Explain your answer and give an example.

6. Why can we neglect forces such as those holding a body together when we apply Newton’s second law of motion?

7. Explain how the choice of the “system of interest” affects which forces must be considered when applying Newton’s second law of motion.

8. Describe a situation in which the net external force on a system is not zero, yet its speed remains constant.

9. A system can have a nonzero velocity while the net external force on it is zero. Describe such a situation.

10. A rock is thrown straight up. What is the net external force acting on the rock when it is at the top of its trajectory?

11. (a) Give an example of different net external forces acting on the same system to produce different accelerations. (b) Give an example of the same net external force acting on systems of different masses, producing different accelerations. (c) What law accurately describes both effects? State it in words and as an equation.

12. If the acceleration of a system is zero, are no external forces acting on it? What about internal forces? Explain your answers.

13. If a constant, nonzero force is applied to an object, what can you say about the velocity and acceleration of the object?

14. The gravitational force on the basketball in Figure 4.6 is ignored. When gravity is taken into account, what is the direction of the net external force on the basketball—above horizontal, below horizontal, or still horizontal?

4.4 Newton’s Third Law of Motion: Symmetry in Forces

15. When you take off in a jet aircraft, there is a sensation of being pushed back into the seat. Explain why you move backward in the seat—is there really a force backward on you? (The same reasoning explains whiplash injuries, in which the head is apparently thrown backward.)

16. A device used since the 1940s to measure the kick or recoil of the body due to heartbeats is the “ballistocardiograph.” What physics principle(s) are involved here to measure the force of cardiac contraction? How might we construct such a device?

17. Describe a situation in which one system exerts a force on another and, as a consequence, experiences a force that is equal in magnitude and opposite in direction. Which of Newton’s laws of motion apply?

18. Why does an ordinary rifle recoil (kick backward) when fired? The barrel of a recoilless rifle is open at both ends. Describe how Newton’s third law applies when one is fired. Can you safely stand close behind one when it is fired?

19. An American football lineman reasons that it is “senseless” to try to out-push the opposing player, since no matter how hard he pushes he will experience an equal and opposite force from the other player. Use Newton’s laws and draw a free-body diagram of an appropriate system to explain how he can still out-push the opposition if he is strong enough.

20. Newton’s third law of motion tells us that forces always occur in pairs of equal and opposite magnitude. Explain how the choice of the “system of interest” affects whether one such pair of forces cancels.

4.5 Normal, Tension, and Other Examples of Forces

21. If a leg is suspended by a traction setup as shown in Figure 4.22, what is the tension in the rope?
Figure 4.22 A leg is suspended by a traction system in which wires are used to transmit forces. Frictionless pulleys change the direction of the force T without changing its magnitude.

22. In a traction setup for a broken bone, with pulleys and rope available, how might we be able to increase the force along the tibia using the same weight? (See Figure 4.22.) (Note that the tibia is the shin bone shown in this image.)
4.3 Newton’s Second Law of Motion: Concept of a System

You may assume data taken from illustrations is accurate to three digits.

1. A 63.0-kg sprinter starts a race with an acceleration of 4.20 m/s^2. What is the net external force on him?

2. If the sprinter from the previous problem accelerates at that rate for 20 m, and then maintains that velocity for the remainder of the 100-m dash, what will be his time for the race?

3. A cleaner pushes a 4.50-kg laundry cart in such a way that the net external force on it is 60.0 N. Calculate the magnitude of its acceleration.

4. Since astronauts in orbit are apparently weightless, a careful method of measuring their masses is needed to monitor their mass gains or losses to adjust diets. One way to do this is to exert a known force on an astronaut and measure the acceleration produced. Suppose a net external force of 50.0 N is exerted and the astronaut’s acceleration is measured to be 0.893 m/s2. (a) Calculate her mass. (b) By exerting a force on the astronaut, the vehicle in which they orbit experiences an equal and opposite force. Discuss how this would affect the measurement of the astronaut’s acceleration. Propose a method in which recoil of the vehicle is avoided.

5. In Figure 4.7, the net external force on the 24-kg mower is stated to be 51 N. If the force of friction opposing the motion is 24 N, what force F (in newtons) is the person exerting on the mower? Suppose the mower is moving at 1.5 m/s when the force F is removed. How far will the mower go before stopping?

6. The same rocket sled drawn in Figure 4.23 is decelerated at a rate of 196 m/s2. What force is necessary to produce this deceleration? Assume that the rockets are off. The mass of the system is 2100 kg.

7. (a) If the rocket sled shown in Figure 4.24 starts with only one rocket burning, what is the magnitude of its acceleration? Assume that the mass of the system is 2100 kg, the thrust T is 2.4×10^4 N, and the force of friction opposing the motion is known to be 650 N. (b) Why is the acceleration not one-fourth of what it is with all rockets burning?

8. What is the deceleration of the rocket sled if it comes to rest in 1.1 s from a speed of 1000 km/h? (Such deceleration caused one test subject to black out and have temporary blindness.)

9. Suppose two children push horizontally, but in exactly opposite directions, on a third child in a wagon. The first child exerts a force of 75.0 N, the second a force of 90.0 N, friction is 12.0 N, and the mass of the third child plus wagon is 23.0 kg. (a) What is the system of interest if the acceleration of the child in the wagon is to be calculated? (b) Draw a free-body diagram, including all forces acting on the system. (c) Calculate the acceleration. (d) What would the acceleration be if friction were 15.0 N?

10. A powerful motorcycle can produce an acceleration of 3.50 m/s^2 while traveling at 90.0 km/h. At that speed the forces resisting motion, including friction and air resistance, total 400 N. (Air resistance is analogous to air friction. It always opposes the motion of an object.) What is the magnitude of the force the motorcycle exerts backward on the ground to produce its acceleration if the mass of the motorcycle with rider is 245 kg?

11. The rocket sled shown in Figure 4.25 accelerates at a rate of 49.0 m/s2. Its passenger has a mass of 75.0 kg. (a) Calculate the horizontal component of the force the seat exerts against his body. Compare this with his weight by using a ratio. (b) Calculate the direction and magnitude of the total force the seat exerts against his body.

12. Repeat the previous problem for the situation in which the rocket sled decelerates at a rate of 201 m/s2. In this problem, the forces are exerted by the seat and restraining belts.

13. The weight of an astronaut plus his space suit on the Moon is only 250 N. How much do they weigh on Earth? What is the mass on the Moon? On Earth?

14. Suppose the mass of a fully loaded module in which astronauts take off from the Moon is 10,000 kg. The thrust of its engines is 30,000 N. (a) Calculate its the magnitude of acceleration in a vertical takeoff from the Moon. (b) Could it lift off from Earth? If not, why not? If it could, calculate the magnitude of its acceleration.

4.4 Newton’s Third Law of Motion: Symmetry in Forces

15. What net external force is exerted on a 1100-kg artillery shell fired from a battle ship if the shell is accelerated at $2.40 \times 10^4 \text{ m/s}^2$? What is the magnitude of the force exerted on the ship by the artillery shell?

16. A brave but inadequate rugby player is being pushed backward by an opposing player who is exerting a force of 800 N on him. The mass of the losing player plus equipment is 90.0 kg, and he is accelerating at 1.20 m/s2 backward. (a) What is the force of friction between the losing player’s feet and the grass? (b) What force does the winning player exert on the ground to move forward if his mass plus equipment is 110 kg? (c) Draw a sketch of the situation showing the system of interest used to solve each part. For this situation, draw a free-body diagram and write the net force equation.

4.5 Normal, Tension, and Other Examples of Forces

17. Two teams of nine members each engage in a tug of war. Each of the first team’s members has an average mass of 68 kg and exerts an average force of 1350 N horizontally. Each of the second team’s members has an average mass of 73 kg and exerts an average force of 1365 N horizontally. (a) What is magnitude of the acceleration of the two teams? (b) What is the tension in the section of rope between the teams?

18. What force does a trampoline have to apply to a 45.0-kg gymnast to accelerate her straight up at 7.50 m/s2? Note that the answer is independent of the velocity of the gymnast—she can be moving either up or down, or be stationary.
19. (a) Calculate the tension in a vertical strand of spider web if a spider of mass $8.00 \times 10^{-5} \text{ kg}$ hangs motionless on it. (b) Calculate the tension in a horizontal strand of spider web if the same spider sits motionless in the middle of it much like the tightrope walker in Figure 4.17. The strand sags at an angle of 12° below the horizontal. Compare this with the tension in the vertical strand (find their ratio).

20. Suppose a 60.0-kg gymnast climbs a rope. (a) What is the tension in the rope if he climbs at a constant speed? (b) What is the tension in the rope if he accelerates upward at a rate of 1.50 m/s^2?

21. Show that, as stated in the text, a force F_{\perp} exerted on a flexible medium at its center and perpendicular to its length (such as on the tightrope wire in Figure 4.17) gives rise to a tension of magnitude

$$T = \frac{F_{\perp}}{2 \sin (\theta)}.$$

22. Consider the baby being weighed in Figure 4.26. (a) What is the mass of the child and basket if a scale reading of 55 N is observed? (b) What is the tension T_1 in the cord attaching the baby to the scale? (c) What is the tension T_2 in the cord attaching the scale to the ceiling, if the scale has a mass of 0.500 kg? (d) Draw a sketch of the situation indicating the system of interest used to solve each part. The masses of the cords are negligible.

![Figure 4.26 A baby is weighed using a spring scale.](image)
Chapter Outline

5.1. Problem-Solving Strategies
- Understand and apply a problem-solving procedure to solve problems using Newton's laws of motion.

5.2. Further Applications of Newton's Laws of Motion
- Apply problem-solving techniques to solve for quantities in more complex systems of forces.
- Integrate concepts from kinematics to solve problems using Newton's laws of motion.

5.3. Friction
- Discuss the general characteristics of friction.
- Describe the various types of friction.
- Calculate the magnitude of static and kinetic friction.

Introduction: Application of Newton's Laws in Problem Solving

Describe the forces on the hip joint. What means are taken to ensure that this will be a good movable joint? From the photograph (for an adult) in Figure 5.1, estimate the dimensions of the artificial device.
It is difficult to categorize forces into various types. We know that a net force affects the motion, position, and shape of an object. It is useful at this point to look at some particularly interesting and common forces that will provide further applications of Newton's laws of motion. We have in mind forces such as friction.

5.1 Problem-Solving Strategies

Success in problem solving is obviously necessary to understand and apply physical principles, not to mention the more immediate need of passing exams. The basics of problem solving, presented earlier in this text, are followed here, but specific strategies useful in applying Newton's laws of motion are emphasized. These techniques also reinforce concepts that are useful in many other areas of physics. Many problem-solving strategies are stated outright in the worked examples, and so the following techniques should reinforce skills you have already begun to develop.

Problem-Solving Strategy for Newton's Laws of Motion

Step 1. As usual, it is first necessary to identify the physical principles involved. Once it is determined that Newton's laws of motion are involved (if the problem involves forces), it is particularly important to draw a careful sketch of the situation. Such a sketch is shown in Figure 5.2(a). Then, as in Figure 5.2(b), use arrows to represent all forces, label them carefully, and make their lengths and directions correspond to the forces they represent (whenever sufficient information exists).

![Figure 5.2](image)

Figure 5.2 (a) A sketch of Tarzan hanging from a vine. (b) Arrows are used to represent all forces. T is the tension in the vine above Tarzan, F_T is the force he exerts on the vine, and w is his weight. All other forces, such as the nudge of a breeze, are assumed negligible. (c) Suppose we are given the ape man's mass and asked to find the tension in the vine. We then define the system of interest as shown and draw a free-body diagram. F_T is no longer shown, because it is not a force acting on the system of interest; rather, F_T acts on the outside world. (d) Showing only the arrows, the head-to-tail method of addition is used. It is apparent that $T = -w$, if Tarzan is stationary.

Step 2. Identify what needs to be determined and what is known or can be inferred from the problem as stated. That is, make a list of knowns and unknowns. Then carefully determine the system of interest. This decision is a crucial step, since Newton's second law involves only external forces. Once the system of interest has been identified, it becomes possible to determine which forces are external and which are internal, a necessary step to employ Newton's second law. (See Figure 5.2(c).) Newton's third law may be used to identify whether forces are exerted between components of a system (internal) or between the system and something outside (external). As illustrated earlier in this chapter, the system of interest depends on what question we need to answer. This choice becomes easier with practice, eventually developing into an almost unconscious process. Skill in clearly defining systems will be beneficial in later chapters as well.

A diagram showing the system of interest and all of the external forces is called a free-body diagram. Only forces are shown on free-body diagrams, not acceleration or velocity. We have drawn several of these in worked examples. Figure 5.2(c) shows a free-body diagram for the system of interest. Note that no internal forces are shown in a free-body diagram.

Step 3. Once a free-body diagram is drawn, Newton's second law can be applied to solve the problem. This is done in Figure 5.2(d) for a particular situation. In general, once external forces are clearly identified in free-body diagrams, it should be a straightforward task to put them into equation form and solve for the unknown, as done in all previous examples. If the problem is one-dimensional—that is, if all forces are parallel—then they add like scalars. If the problem is two-dimensional, then it must be broken down into a pair of one-dimensional problems. This is done by projecting the force vectors onto a set of axes chosen for convenience. As seen in previous examples, the choice of axes can simplify the problem. For example, when an incline is involved, a set of axes with one axis parallel to the incline and one perpendicular to it is most convenient. It is almost always convenient to make one axis parallel to the direction of motion, if this is known.
Applying Newton’s Second Law

Before you write net force equations, it is critical to determine whether the system is accelerating in a particular direction. If the acceleration is zero in a particular direction, then the net force is zero in that direction. Similarly, if the acceleration is nonzero in a particular direction, then the net force is described by the equation:

\[F_{\text{net}} = ma. \]

For example, if the system is accelerating in the horizontal direction, but it is not accelerating in the vertical direction, then you will have the following conclusions:

\[F_{\text{net}, x} = ma, \]
\[F_{\text{net}, y} = 0. \]

You will need this information in order to determine unknown forces acting in a system.

Step 4. As always, check the solution to see whether it is reasonable. In some cases, this is obvious. For example, it is reasonable to find that friction causes an object to slide down an incline more slowly than when no friction exists. In practice, intuition develops gradually through problem solving, and with experience it becomes progressively easier to judge whether an answer is reasonable. Another way to check your solution is to check the units. If you are solving for force and end up with units of m/s, then you have made a mistake.

5.2 Further Applications of Newton’s Laws of Motion

There are many interesting applications of Newton’s laws of motion, a few more of which are presented in this section. These serve also to illustrate some further subtleties of physics and to help build problem-solving skills.

Example 5.1 Drag Force on a Barge

Suppose two tugboats push on a barge at different angles, as shown in Figure 5.3. The first tugboat exerts a force of \(2.7 \times 10^5 \) N in the \(x \)-direction, and the second tugboat exerts a force of \(3.6 \times 10^5 \) N in the \(y \)-direction.

\[F_x = 2.7 \times 10^5 \text{ N} \]
\[F_y = 3.6 \times 10^5 \text{ N} \]

Figure 5.3 (a) A view from above of two tugboats pushing on a barge. (b) The free-body diagram for the ship contains only forces acting in the plane of the water. It omits the two vertical forces—the weight of the barge and the buoyant force of the water supporting it cancel and are not shown. Since the applied forces are perpendicular, the \(x \)- and \(y \)-axes are in the same direction as \(F_x \) and \(F_y \). The problem quickly becomes a one-dimensional problem along the direction of \(F_{\text{app}} \), since friction is in the direction opposite to \(F_{\text{app}} \).

If the mass of the barge is \(5.0 \times 10^6 \) kg and its acceleration is observed to be \(7.5 \times 10^{-2} \text{ m/s}^2 \) in the direction shown, what is the drag force of the water on the barge resisting the motion? (Note: drag force is a frictional force exerted by fluids, such as air or water. The drag force opposes the motion of the object.)

Strategy

The directions and magnitudes of acceleration and the applied forces are given in Figure 5.3(a). We will define the total force of the tugboats on the barge as \(F_{\text{app}} \) so that:

\[F_{\text{app}} = F_x + F_y \]

Since the barge is flat bottomed, the drag of the water \(F_D \) will be in the direction opposite to \(F_{\text{app}} \), as shown in the free-body diagram in Figure 5.3(b). The system of interest here is the barge, since the forces on it are given as well as its acceleration. Our strategy is to find the magnitude and direction of the net applied force \(F_{\text{app}} \), and then apply Newton’s second law to solve for the drag force \(F_D \).

Solution
Since \(F_x \) and \(F_y \) are perpendicular, the magnitude and direction of \(\mathbf{F}_{\text{app}} \) are easily found. First, the resultant magnitude is given by the Pythagorean theorem:

\[
\mathbf{F}_{\text{app}} = \sqrt{F_x^2 + F_y^2} \tag{5.4}
\]

\[
\mathbf{F}_{\text{app}} = \sqrt{(2.7 \times 10^5 \, \text{N})^2 + (3.6 \times 10^5 \, \text{N})^2} = 4.5 \times 10^5 \, \text{N}.
\]

The angle is given by

\[
\theta = \tan^{-1} \left(\frac{F_y}{F_x} \right) \tag{5.5}
\]

\[
\theta = \tan^{-1} \left(\frac{3.6 \times 10^5 \, \text{N}}{2.7 \times 10^5 \, \text{N}} \right) = 53^\circ,
\]

which we know, because of Newton's first law, is the same direction as the acceleration. \(\mathbf{F}_D \) is in the opposite direction of \(\mathbf{F}_{\text{app}} \), since it acts to slow down the acceleration. Therefore, the net external force is in the same direction as \(\mathbf{F}_{\text{app}} \), but its magnitude is slightly less than \(\mathbf{F}_{\text{app}} \). The problem is now one-dimensional. From Figure 5.3(b), we can see that

\[
\mathbf{F}_{\text{net}} = \mathbf{F}_{\text{app}} - \mathbf{F}_D.
\]

But Newton's second law states that

\[
\mathbf{F}_{\text{net}} = \mathbf{ma}.
\]

Thus,

\[
\mathbf{F}_{\text{app}} - \mathbf{F}_D = \mathbf{ma}.
\]

This can be solved for the magnitude of the drag force of the water \(\mathbf{F}_D \) in terms of known quantities:

\[
\mathbf{F}_D = \mathbf{F}_{\text{app}} - \mathbf{ma}.
\]

Substituting known values gives

\[
\mathbf{F}_D = (4.5 \times 10^5 \, \text{N}) - (5.0 \times 10^6 \, \text{kg})(7.5 \times 10^{-2} \, \text{m/s}^2) = 7.5 \times 10^4 \, \text{N}.
\]

The direction of \(\mathbf{F}_D \) has already been determined to be in the direction opposite to \(\mathbf{F}_{\text{app}} \), or at an angle of 53° south of west.

Discussion

The numbers used in this example are reasonable for a moderately large barge. It is certainly difficult to obtain larger accelerations with tugboats, and small speeds are desirable to avoid running the barge into the docks. Drag is relatively small for a well-designed hull at low speeds, consistent with the answer to this example, where \(\mathbf{F}_D \) is less than 1/600th of the weight of the ship.

In the earlier example of a tightrope walker we noted that the tensions in wires supporting a mass were equal only because the angles on either side were equal. Consider the following example, where the angles are not equal; slightly more trigonometry is involved.

Example 5.2 Different Tensions at Different Angles

Consider the traffic light (mass 15.0 kg) suspended from two wires as shown in Figure 5.4. Find the tension in each wire, neglecting the masses of the wires.
Figure 5.4 A traffic light is suspended from two wires. (b) Some of the forces involved. (c) Only forces acting on the system are shown here. The free-body diagram for the traffic light is also shown. (d) The forces projected onto vertical (y) and horizontal (x) axes. The horizontal components of the tensions must cancel, and the sum of the vertical components of the tensions must equal the weight of the traffic light. (e) The free-body diagram shows the vertical and horizontal forces acting on the traffic light.

Strategy
The system of interest is the traffic light, and its free-body diagram is shown in Figure 5.4(c). The three forces involved are not parallel, and so they must be projected onto a coordinate system. The most convenient coordinate system has one axis vertical and one horizontal, and the vector projections on it are shown in part (d) of the figure. There are two unknowns in this problem (\(T_1\) and \(T_2\)), so two equations are needed to find them. These two equations come from applying Newton’s second law along the vertical and horizontal axes, noting that the net external force is zero along each axis because acceleration is zero.

Solution
First consider the horizontal or x-axis:

\[
F_{\text{net}x} = T_{2x} - T_{1x} = 0.
\]

(5.11)

Thus, as you might expect,

\[
T_{1x} = T_{2x}.
\]

(5.12)

This gives us the following relationship between \(T_1\) and \(T_2\):

\[
T_1 \cos (30^\circ) = T_2 \cos (45^\circ).
\]

(5.13)
Thus,
\[T_2 = (1.225)T_1. \]
(5.14)

Note that \(T_1 \) and \(T_2 \) are not equal in this case, because the angles on either side are not equal. It is reasonable that \(T_2 \) ends up being greater than \(T_1 \), because it is exerted more vertically than \(T_1 \).

Now consider the force components along the vertical or \(y \)-axis:
\[F_{\text{net} y} = T_{1y} + T_{2y} - w = 0. \]
(5.15)

This implies
\[T_{1y} + T_{2y} = w. \]
(5.16)

Substituting the expressions for the vertical components gives
\[T_1 \sin (30^\circ) + T_2 \sin (45^\circ) = w. \]
(5.17)

There are two unknowns in this equation, but substituting the expression for \(T_2 \) in terms of \(T_1 \) reduces this to one equation with one unknown:
\[T_1(0.500) + (1.225T_1)(0.707) = w = mg, \]
(5.18)

which yields
\[(1.366)T_1 = (15.0 \text{ kg})(9.80 \text{ m/s}^2). \]
(5.19)

Solving this last equation gives the magnitude of \(T_1 \) to be
\[T_1 = 108 \text{ N}. \]
(5.20)

Finally, the magnitude of \(T_2 \) is determined using the relationship between them, \(T_2 = 1.225 \ T_1 \), found above. Thus we obtain
\[T_2 = 132 \text{ N}. \]
(5.21)

Discussion

Both tensions would be larger if both wires were more horizontal, and they will be equal if and only if the angles on either side are the same (as they were in the earlier example of a tightrope walker).

The bathroom scale is an excellent example of a normal force acting on a body. It provides a quantitative reading of how much it must push upward to support the weight of an object. But can you predict what you would see on the dial of a bathroom scale if you stood on it during an elevator ride? Will you see a value greater than your weight when the elevator starts up? What about when the elevator moves upward at a constant speed: will the scale still read more than your weight at rest? Consider the following example.

Example 5.3 What Does the Bathroom Scale Read in an Elevator?

Figure 5.5 shows a 75.0-kg man (weight of about 165 lb) standing on a bathroom scale in an elevator. Calculate the scale reading: (a) if the elevator accelerates upward at a rate of \(1.20 \text{ m/s}^2 \), and (b) if the elevator moves upward at a constant speed of 1 m/s.
Figure 5.5 (a) The various forces acting when a person stands on a bathroom scale in an elevator. The arrows are approximately correct for when the elevator is accelerating upward—broken arrows represent forces too large to be drawn to scale. \(T \) is the tension in the supporting cable, \(\mathbf{w} \) is the weight of the person, \(\mathbf{w}_e \) is the weight of the scale, \(\mathbf{F}_s \) is the force of the scale on the person, \(\mathbf{F}_p \) is the force of the person on the scale, \(\mathbf{F}_f \) is the force of the scale on the floor of the elevator, and \(\mathbf{N} \) is the force of the floor upward on the scale. (b) The free-body diagram shows only the external forces acting on the designated system of interest—the person.

Strategy

If the scale is accurate, its reading will equal \(F_p \), the magnitude of the force the person exerts downward on it. Figure 5.5(a) shows the numerous forces acting on the elevator, scale, and person. It makes this one-dimensional problem look much more formidable than if the person is chosen to be the system of interest and a free-body diagram is drawn as in Figure 5.5(b). Analysis of the free-body diagram using Newton’s laws can produce answers to both parts (a) and (b) of this example, as well as some other questions that might arise. The only forces acting on the person are his weight \(\mathbf{w} \) and the upward force of the scale \(\mathbf{F}_s \). According to Newton’s third law \(\mathbf{F}_p \) and \(\mathbf{F}_s \) are equal in magnitude and opposite in direction, so that we need to find \(\mathbf{F}_s \) in order to find what the scale reads. We can do this, as usual, by applying Newton’s second law,

\[
F_{\text{net}} = ma. \tag{5.22}
\]

From the free-body diagram we see that \(F_{\text{net}} = F_s - w \), so that

\[
F_s - w = ma. \tag{5.23}
\]

Solving for \(F_s \) gives an equation with only one unknown:

\[
F_s = ma + w, \tag{5.24}
\]

or, because \(w = mg \), simply

\[
F_s = ma + mg. \tag{5.25}
\]

No assumptions were made about the acceleration, and so this solution should be valid for a variety of accelerations in addition to the ones in this exercise.

Solution for (a)

In this part of the problem, \(a = 1.20 \text{ m/s}^2 \), so that

\[
F_s = (75.0 \text{ kg})(1.20 \text{ m/s}^2) + (75.0 \text{ kg})(9.80 \text{ m/s}^2), \tag{5.26}
\]
yielding
Discussion for (a)
This is about 185 lb. What would the scale have read if he were stationary? Since his acceleration would be zero, the force of the scale would be equal to his weight:

\[F_{\text{net}} = ma = 0 = F_s - w \]
\[F_s = w = mg \]
\[F_s = (75.0 \text{ kg})(9.80 \text{ m/s}^2) \]
\[F_s = 735 \text{ N.} \]

So, the scale reading in the elevator is greater than his 735-N (165 lb) weight. This means that the scale is pushing up on the person with a force greater than his weight, as it must in order to accelerate him upward. Clearly, the greater the acceleration of the elevator, the greater the scale reading, consistent with what you feel in rapidly accelerating versus slowly accelerating elevators.

Solution for (b)
Now, what happens when the elevator reaches a constant upward velocity? Will the scale still read more than his weight? For any constant velocity—up, down, or stationary—acceleration is zero because \(a = \frac{\Delta v}{\Delta t} \), and \(\Delta v = 0 \).

Thus,

\[F_s = ma + mg = 0 + mg. \]
\[F_s = (75.0 \text{ kg})(9.80 \text{ m/s}^2), \]

which gives

\[F_s = 735 \text{ N.} \]

Discussion for (b)
The scale reading is 735 N, which equals the person’s weight. This will be the case whenever the elevator has a constant velocity—moving up, moving down, or stationary.

The solution to the previous example also applies to an elevator accelerating downward, as mentioned. When an elevator accelerates downward, \(a \) is negative, and the scale reading is less than the weight of the person, until a constant downward velocity is reached, at which time the scale reading again becomes equal to the person’s weight. If the elevator is in free-fall and accelerating downward at \(g \), then the scale reading will be zero and the person will appear to be weightless.

Integrating Concepts: Newton’s Laws of Motion and Kinematics
Physics is most interesting and most powerful when applied to general situations that involve more than a narrow set of physical principles. Newton’s laws of motion can also be integrated with other concepts that have been discussed previously in this text to solve problems of motion. For example, forces produce accelerations, a topic of kinematics, and hence the relevance of earlier chapters. When approaching problems that involve various types of forces, acceleration, velocity, and/or position, use the following steps to approach the problem:

Problem-Solving Strategy
Step 1. Identify which physical principles are involved. Listing the givens and the quantities to be calculated will allow you to identify the principles involved.

Step 2. Solve the problem using strategies outlined in the text. If these are available for the specific topic, you should refer to them. You should also refer to the sections of the text that deal with a particular topic. The following worked example illustrates how these strategies are applied to an integrated concept problem.

Example 5.4 What Force Must a Soccer Player Exert to Reach Top Speed?

A soccer player starts from rest and accelerates forward, reaching a velocity of 8.00 m/s in 2.50 s. (a) What was his average acceleration? (b) What average force did he exert backward on the ground to achieve this acceleration? The player’s mass is 70.0 kg, and air resistance is negligible.

Strategy
1. To solve an integrated concept problem, we must first identify the physical principles involved and identify the chapters in which they are found. Part (a) of this example considers acceleration along a straight line. This is a topic of kinematics. Part (b) deals with force, a topic of dynamics found in this chapter.

2. The following solutions to each part of the example illustrate how the specific problem-solving strategies are applied. These involve identifying knowns and unknowns, checking to see if the answer is reasonable, and so forth.

Solution for (a)
We are given the initial and final velocities (zero and 8.00 m/s forward); thus, the change in velocity is \(\Delta v = 8.00 \text{ m/s} \). We are given the elapsed time, and so \(\Delta t = 2.50 \text{ s} \). The unknown is acceleration, which can be found from its definition:

\[
a = \frac{\Delta v}{\Delta t}
\]

Substituting the known values yields

\[
a = \frac{8.00 \text{ m/s}}{2.50 \text{ s}} = 3.20 \text{ m/s}^2.
\]

Discussion for (a)

This is an attainable acceleration for an athlete in good condition.

Solution for (b)

Here we are asked to find the average force the player exerts backward to achieve this forward acceleration. Neglecting air resistance, this would be equal in magnitude to the net external force on the player, since this force causes his acceleration. Since we now know the player’s acceleration and are given his mass, we can use Newton’s second law to find the force exerted. That is,

\[
F_{\text{net}} = ma.
\]

Substituting the known values of \(m \) and \(a \) gives

\[
F_{\text{net}} = (70.0 \text{ kg})(3.20 \text{ m/s}^2)
= 224 \text{ N}.
\]

Discussion for (b)

This is about 50 pounds, a reasonable average force.

This worked example illustrates how to apply problem-solving strategies to situations that include topics from different chapters. The first step is to identify the physical principles involved in the problem. The second step is to solve for the unknown using familiar problem-solving strategies. These strategies are found throughout the text, and many worked examples show how to use them for single topics. You will find these techniques for integrated concept problems useful in applications of physics outside of a physics course, such as in your profession, in other science disciplines, and in everyday life. The following problems will build your skills in the broad application of physical principles.

5.3 Friction

Friction is a force that is around us all the time that opposes relative motion between systems in contact but also allows us to move (which you have discovered if you have ever tried to walk on ice). While a common force, the behavior of friction is actually very complicated and is still not completely understood. We have to rely heavily on observations for whatever understandings we can gain. However, we can still deal with its more elementary general characteristics and understand the circumstances in which it behaves.

Friction

Friction is a force that opposes relative motion between systems in contact.

One of the simpler characteristics of friction is that it is parallel to the contact surface between systems and always in a direction that opposes motion or attempted motion of the systems relative to each other. If two systems are in contact and moving relative to one another, then the friction between them is called **kinetic friction**. For example, friction slows a hockey puck sliding on ice. But when objects are stationary, **static friction** can act between them; the static friction is usually greater than the kinetic friction between the objects.

Kinetic Friction

If two systems are in contact and moving relative to one another, then the friction between them is called kinetic friction.

Imagine, for example, trying to slide a heavy crate across a concrete floor—you may push harder and harder on the crate and not move it at all. This means that the static friction responds to what you do—it increases to be equal to and in the opposite direction of your push. But if you finally push hard enough, the crate seems to slip suddenly and starts to move. Once in motion it is easier to keep it in motion than it was to get it started, indicating that the kinetic friction force is less than the static friction force. If you add mass to the crate, say by placing a box on top of it, you need to push even harder to get it started and also to keep it moving. Furthermore, if you oiled the concrete you would find it to be easier to get the crate started and keep it going (as you might expect).

Figure 5.6 is a crude pictorial representation of how friction occurs at the interface between two objects. Close-up inspection of these surfaces shows them to be rough. So when you push to get an object moving (in this case, a crate), you must raise the object until it can skip along with just the tips of the surface hitting, break off the points, or do both. A considerable force can be resisted by friction with no apparent motion. The harder the surfaces are pushed together (such as if another box is placed on the crate), the more force is needed to move them. Part of the friction is due to adhesive forces between the surface molecules of the two objects, which explain the dependence of friction on the nature of the substances. Adhesion varies with substances in contact and is a complicated aspect of surface physics. Once an object is moving, there are fewer points of contact (fewer molecules adhering), so less force is required to keep the object moving. At small but nonzero speeds, friction is nearly independent of speed.
Figure 5.6 Frictional forces, such as \(f \), always oppose motion or attempted motion between objects in contact. Friction arises in part because of the roughness of the surfaces in contact, as seen in the expanded view. In order for the object to move, it must rise to where the peaks can skip along the bottom surface. Thus a force is required just to set the object in motion. Some of the peaks will be broken off, also requiring a force to maintain motion. Much of the friction is actually due to attractive forces between molecules making up the two objects, so that even perfectly smooth surfaces are not friction-free. Such adhesive forces also depend on the substances the surfaces are made of, explaining, for example, why rubber-soled shoes slip less than those with leather soles.

The magnitude of the frictional force has two forms: one for static situations (static friction), the other for when there is motion (kinetic friction).

When there is no motion between the objects, the magnitude of static friction \(f_s \) is

\[
f_s \leq \mu_s N,
\]

where \(\mu_s \) is the coefficient of static friction and \(N \) is the magnitude of the normal force (the force perpendicular to the surface).

Magnitude of Static Friction

Magnitude of static friction \(f_s \) is

\[
f_s \leq \mu_s N,
\]

where \(\mu_s \) is the coefficient of static friction and \(N \) is the magnitude of the normal force.

The symbol \(\leq \) means less than or equal to, implying that static friction can have a minimum and a maximum value of \(\mu_s N \). Static friction is a responsive force that increases to be equal and opposite to whatever force is exerted, up to its maximum limit. Once the applied force exceeds \(f_{s\text{ (max)}} \), the object will move. Thus

\[
f_{s\text{ (max)}} = \mu_s N.
\]

Once an object is moving, the magnitude of kinetic friction \(f_k \) is given by

\[
f_k = \mu_k N,
\]

where \(\mu_k \) is the coefficient of kinetic friction. A system in which \(f_k = \mu_k N \) is described as a system in which friction behaves simply.

Magnitude of Kinetic Friction

The magnitude of kinetic friction \(f_k \) is given by

\[
f_k = \mu_k N,
\]

where \(\mu_k \) is the coefficient of kinetic friction.

As seen in Table 5.1, the coefficients of kinetic friction are less than their static counterparts. That values of \(\mu \) in Table 5.1 are stated to only one or, at most, two digits is an indication of the approximate description of friction given by the above two equations.
Table 5.1 Coefficients of Static and Kinetic Friction

<table>
<thead>
<tr>
<th>System</th>
<th>Static friction μ_s</th>
<th>Kinetic friction μ_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rubber on dry concrete</td>
<td>1.0</td>
<td>0.7</td>
</tr>
<tr>
<td>Rubber on wet concrete</td>
<td>0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>Wood on wood</td>
<td>0.5</td>
<td>0.3</td>
</tr>
<tr>
<td>Waxe wood on wet snow</td>
<td>0.14</td>
<td>0.1</td>
</tr>
<tr>
<td>Metal on wood</td>
<td>0.5</td>
<td>0.3</td>
</tr>
<tr>
<td>Steel on steel (dry)</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>Steel on steel (oiled)</td>
<td>0.05</td>
<td>0.03</td>
</tr>
<tr>
<td>Teflon on steel</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Bone lubricated by synovial fluid</td>
<td>0.016</td>
<td>0.015</td>
</tr>
<tr>
<td>Shoes on wood</td>
<td>0.9</td>
<td>0.7</td>
</tr>
<tr>
<td>Shoes on ice</td>
<td>0.1</td>
<td>0.05</td>
</tr>
<tr>
<td>Ice on ice</td>
<td>0.1</td>
<td>0.03</td>
</tr>
<tr>
<td>Steel on ice</td>
<td>0.4</td>
<td>0.02</td>
</tr>
</tbody>
</table>

The equations given earlier include the dependence of friction on materials and the normal force. The direction of friction is always opposite that of motion, parallel to the surface between objects, and perpendicular to the normal force. For example, if the crate you try to push (with a force parallel to the floor) has a mass of 100 kg, then the normal force would be equal to its weight, $W = mg = (100 \text{ kg})(9.80 \text{ m/s}^2) = 980 \text{ N}$, perpendicular to the floor. If the coefficient of static friction is 0.45, you would have to exert a force parallel to the floor greater than $f_{s(\text{max})} = \mu_sN = (0.45)(980 \text{ N}) = 440 \text{ N}$ to move the crate. Once there is motion, friction is less and the coefficient of kinetic friction might be 0.30, so that a force of only 290 N ($f_k = \mu_kN = (0.30)(980 \text{ N}) = 290 \text{ N}$) would keep it moving at a constant speed. If the floor is lubricated, both coefficients are considerably less than they would be without lubrication. Coefficient of friction is a unit less quantity with a magnitude usually between 0 and 1.0. The coefficient of the friction depends on the two surfaces that are in contact.

Take-Home Experiment

Find a small plastic object (such as a food container) and slide it on a kitchen table by giving it a gentle tap. Now spray water on the table, simulating a light shower of rain. What happens now when you give the object the same-sized tap? Now add a few drops of (vegetable or olive) oil on the surface of the water and give the same tap. What happens now? This latter situation is particularly important for drivers to note, especially after a light rain shower. Why?

Many people have experienced the slipperiness of walking on ice. However, many parts of the body, especially the joints, have much smaller coefficients of friction—often three or four times less than ice. A joint is formed by the ends of two bones, which are connected by thick tissues. The knee joint is formed by the lower leg bone (the tibia) and the thighbone (the femur). The hip is a ball (at the end of the femur) and socket (part of the pelvis) joint. The ends of the bones in the joint are covered by cartilage, which provides a smooth, almost glassy surface. The joints also produce a fluid (synovial fluid) that reduces friction and wear. A damaged or arthritic joint can be replaced by an artificial joint (Figure 5.7). These replacements can be made of metals (stainless steel or titanium) or plastic (polyethylene), also with very small coefficients of friction.
Other natural lubricants include saliva produced in our mouths to aid in the swallowing process, and the slippery mucus found between organs in the body, allowing them to move freely past each other during heartbeats, during breathing, and when a person moves. Artificial lubricants are also common in hospitals and doctor’s clinics. For example, when ultrasonic imaging is carried out, the gel that couples the transducer to the skin also serves to lubricate the surface between the transducer and the skin—thereby reducing the coefficient of friction between the two surfaces. This allows the transducer to move freely over the skin.

Example 5.5 Skiing Exercise

A skier with a mass of 62 kg is sliding down a snowy slope. Find the coefficient of kinetic friction for the skier if friction is known to be 45.0 N.

Strategy

The magnitude of kinetic friction was given in to be 45.0 N. Kinetic friction is related to the normal force \(N \) as \(f_k = \mu_k N \); thus, the coefficient of kinetic friction can be found if we can find the normal force of the skier on a slope. The normal force is always perpendicular to the surface, and since there is no motion perpendicular to the surface, the normal force should equal the component of the skier’s weight perpendicular to the slope. (See the skier and free-body diagram in Figure 5.8.)

Figure 5.8 The motion of the skier and friction are parallel to the slope and so it is most convenient to project all forces onto a coordinate system where one axis is parallel to the slope and the other is perpendicular (axes shown to left of skier). \(\mathbf{N} \) (the normal force) is perpendicular to the slope, and \(\mathbf{f} \) (the friction) is parallel to the slope, but \(\mathbf{w} \) (the skier’s weight) has components along both axes, namely \(\mathbf{w}_\perp \) and \(\mathbf{w}_\parallel \). \(\mathbf{N} \) is equal in magnitude to \(\mathbf{w}_\perp \), so there is no motion perpendicular to the slope. However, \(\mathbf{f} \) is less than \(\mathbf{w}_\parallel \) in magnitude, so there is acceleration down the slope (along the x-axis).

That is,

\[
N = w_\perp = w \cos 25^\circ = mg \cos 25^\circ.
\]

(5.41)

Substituting this into our expression for kinetic friction, we get
\[f_k = \mu_k mg \cos 25^\circ, \]
(5.42)

which can now be solved for the coefficient of kinetic friction \(\mu_k \).

Solution

Solving for \(\mu_k \) gives

\[\mu_k = \frac{f_k}{N} = \frac{f_k}{w \cos 25^\circ} = \frac{f_k}{mg \cos 25^\circ}. \]
(5.43)

Substituting known values on the right-hand side of the equation,

\[\mu_k = \frac{45.0 \text{ N}}{(62 \text{ kg})(9.80 \text{ m/s}^2)(0.906)} = 0.082. \]
(5.44)

Discussion

This result is a little smaller than the coefficient listed in Table 5.1 for waxed wood on snow, but it is still reasonable since values of the coefficients of friction can vary greatly. In situations like this, where an object of mass \(m \) slides down a slope that makes an angle \(\theta \) with the horizontal, friction is given by \(f_k = \mu_k mg \cos \theta \). All objects will slide down a slope with constant acceleration under these circumstances. Proof of this is left for this chapter’s Problems and Exercises.

Take-Home Experiment

An object will slide down an inclined plane at a constant velocity if the net force on the object is zero. We can use this fact to measure the coefficient of kinetic friction between two objects. As shown in Example 5.5, the kinetic friction on a slope \(f_k = \mu_k mg \cos \theta \). The component of the weight down the slope is equal to \(mg \sin \theta \) (see the free-body diagram in Figure 5.8). These forces act in opposite directions, so when they have equal magnitude, the acceleration is zero. Writing these out:

\[f_k = F_{gx}, \]
(5.45)

\[\mu_k mg \cos \theta = mg \sin \theta. \]
(5.46)

Solving for \(\mu_k \), we find that

\[\mu_k = \frac{mg \sin \theta}{mg \cos \theta} = \tan \theta. \]
(5.47)

Put a coin on a book and tilt it until the coin slides at a constant velocity down the book. You might need to tap the book lightly to get the coin to move. Measure the angle of tilt relative to the horizontal and find \(\mu_k \). Note that the coin will not start to slide at all until an angle greater than \(\theta \) is attained, since the coefficient of static friction is larger than the coefficient of kinetic friction. Discuss how this may affect the value for \(\mu_k \) and its uncertainty.

We have discussed that when an object rests on a horizontal surface, there is a normal force supporting it equal in magnitude to its weight. Furthermore, simple friction is always proportional to the normal force.

Making Connections: Submicroscopic Explanations of Friction

The simpler aspects of friction dealt with so far are its macroscopic (large-scale) characteristics. Great strides have been made in the atomic-scale explanation of friction during the past several decades. Researchers are finding that the atomic nature of friction seems to have several fundamental characteristics. These characteristics not only explain some of the simpler aspects of friction—they also hold the potential for the development of nearly friction-free environments that could save hundreds of billions of dollars in energy which is currently being converted (unnecessarily) to heat.

Figure 5.9 illustrates one macroscopic characteristic of friction that is explained by microscopic (small-scale) research. We have noted that friction is proportional to the normal force, but not to the area in contact, a somewhat counterintuitive notion. When two rough surfaces are in contact, the actual contact area is a tiny fraction of the total area since only high spots touch. When a greater normal force is exerted, the actual contact area increases, and it is found that the friction is proportional to this area.
Figure 5.9 Two rough surfaces in contact have a much smaller area of actual contact than their total area. When there is a greater normal force as a result of a greater applied force, the area of actual contact increases as does friction.

But the atomic-scale view promises to explain far more than the simpler features of friction. The mechanism for how heat is generated is now being determined. In other words, why do surfaces get warmer when rubbed? Essentially, atoms are linked with one another to form lattices. When surfaces rub, the surface atoms adhere and cause atomic lattices to vibrate—essentially creating sound waves that penetrate the material. The sound waves diminish with distance and their energy is converted into heat. Chemical reactions that are related to frictional wear can also occur between atoms and molecules on the surfaces. Figure 5.10 shows how the tip of a probe drawn across another material is deformed by atomic-scale friction. The force needed to drag the tip can be measured and is found to be related to shear stress, which will be discussed later in this chapter. The variation in shear stress is remarkable (more than a factor of 10^{12}) and difficult to predict theoretically, but shear stress is yielding a fundamental understanding of a large-scale phenomenon known since ancient times—friction.

Figure 5.10 The tip of a probe is deformed sideways by frictional force as the probe is dragged across a surface. Measurements of how the force varies for different materials are yielding fundamental insights into the atomic nature of friction.

PhET Explorations: Forces and Motion

Explore the forces at work when you try to push a filing cabinet. Create an applied force and see the resulting friction force and total force acting on the cabinet. Charts show the forces, position, velocity, and acceleration vs. time. Draw a free-body diagram of all the forces (including gravitational and normal forces).

PhET Interactive Simulation

Figure 5.11 Forces and Motion (http://legacy.cnx.org/content/m42139/1.7/forces-and-motion_en.jar)

Glossary

friction: a force that opposes relative motion or attempts at motion between systems in contact

kinetic friction: a force that opposes the motion of two systems that are in contact and moving relative to one another

magnitude of kinetic friction: $f_k = \mu_k N$, where μ_k is the coefficient of kinetic friction
magnitude of static friction: \(f_s \leq \mu_s N \), where \(\mu_s \) is the coefficient of static friction and \(N \) is the magnitude of the normal force

static friction: a force that opposes the motion of two systems that are in contact and are not moving relative to one another

Section Summary

5.1 Problem-Solving Strategies
- To solve problems involving Newton’s laws of motion, follow the procedure described:
 1. Draw a sketch of the problem.
 2. Identify known and unknown quantities, and identify the system of interest. Draw a free-body diagram, which is a sketch showing all of the forces acting on an object. The object is represented by a dot, and the forces are represented by vectors extending in different directions from the dot. If vectors act in directions that are not horizontal or vertical, resolve the vectors into horizontal and vertical components and draw them on the free-body diagram.
 3. Write Newton’s second law in the horizontal and vertical directions and add the forces acting on the object. If the object does not accelerate in a particular direction (for example, the \(x \)-direction) then \(F_{\text{net}, x} = 0 \). If the object does accelerate in that direction, \(F_{\text{net}, x} = ma \).
 4. Check your answer. Is the answer reasonable? Are the units correct?

5.2 Further Applications of Newton’s Laws of Motion
- Newton’s laws of motion can be applied in numerous situations to solve problems of motion.
 - Some problems will contain multiple force vectors acting in different directions on an object. Be sure to draw diagrams, resolve all force vectors into horizontal and vertical components, and draw a free-body diagram. Always analyze the direction in which an object accelerates so that you can determine whether \(F_{\text{net}} = ma \) or \(F_{\text{net}} = 0 \).
 - The normal force on an object is not always equal in magnitude to the weight of the object. If an object is accelerating, the normal force will be less than or greater than the weight of the object. Also, if the object is on an inclined plane, the normal force will always be less than the full weight of the object.
 - Some problems will contain various physical quantities, such as forces, acceleration, velocity, or position. You can apply concepts from kinematics and dynamics in order to solve these problems of motion.

5.3 Friction
- Friction is a contact force between systems that opposes the motion or attempted motion between them. Simple friction is proportional to the normal force \(N \) pushing the systems together. (A normal force is always perpendicular to the contact surface between systems.) Friction depends on both of the materials involved. The magnitude of static friction \(f_s \) between systems stationary relative to one another is given by
 \[
 f_s \leq \mu_s N,
 \]
 where \(\mu_s \) is the coefficient of static friction, which depends on both of the materials.
- The kinetic friction force \(f_k \) between systems moving relative to one another is given by
 \[
 f_k = \mu_k N,
 \]
 where \(\mu_k \) is the coefficient of kinetic friction, which also depends on both materials.

Conceptual Questions

5.2 Further Applications of Newton’s Laws of Motion
1. To simulate the apparent weightlessness of space orbit, astronauts are trained in the hold of a cargo aircraft that is accelerating downward at \(g \). Why will they appear to be weightless, as measured by standing on a bathroom scale, in this accelerated frame of reference? Is there any difference between their apparent weightlessness in orbit and in the aircraft?
2. A cartoon shows the toupee coming off the head of an elevator passenger when the elevator rapidly stops during an upward ride. Can this really happen without the person being tied to the floor of the elevator? Explain your answer.

5.3 Friction
3. Define normal force. What is its relationship to friction when friction behaves simply?
4. The glue on a piece of tape can exert forces. Can these forces be a type of simple friction? Explain, considering especially that tape can stick to vertical walls and even to ceilings.
5. When you learn to drive, you discover that you need to let up slightly on the brake pedal as you come to a stop or the car will stop with a jerk. Explain this in terms of the relationship between static and kinetic friction.
6. When you push a piece of chalk across a chalkboard, it sometimes screeches because it rapidly alternates between slipping and sticking to the board. Describe this process in more detail, in particular explaining how it is related to the fact that kinetic friction is less than static friction. (The same slip-grab process occurs when tires screech on pavement.)
5.1 Problem-Solving Strategies

1. A 5.00×10^5-kg rocket is accelerating straight up. Its engines produce 1.250×10^7 N of thrust, and air resistance is 4.50×10^6 N. What is the rocket's acceleration? Explicitly show how you follow the steps in the Problem-Solving Strategy for Newton's laws of motion.

2. The wheels of a midsize car exert a force of 2100 N backward on the road to accelerate the car in the forward direction. If the force of friction including air resistance is 250 N and the acceleration of the car is 1.80 m/s^2, what is the mass of the car plus its occupants? Explicitly show how you follow the steps in the Problem-Solving Strategy for Newton's laws of motion. For this situation, draw a free-body diagram and write the net force equation.

3. Calculate the force a 70.0-kg high jumper must exert on the ground to produce an upward acceleration 4.00 times the acceleration due to gravity. Explicitly show how you follow the steps in the Problem-Solving Strategy for Newton's laws of motion.

4. When landing after a spectacular somersault, a 40.0-kg gymnast decelerates by pushing straight down on the mat. Calculate the force she must exert if her deceleration is 7.00 times the acceleration due to gravity. Explicitly show how you follow the steps in the Problem-Solving Strategy for Newton’s laws of motion.

5. A freight train consists of two 8.00×10^4-kg engines and 45 cars with average masses of 5.50×10^4 kg. (a) What force must each engine exert backward on the track to accelerate the train at a rate of 5.00×10^-2 m/s^2 if the force of friction is 7.50×10^5 N, assuming the engines exert identical forces? This is not a large frictional force for such a massive system. Rolling friction for trains is small, and consequently trains are very energy-efficient transportation systems. (b) What is the force in the coupling between the 37th and 38th cars (this is the force the engine exerts on the other), assuming all cars have the same mass and that friction is evenly distributed among all of the cars and engines?

6. Commercial airplanes are sometimes pushed out of the passenger loading area by a tractor. (a) An 1800-kg tractor exerts a force of 1.75×10^4 N backward on the pavement, and the system experiences forces resisting motion that total 2400 N. If the acceleration is 0.150 m/s^2, what is the mass of the airplane? (b) Calculate the force exerted by the tractor on the airplane, assuming 2200 N of the friction is experienced by the airplane. (c) Draw two sketches showing the systems of interest used to solve each part, including the free-body diagrams for each.

7. A 1100-kg car pulls a boat on a trailer. (a) What total force resists the motion of the car, boat, and trailer, if the car exerts a 1900-N force on the road and produces an acceleration of 0.550 m/s^2? The mass of the boat plus trailer is 700 kg. (b) What is the force in the hitch between the car and the trailer if 80% of the resisting forces are experienced by the boat and trailer?

8. (a) Find the magnitudes of the forces F_1 and F_2 that add to give the total force F_{tot} shown in Figure 5.12. This may be done either graphically or by using trigonometry. (b) Show graphically that the same total force is obtained independent of the order of addition of F_1 and F_2. (c) Find the direction and magnitude of some other pair of vectors that add to give F_{tot}. Draw these to scale on the same drawing used in part (b) or a similar picture.

9. Two children pull a third child on a snow saucer sled exerting forces F_1 and F_2 as shown from above in Figure 5.13. Find the acceleration of the 49.00-kg sled and child system. Note that the direction of the frictional force is unspecified; it will be in the opposite direction of the sum of F_1 and F_2.

10. Suppose your car was mired deeply in the mud and you wanted to use the method illustrated in Figure 5.14 to pull it out. (a) What force would you have to exert perpendicular to the center of the rope to produce a force of 12,000 N on the car if the angle is 2.00°? In this part, explicitly show how you follow the steps in the Problem-Solving Strategy for Newton's laws of motion. (b) Real ropes stretch under such forces. What force would be exerted on the car if the angle increases to 7.00° and you still apply the force found in part (a) to its center?

11. What force is exerted on the tooth in Figure 5.15 if the tension in the wire is 25.0 N? Note that the force applied to the tooth is smaller than the tension in the wire, but this is necessitated by practical considerations of how force can be applied in the mouth. Explicitly show how you follow steps in the Problem-Solving Strategy for Newton's laws of motion.
load upward to some cruising velocity. Taking the elevator and its load to be the system of interest, draw a free-body diagram. Then calculate the tension in the cable. Among the things to consider are the mass of the elevator and its load, the final velocity, and the time taken to reach that velocity.

15. **Construct Your Own Problem** Consider two people pushing a toboggan with four children on it up a snow-covered slope. Construct a problem in which you calculate the acceleration of the toboggan and its load. Include a free-body diagram of the appropriate system of interest as the basis for your analysis. Show vector forces and their components and explain the choice of coordinates. Among the things to be considered are the forces exerted by those pushing, the angle of the slope, and the masses of the toboggan and children.

16. **Unreasonable Results** (a) Repeat Exercise 5.7, but assume an acceleration of \(1.20 \, \text{m/s}^2 \) is produced. (b) What is unreasonable about the result? (c) Which premise is unreasonable, and why is it unreasonable?

17. **Unreasonable Results** (a) What is the initial acceleration of a rocket that has a mass of \(1.50 \times 10^6 \, \text{kg} \) at takeoff, the engines of which produce a thrust of \(2.00 \times 10^6 \, \text{N} \)? Do not neglect gravity. (b) What is unreasonable about the result? (This result has been unintentionally achieved by several real rockets.) (c) Which premise is unreasonable, or which premises are inconsistent? (You may find it useful to compare this problem to the rocket problem earlier in this section.)

5.2 Further Applications of Newton’s Laws of Motion

18. A flea jumps by exerting a force of \(1.20 \times 10^{-5} \, \text{N} \) straight down on the ground. A breeze blowing on the flea parallel to the ground exerts a force of \(0.500 \times 10^{-6} \, \text{N} \) on the flea. Find the direction and magnitude of the acceleration of the flea if its mass is \(6.00 \times 10^{-7} \, \text{kg} \). Do not neglect the gravitational force.

19. Two muscles in the back of the leg pull upward on the Achilles tendon, as shown in Figure 5.17. (These muscles are called the medial and lateral heads of the gastrocnemius muscle.) Find the magnitude and direction of the total force on the Achilles tendon. What type of movement could be caused by this force?

20. A 76.0-kg person is being pulled away from a burning building as shown in Figure 5.18. Calculate the tension in the two ropes if the person is momentarily motionless. Include a free-body diagram in your solution.
decelerates at a rate of \(0.600 \, \text{m/s}^2 \) for 3.00 s. What is the tension in the cable during deceleration? (d) How high has the elevator moved above its original starting point, and what is its final velocity?

28. Unreasonable Results (a) What is the final velocity of a car originally traveling at 50.0 km/h that decelerates at a rate of \(0.400 \, \text{m/s}^2 \) for 5.00 s? (b) What is unreasonable about the result? (c) Which premise is unreasonable, or which premises are inconsistent?

29. Unreasonable Results A 75.0-kg man stands on a bathroom scale in an elevator that accelerates from rest to 30.0 m/s in 2.00 s. (a) Calculate the scale reading in newtons and compare it with his weight. (The scale exerts an upward force on him equal to its reading.) (b) What is unreasonable about the result? (c) Which premise is unreasonable, or which premises are inconsistent?

5.3 Friction

30. A physics major is cooking breakfast when he notices that the frictional force between his steel spatula and his Teflon frying pan is only 0.200 N. Knowing the coefficient of kinetic friction between the two materials, he quickly calculates the normal force. What is it?

31. (a) When rebuilding her car’s engine, a physics major must exert 300 N of force to insert a dry steel piston into a steel cylinder. What is the magnitude of the normal force between the piston and cylinder? (b) What is the magnitude of the force would she have to exert if the steel parts were oiled?

32. (a) What is the maximum frictional force in the knee joint of a person who supports 66.0 kg of her mass on that knee? (b) During strenuous exercise it is possible to exert forces to the joints that are easily ten times greater than the weight being supported. What is the maximum force of friction under such conditions? The frictional forces in joints are relatively small in all circumstances except when the joints deteriorate, such as from injury or arthritis. Increased frictional forces can cause further damage and pain.

33. Suppose you have a 120-kg wooden crate resting on a wood floor. (a) What maximum force can you exert horizontally on the crate without moving it? (b) If you continue to exert this force once the crate starts to slip, what will the magnitude of its acceleration then be?

34. (a) If half of the weight of a small 1.00×10^3 kg utility truck is supported by its two drive wheels, what is the magnitude of the maximum acceleration it can achieve on dry concrete? (b) Will a metal cabinet lying on the wooden bed of the truck slip if it accelerates at this rate? (c) Solve both problems assuming the truck has four-wheel drive.

35. A team of eight dogs pulls a sled with waxed wood runners on wet snow (mush!). The dogs have average masses of 19.0 kg, and the loaded sled with its rider has a mass of 210 kg. (a) Calculate the magnitude of the acceleration starting from rest if each dog exerts an average force of 185 N backward on the snow. (b) What is the magnitude of the acceleration once the sled starts to move? (c) For both situations, calculate the magnitude of the force in the coupling between the dogs and the sled.

36. Consider the 65.0-kg ice skater being pushed by two others shown in Figure 5.19. (a) Find the direction and magnitude of \(\mathbf{F}_{\text{tot}} \), the total force exerted on her by the others, given that the magnitudes \(F_1 \) and \(F_2 \) are 26.4 N and 18.6 N, respectively. (b) What is her initial acceleration if she is initially stationary and wearing steel-bladed skates that point in the direction of \(\mathbf{F}_{\text{tot}} \)? (c) What is her acceleration assuming she is already moving in the direction of \(\mathbf{F}_{\text{tot}} \)? (Remember that friction always acts in the direction opposite that of motion or attempted motion between surfaces in contact.)
37. Show that the acceleration of any object down a frictionless incline that makes an angle θ with the horizontal is $a = g \sin \theta$. (Note that this acceleration is independent of mass.)

38. Show that the acceleration of any object down an incline where friction behaves simply (that is, where $f_k = \mu_k N$) is $a = g(\sin \theta - \mu_k \cos \theta)$. Note that the acceleration is independent of mass and reduces to the expression found in the previous problem when friction becomes negligibly small ($\mu_k = 0$).

39. Calculate the deceleration of a snow boarder going up a 5.0° slope assuming the coefficient of friction for waxed wood on wet snow. The result of Exercise 5.38 may be useful, but be careful to consider the fact that the snow boarder is going uphill. Explicitly show how you follow the steps in Problem-Solving Strategies.

40. (a) Calculate the acceleration of a skier heading down a 10.0° slope, assuming the coefficient of friction for waxed wood on wet snow. (b) Find the angle of the slope down which this skier could coast at a constant velocity. You can neglect air resistance in both parts, and you will find the result of Exercise 5.38 to be useful. Explicitly show how you follow the steps in the Problem-Solving Strategies.

41. If an object is to rest on an incline without slipping, then friction must equal the component of the weight of the object parallel to the incline. This requires greater and greater friction for steeper slopes. Show that the maximum angle of an incline above the horizontal for which an object will not slide down is $\theta = \tan^{-1} \mu_s$. You may use the result of the previous problem. Assume that $a = 0$ and that static friction has reached its maximum value.

42. Calculate the maximum deceleration of a car that is heading down a 6° slope (one that makes an angle of 6° with the horizontal) under the following road conditions. You may assume that the weight of the car is evenly distributed on all four tires and that the coefficient of static friction is involved—that is, the tires are not allowed to slip during the deceleration. (Ignore rolling.) Calculate for a car: (a) On dry concrete. (b) On wet concrete. (c) On ice, assuming that $\mu_s = 0.100$, the same as for shoes on ice.

43. Calculate the maximum acceleration of a car that is heading up a 4° slope (one that makes an angle of 4° with the horizontal) under the following road conditions. Assume that only half the weight of the car is supported by the two drive wheels and that the coefficient of static friction is involved—that is, the tires are not allowed to slip during the acceleration. (Ignore rolling.) (a) On dry concrete. (b) On wet concrete. (c) On ice, assuming that $\mu_s = 0.100$, the same as for shoes on ice.

44. Repeat Exercise 5.43 for a car with four-wheel drive.

45. A freight train consists of two 8.00×10^5-kg engines and 45 cars with average masses of 5.50×10^5 kg. (a) What force must each engine exert backward on the track to accelerate the train at a rate of 5.00×10^{-2} m/s2 if the force of friction is 7.50×10^5 N, assuming the engines exert identical forces? This is not a large frictional force for such a massive system. Rolling friction for trains is small, and consequently trains are very energy-efficient transportation systems. (b) What is the magnitude of the force in the coupling between the 37th and 38th cars (this is the force each exerts on the other), assuming all cars have the same mass and that friction is evenly distributed among all of the cars and engines?

46. Consider the 52.0-kg mountain climber in Figure 5.20. (a) Find the tension in the rope and the force that the mountain climber must exert with her feet on the vertical rock face to remain stationary. Assume that the force is exerted parallel to her legs. Also, assume negligible force exerted by her arms. (b) What is the minimum coefficient of friction between her shoes and the cliff?

47. A contestant in a winter sporting event pushes a 45.0-kg block of ice across a frozen lake as shown in Figure 5.21(a). (a) Calculate the minimum force F he must exert to get the block moving. (b) What is the magnitude of its acceleration once it starts to move, if that force is maintained?

48. Repeat Exercise 5.47 with the contestant pulling the block of ice with a rope over his shoulder at the same angle above the horizontal as shown in Figure 5.21(b).
Introduction to Uniform Circular Motion and Gravitation

Many motions, such as the arc of a bird’s flight or Earth’s path around the Sun, are curved. Recall that Newton’s first law tells us that motion is along a straight line at constant speed unless there is a net external force. We will therefore study not only motion along curves, but also the forces that cause it, including gravitational forces. In some ways, this chapter is a continuation of Dynamics: Newton’s Laws of Motion as we study more applications of Newton’s laws of motion.
This chapter deals with the simplest form of curved motion, **uniform circular motion**, motion in a circular path at constant speed. Studying this topic illustrates most concepts associated with rotational motion and leads to the study of many new topics we group under the name **rotation**. Pure rotational motion occurs when points in an object move in circular paths centered on one point. Pure translational motion is motion with no rotation. Some motion combines both types, such as a rotating hockey puck moving along ice.

6.1 Centripetal Acceleration

We know from kinematics that acceleration is a change in velocity, either in its magnitude or in its direction, or both. In uniform circular motion, the direction of the velocity changes constantly, so there is always an associated acceleration, even though the magnitude of the velocity might be constant. You experience this acceleration yourself when you turn a corner in your car. (If you hold the wheel steady during a turn and move at constant speed, you are in uniform circular motion.) What you notice is a sideways acceleration because you and the car are changing direction. The sharper the curve and the greater your speed, the more noticeable this acceleration will become. In this section we examine the direction and magnitude of that acceleration.

Figure 6.2 shows an object moving in a circular path at constant speed. The direction of the instantaneous velocity is shown at two points along the path. Acceleration is in the direction of the change in velocity, which points directly toward the center of rotation (the center of the circular path). This pointing is shown with the vector diagram in the figure. We call the acceleration of an object moving in uniform circular motion (resulting from a net external force) the **centripetal acceleration** (\(a_c\)); centripetal means “toward the center” or “center seeking.”

![Centripetal acceleration diagram](image)

\[\Delta \mathbf{v} = \mathbf{v}_2 - \mathbf{v}_1 \]

(See small inset.) Because \(a_c = \frac{\Delta \mathbf{v}}{\Delta t} \), the acceleration is toward the center; \(a_c \) is called centripetal acceleration. (Because \(\Delta \theta \) is very small, the arc length \(\Delta s \) is equal to the chord length \(\Delta r \) for small time differences.)

The direction of centripetal acceleration is toward the center of curvature, but what is its magnitude? Note that the triangle formed by the velocity vectors and the one formed by the radii \(r \) and \(\Delta s \) are similar. Both the triangles ABC and PQR are isosceles triangles (two equal sides). The two equal sides of the velocity vector triangle are the speeds \(v_1 = v_2 = v \). Using the properties of two similar triangles, we obtain

\[\frac{\Delta v}{v} = \frac{\Delta s}{r} \]

(6.1)

Acceleration is \(\Delta v / \Delta t \), and so we first solve this expression for \(\Delta v \):

\[\Delta v = \frac{v}{r} \Delta s \]

(6.2)

Then we divide this by \(\Delta t \), yielding

\[\frac{\Delta v}{\Delta t} = \frac{v}{r} \frac{\Delta s}{\Delta t} \]

(6.3)

Finally, noting that \(\Delta v / \Delta t = a_c \) and that \(\Delta s / \Delta t = v \), the linear or tangential speed, we see that the magnitude of the centripetal acceleration is

\[a_c = \frac{v^2}{r} \]

(6.4)

which is the acceleration of an object in a circle of radius \(r \) at a speed \(v \). So, centripetal acceleration is greater at high speeds and in sharp curves (smaller radius), as you have noticed when driving a car. But it is a bit surprising that \(a_c \) is proportional to speed squared, implying, for example, that it is four times as hard to take a curve at 100 km/h than at 50 km/h. A sharp corner has a small radius, so that \(a_c \) is greater for tighter turns, as you have probably noticed.

Recall that the direction of \(a_c \) is toward the center.
A centrifuge (see Figure 6.3b) is a rotating device used to separate specimens of different densities. High centripetal acceleration significantly decreases the time it takes for separation to occur, and makes separation possible with small samples. Centrifuges are used in a variety of applications in science and medicine, including the separation of single cell suspensions such as bacteria, viruses, and blood cells from a liquid medium and the separation of macromolecules, such as DNA and protein, from a solution. Centrifuges are often rated in terms of their centripetal acceleration relative to acceleration due to gravity \(g \); maximum centripetal acceleration of several hundred thousand \(g \) is possible in a vacuum. Human centrifuges, extremely large centrifuges, have been used to test the tolerance of astronauts to the effects of accelerations larger than that of Earth’s gravity.

Example 6.1 How Does the Centripetal Acceleration of a Car Around a Curve Compare with That Due to Gravity?

What is the magnitude of the centripetal acceleration of a car following a curve of radius 500 m at a speed of 25.0 m/s (about 90 km/h)? Compare the acceleration with that due to gravity for this fairly gentle curve taken at highway speed. See Figure 6.3(a).

Strategy

Because \(v \) and \(r \) are given, the expression \(a_c = \frac{v^2}{r} \) is convenient to use.

Solution

Entering the given values of \(v = 25.0 \text{ m/s} \) and \(r = 500 \text{ m} \) into the first expression for \(a_c \) gives

\[
a_c = \frac{v^2}{r} = \frac{(25.0 \text{ m/s})^2}{500 \text{ m}} = 1.25 \text{ m/s}^2. \tag{6.5}
\]

Discussion

To compare this with the acceleration due to gravity \((g = 9.80 \text{ m/s}^2) \), we take the ratio of \(a_c / g = \frac{1.25 \text{ m/s}^2}{9.80 \text{ m/s}^2} = 0.128 \). Thus, \(a_c = 0.128 \text{ g} \) and is noticeable especially if you were not wearing a seat belt.

![Figure 6.3](image)

Figure 6.3 (a) The car following a circular path at constant speed is accelerated perpendicular to its velocity, as shown. The magnitude of this centripetal acceleration is found in Example 6.1. (b) A particle of mass in a centrifuge is rotating at constant angular velocity \(\omega \). It must be accelerated perpendicular to its velocity or it would continue in a straight line. The magnitude of the necessary acceleration is found in ???.
6.2 Centripetal Force

Any force or combination of forces can cause a centripetal or radial acceleration. Just a few examples are the tension in the rope on a tether ball, the force of Earth’s gravity on the Moon, friction between roller skates and a rink floor, a banked roadway’s force on a car, and forces on the tube of a spinning centrifuge.

Any net force causing uniform circular motion is called a centripetal force. The direction of a centripetal force is toward the center of curvature, the same as the direction of centripetal acceleration. According to Newton’s second law of motion, net force is mass times acceleration: \(\textbf{F} = ma \).

For uniform circular motion, the acceleration is the centripetal acceleration— \(a = a_c \). Thus, the magnitude of centripetal force \(F_c \) is

\[
F_c = ma_c.
\]

(6.6)

By using the expression for centripetal acceleration \(a_c = \frac{v^2}{r} \), we get an expression for the centripetal force \(F_c \) in terms of mass, velocity, and radius of curvature:

\[
F_c = m\frac{v^2}{r}.
\]

(6.7)

Centripetal force \(F_c \) is always perpendicular to the path and pointing to the center of curvature, because \(a_c \) is perpendicular to the velocity and pointing to the center of curvature.

Note that if you solve the expression for \(r \), you get

\[
r = \frac{mv^2}{F_c}.
\]

(6.8)

This implies that for a given mass and velocity, a large centripetal force causes a small radius of curvature—that is, a tight curve.

![Diagram of centripetal force](image.png)

Figure 6.4 The frictional force supplies the centripetal force and is numerically equal to it. Centripetal force is perpendicular to velocity and causes uniform circular motion. The larger the \(F_c \), the smaller the radius of curvature \(r \) and the sharper the curve. The second curve has the same \(v \), but a larger \(F_c \) produces a smaller \(r' \).

Example 6.2 What Coefficient of Friction Do Car Tires Need on a Flat Curve?

(a) Calculate the centripetal force exerted on a 900 kg car that negotiates a 500 m radius curve at 25.0 m/s.

(b) Assuming an unbanked curve, find the minimum static coefficient of friction, between the tires and the road, static friction being the reason that keeps the car from slipping (see Figure 6.5).

Strategy and Solution for (a)

We know that \(F_c = \frac{mv^2}{r} \). Thus,

\[
F_c = \frac{mv^2}{r} = \frac{(900 \text{ kg})(25.0 \text{ m/s})^2}{(500 \text{ m})} = 1125 \text{ N}.
\]

(6.9)

Strategy for (b)
Figure 6.5 shows the forces acting on the car on an unbanked (level ground) curve. Friction is to the left, keeping the car from slipping, and because it is the only horizontal force acting on the car, the friction is the centripetal force in this case. We know that the maximum static friction (at which the tires roll but do not slip) is \(\mu_sN \), where \(\mu_s \) is the static coefficient of friction and \(N \) is the normal force. The normal force equals the car’s weight on level ground, so that \(N = mg \). Thus the centripetal force in this situation is

\[
F_c = f = \mu_sN = \mu_smg.
\]

(6.10)

Now we have a relationship between centripetal force and the coefficient of friction. Using the equation

\[
F_c = m\frac{v^2}{r},
\]

(6.11)

\[
m\frac{v^2}{r} = \mu_smg.
\]

(6.12)

We solve this for \(\mu_s \), noting that mass cancels, and obtain

\[
\mu_s = \frac{v^2}{rg}.
\]

(6.13)

Solution for (b)
Substituting the knowns,

\[
\mu_s = \frac{(25.0 \text{ m/s})^2}{(500 \text{ m})(9.80 \text{ m/s}^2)} = 0.13.
\]

(6.14)

(Because coefficients of friction are approximate, the answer is given to only two digits.)

Discussion
The coefficient of friction found in part (b) is much smaller than is typically found between tires and roads. The car will still negotiate the curve if the coefficient is greater than 0.13, because static friction is a responsive force, being able to assume a value less than but no more than \(\mu_sN \). A higher coefficient would also allow the car to negotiate the curve at a higher speed, but if the coefficient of friction is less, the safe speed would be less than 25 m/s. Note that mass cancels, implying that in this example, it does not matter how heavily loaded the car is to negotiate the turn. Mass cancels because friction is assumed proportional to the normal force, which in turn is proportional to mass. If the surface of the road were banked, the normal force would be less as will be discussed below.

![Free-body diagram](image)

Figure 6.5 This car on level ground is moving away and turning to the left. The centripetal force causing the car to turn in a circular path is due to friction between the tires and the road. A minimum coefficient of friction is needed, or the car will move in a larger-radius curve and leave the roadway.

Let us now consider banked curves, where the slope of the road helps you negotiate the curve. See Figure 6.6. The greater the angle \(\theta \), the faster you can take the curve. Race tracks for bikes as well as cars, for example, often have steeply banked curves. In an “ideally banked curve,” the angle \(\theta \) is such that you can negotiate the curve at a certain speed without the aid of friction between the tires and the road. We will derive an expression for \(\theta \) for an ideally banked curve and consider an example related to it.

For ideal banking, the net external force equals the horizontal centripetal force in the absence of friction. The components of the normal force \(N \) in the horizontal and vertical directions must equal the centripetal force and the weight of the car, respectively. In cases in which forces are not parallel, it is most convenient to consider components along perpendicular axes—in this case, the vertical and horizontal directions.
Figure 6.6 shows a free body diagram for a car on a frictionless banked curve. If the angle θ is ideal for the speed and radius, then the net external force will equal the necessary centripetal force. The only two external forces acting on the car are its weight w and the normal force of the road N. (A frictionless surface can only exert a force perpendicular to the surface—that is, a normal force.) These two forces must add to give a net external force that is horizontal toward the center of curvature and has magnitude mv^2/r. Because this is the crucial force and it is horizontal, we use a coordinate system with vertical and horizontal axes. Only the normal force has a horizontal component, and so this must equal the centripetal force—that is,

$$N \sin \theta = \frac{mv^2}{r}.$$ \hfill (6.15)

Because the car does not leave the surface of the road, the net vertical force must be zero, meaning that the vertical components of the two external forces must be equal in magnitude and opposite in direction. From the figure, we see that the vertical component of the normal force is $N \cos \theta$, and the only other vertical force is the car’s weight. These must be equal in magnitude; thus,

$$N \cos \theta = mg.$$ \hfill (6.16)

Now we can combine the last two equations to eliminate N and get an expression for θ, as desired. Solving the second equation for $N = mg/ \cos \theta$, and substituting this into the first yields

$$\frac{mg \sin \theta}{\cos \theta} = \frac{mv^2}{r}$$ \hfill (6.17)

$$mg \tan(\theta) = \frac{mv^2}{r}$$ \hfill (6.18)

$$\tan \theta = \frac{v^2}{rg}.$$

Taking the inverse tangent gives

$$\theta = \tan^{-1}\left(\frac{v^2}{rg}\right)$$ (ideally banked curve, no friction). \hfill (6.19)

This expression can be understood by considering how θ depends on v and r. A large θ will be obtained for a large v and a small r. That is, roads must be steeply banked for high speeds and sharp curves. Friction helps, because it allows you to take the curve at greater or lower speed than if the curve is frictionless. Note that θ does not depend on the mass of the vehicle.

![Figure 6.6 The car on this banked curve is moving away and turning to the left.](image)

Example 6.3 What Is the Ideal Speed to Take a Steeply Banked Tight Curve?

Curves on some test tracks and race courses, such as the Daytona International Speedway in Florida, are very steeply banked. This banking, with the aid of tire friction and very stable car configurations, allows the curves to be taken at very high speed. To illustrate, calculate the speed at which a 100 m radius curve banked at 65.0° should be driven if the road is frictionless.

Strategy

We first note that all terms in the expression for the ideal angle of a banked curve except for speed are known; thus, we need only rearrange it so that speed appears on the left-hand side and then substitute known quantities.

Solution

Starting with

$$\tan \theta = \frac{v^2}{rg}$$ \hfill (6.20)

we get
\[v = (rg \tan \theta)^{1/2}. \]
(6.21)

Noting that \(\tan 65.0^\circ = 2.14 \), we obtain

\[v = \left[(100 \text{ m})(9.80 \text{ m/s}^2)(2.14) \right]^{1/2} \]
\[= 45.8 \text{ m/s}. \]
(6.22)

Discussion

This is just about 165 km/h, consistent with a very steeply banked and rather sharp curve. Tire friction enables a vehicle to take the curve at significantly higher speeds.

Calculations similar to those in the preceding examples can be performed for a host of interesting situations in which centripetal force is involved—a number of these are presented in this chapter’s Problems and Exercises.

Take-Home Experiment

Ask a friend or relative to swing a golf club or a tennis racquet. Take appropriate measurements to estimate the centripetal acceleration of the end of the club or racquet. You may choose to do this in slow motion.

PhET Explorations: Gravity and Orbits

Move the sun, earth, moon and space station to see how it affects their gravitational forces and orbital paths. Visualize the sizes and distances between different heavenly bodies, and turn off gravity to see what would happen without it!

[PhET Interactive Simulation](http://legacy.cnx.org/content/m55664/1.3/gravity-and-orbits_en.jar)

6.3 Newton’s Universal Law of Gravitation

What do aching feet, a falling apple, and the orbit of the Moon have in common? Each is caused by the gravitational force. Our feet are strained by supporting our weight—the force of Earth’s gravity on us. An apple falls from a tree because of the same force acting a few meters above Earth’s surface. And the Moon orbits Earth because gravity is able to supply the necessary centripetal force at a distance of hundreds of millions of meters. In fact, the same force causes planets to orbit the Sun, stars to orbit the center of the galaxy, and galaxies to cluster together. Gravity is another example of underlying simplicity in nature. It is the weakest of the four basic forces found in nature, and in some ways the least understood. It is a force that acts at a distance, without physical contact, and is expressed by a formula that is valid everywhere in the universe, for masses and distances that vary from the tiny to the immense.

Sir Isaac Newton was the first scientist to precisely define the gravitational force, and to show that it could explain both falling bodies and astronomical motions. See [Figure 6.8](http://legacy.cnx.org/content/m55664/1.3/gravity-and-orbits_en.jar). But Newton was not the first to suspect that the same force caused both our weight and the motion of planets. His forerunner Galileo Galilei had contended that falling bodies and planetary motions had the same cause. Some of Newton’s contemporaries, such as Robert Hooke, Christopher Wren, and Edmund Halley, had also made some progress toward understanding gravitation. But Newton was the first to propose an exact mathematical form and to use that form to show that the motion of heavenly bodies should be conic sections—circles, ellipses, parabolas, and hyperbolae. This theoretical prediction was a major triumph—it had been known for some time that moons, planets, and comets follow such paths, but no one had been able to propose a mechanism that caused them to follow these paths and not others.
Figure 6.8 According to early accounts, Newton was inspired to make the connection between falling bodies and astronomical motions when he saw an apple fall from a tree and realized that if the gravitational force could extend above the ground to a tree, it might also reach the Sun. The inspiration of Newton’s apple is a part of worldwide folklore and may even be based in fact. Great importance is attached to it because Newton’s universal law of gravitation and his laws of motion answered very old questions about nature and gave tremendous support to the notion of underlying simplicity and unity in nature. Scientists still expect underlying simplicity to emerge from their ongoing inquiries into nature.

The gravitational force is relatively simple. It is always attractive, and it depends only on the masses involved and the distance between them. Stated in modern language, Newton’s universal law of gravitation states that every particle in the universe attracts every other particle with a force along a line joining them. The force is directly proportional to the product of their masses and inversely proportional to the square of the distance between them.

Figure 6.9 Gravitational attraction is along a line joining the centers of mass of these two bodies. The magnitude of the force is the same on each, consistent with Newton’s third law.

Misconception Alert

The magnitude of the force on each object (one has larger mass than the other) is the same, consistent with Newton’s third law.

The bodies we are dealing with tend to be large. To simplify the situation we assume that the body acts as if its entire mass is concentrated at one specific point called the center of mass (CM), which will be further explored in Linear Momentum and Collisions. For two bodies having masses \(m \) and \(M \) with a distance \(r \) between their centers of mass, the equation for Newton’s universal law of gravitation is

\[
F = \frac{GmM}{r^2}.
\]
where F is the magnitude of the gravitational force and G is a proportionality factor called the **gravitational constant**. G is a universal gravitational constant—that is, it is thought to be the same everywhere in the universe. It has been measured experimentally to be

$$G = 6.673 \times 10^{-11} \text{ N} \cdot \text{m}^2 / \text{kg}^2$$

in SI units. Note that the units of G are such that a force in newtons is obtained from $F = GmM / r^2$, when considering masses in kilograms and distance in meters. For example, two 1.000 kg masses separated by 1.000 m will experience a gravitational attraction of $6.673 \times 10^{-11} \text{ N}$.

This is an extraordinarily small force. The small magnitude of the gravitational force is consistent with everyday experience. We are unaware that even large objects like mountains exert gravitational forces on us. In fact, our body weight is the force of attraction of the *entire Earth* on us with a mass of $6 \times 10^{24} \text{ kg}$.

Recall that the acceleration due to gravity g is about 9.80 m/s^2 on Earth. We can now determine why this is so. The weight of an object mg is the gravitational force between it and Earth. Substituting mg for F in Newton’s universal law of gravitation gives

$$mg = GmM / r^2,$$

where m is the mass of the object, M is the mass of Earth, and r is the distance to the center of Earth (the distance between the centers of mass of the object and Earth). See Figure 6.10. The mass m of the object cancels, leaving an equation for g:

$$g = GM / r^2.$$ \hspace{1cm} (6.26)

Substituting known values for Earth’s mass and radius (to three significant figures),

$$g = \left(6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2 / \text{kg}^2\right) \times \frac{5.98 \times 10^{24} \text{ kg}}{(6.38 \times 10^6 \text{ m})^2},$$

and we obtain a value for the acceleration of a falling body:

$$g = 9.80 \text{ m/s}^2.$$ \hspace{1cm} (6.28)

![Figure 6.10 The distance between the centers of mass of Earth and an object on its surface is very nearly the same as the radius of Earth, because Earth is so much larger than the object.](image)

This is the expected value and is independent of the body’s mass. Newton’s law of gravitation takes Galileo’s observation that all masses fall with the same acceleration a step further, explaining the observation in terms of a force that causes objects to fall—in fact, in terms of a universally existing force of attraction between masses.

Take-Home Experiment

Take a marble, a ball, and a spoon and drop them from the same height. Do they hit the floor at the same time? If you drop a piece of paper as well, does it behave like the other objects? Explain your observations.

Making Connections

Attempts are still being made to understand the gravitational force. As we shall see in Particle Physics (https://legacy.cnx.org/content/m42667/latest), modern physics is exploring the connections of gravity to other forces, space, and time. General relativity alters our view of gravitation, leading us to think of gravitation as bending space and time.

In the following example, we make a comparison similar to one made by Newton himself. He noted that if the gravitational force caused the Moon to orbit Earth, then the acceleration due to gravity should equal the centripetal acceleration of the Moon in its orbit. Newton found that the two accelerations agreed “pretty nearly.” Why does Earth not remain stationary as the Moon orbits it? This is because, as expected from Newton’s third law, if Earth exerts a force on the Moon, then the Moon should exert an equal and opposite force on Earth (see Figure 6.11). We do not sense the Moon’s effect on Earth’s motion,
because the Moon's gravity moves our bodies right along with Earth but there are other signs on Earth that clearly show the effect of the Moon's gravitational force as discussed in Satellites and Kepler's Laws: An Argument for Simplicity.

Figure 6.11 (a) Earth and the Moon rotate approximately once a month around their common center of mass. (b) Their center of mass orbits the Sun in an elliptical orbit, but Earth's path around the Sun has "wiggles" in it. Similar wiggles in the paths of stars have been observed and are considered direct evidence of planets orbiting those stars. This is important because the planets' reflected light is often too dim to be observed.

Tides

Ocean tides are one very observable result of the Moon's gravity acting on Earth. Figure 6.12 is a simplified drawing of the Moon's position relative to the tides. Because water easily flows on Earth's surface, a high tide is created on the side of Earth nearest to the Moon, where the Moon's gravitational pull is strongest. Why is there also a high tide on the opposite side of Earth? The answer is that Earth is pulled toward the Moon more than the water on the far side, because Earth is closer to the Moon. So the water on the side of Earth closest to the Moon is pulled away from Earth, and Earth is pulled away from water on the far side. As Earth rotates, the tidal bulge (an effect of the tidal forces between an orbiting natural satellite and the primary planet that it orbits) keeps its orientation with the Moon. Thus there are two tides per day (the actual tidal period is about 12 hours and 25.2 minutes), because the Moon moves in its orbit each day as well).

Figure 6.12 The Moon causes ocean tides by attracting the water on the near side more than Earth, and by attracting Earth more than the water on the far side. The distances and sizes are not to scale. For this simplified representation of the Earth-Moon system, there are two high and two low tides per day at any location, because Earth rotates under the tidal bulge.

The Sun also affects tides, although it has about half the effect of the Moon. However, the largest tides, called spring tides, occur when Earth, the Moon, and the Sun are aligned. The smallest tides, called neap tides, occur when the Sun is at a 90° angle to the Earth-Moon alignment.
Tides are not unique to Earth but occur in many astronomical systems. The most extreme tides occur where the gravitational force is the strongest and varies most rapidly, such as near black holes (see Figure 6.14). A few likely candidates for black holes have been observed in our galaxy. These have masses greater than the Sun but have diameters only a few kilometers across. The tidal forces near them are so great that they can actually tear matter from a companion star.

"Weightlessness" and Microgravity

In contrast to the tremendous gravitational force near black holes is the apparent gravitational field experienced by astronauts orbiting Earth. What is the effect of "weightlessness" upon an astronaut who is in orbit for months? Or what about the effect of weightlessness upon plant growth? Weightlessness doesn’t mean that an astronaut is not being acted upon by the gravitational force. There is no “zero gravity” in an astronaut’s orbit. The term just means that the astronaut is in free-fall, accelerating with the acceleration due to gravity. If an elevator cable breaks, the passengers inside will be in free fall and will experience weightlessness. You can experience short periods of weightlessness in some rides in amusement parks.
Microgravity refers to an environment in which the apparent net acceleration of a body is small compared with that produced by Earth at its surface. Many interesting biology and physics topics have been studied over the past three decades in the presence of microgravity. Of immediate concern is the effect on astronauts of extended times in outer space, such as at the International Space Station. Researchers have observed that muscles will atrophy (waste away) in this environment. There is also a corresponding loss of bone mass. Study continues on cardiovascular adaptation to space flight. On Earth, blood pressure is usually higher in the feet than in the head, because the higher column of blood exerts a downward force on it, due to gravity. When standing, 70% of your blood is below the level of the heart, while in a horizontal position, just the opposite occurs. What difference does the absence of this pressure differential have upon the heart?

Some findings in human physiology in space can be clinically important to the management of diseases back on Earth. On a somewhat negative note, spaceflight is known to affect the human immune system, possibly making the crew members more vulnerable to infectious diseases. Experiments flown in space also have shown that some bacteria grow faster in microgravity than they do on Earth. However, on a positive note, studies indicate that microbial antibiotic production can increase by a factor of two in space-grown cultures. One hopes to be able to understand these mechanisms so that similar successes can be achieved on the ground. In another area of physics space research, inorganic crystals and protein crystals have been grown in outer space that have much higher quality than any grown on Earth, so crystallography studies on their structure can yield much better results.

Plants have evolved with the stimulus of gravity and with gravity sensors. Roots grow downward and shoots grow upward. Plants might be able to provide a life support system for long duration space missions by regenerating the atmosphere, purifying water, and producing food. Some studies have indicated that plant growth and development are not affected by gravity, but there is still uncertainty about structural changes in plants grown in a microgravity environment.

The Cavendish Experiment: Then and Now

As previously noted, the universal gravitational constant G is determined experimentally. This definition was first done accurately by Henry Cavendish (1731–1810), an English scientist, in 1798, more than 100 years after Newton published his universal law of gravitation. The measurement of G is very basic and important because it determines the strength of one of the four forces in nature. Cavendish’s experiment was very difficult because he measured the tiny gravitational attraction between two ordinary-sized masses (tens of kilograms at most), using apparatus like that in Figure 6.16. Remarkably, his value for G differs by less than 1% from the best modern value.

One important consequence of knowing G was that an accurate value for Earth’s mass could finally be obtained. This was done by measuring the acceleration due to gravity as accurately as possible and then calculating the mass of Earth M from the relationship Newton's universal law of gravitation gives

$$mg = G\frac{mM}{r^2},$$

where m is the mass of the object, M is the mass of Earth, and r is the distance to the center of Earth (the distance between the centers of mass of the object and Earth). See Figure 6.9. The mass m of the object cancels, leaving an equation for g:

$$g = G\frac{M}{r^2}.$$

Rearranging to solve for M yields

$$M = \frac{gr^2}{G}.$$

So M can be calculated because all quantities on the right, including the radius of Earth r, are known from direct measurements. We shall see in Satellites and Kepler’s Laws: An Argument for Simplicity that knowing G also allows for the determination of astronomical masses. Interestingly, of all the fundamental constants in physics, G is by far the least well determined.

The Cavendish experiment is also used to explore other aspects of gravity. One of the most interesting questions is whether the gravitational force depends on substance as well as mass—for example, whether one kilogram of lead exerts the same gravitational pull as one kilogram of water. A Hungarian scientist named Roland von Eötvös pioneered this inquiry early in the 20th century. He found, with an accuracy of five parts per billion, that
the gravitational force does not depend on the substance. Such experiments continue today, and have improved upon Eötvös’ measurements. Cavendish-type experiments such as those of Eric Adelberger and others at the University of Washington, have also put severe limits on the possibility of a fifth force and have verified a major prediction of general relativity—that gravitational energy contributes to rest mass. Ongoing measurements there use a torsion balance and a parallel plate (not spheres, as Cavendish used) to examine how Newton’s law of gravitation works over sub-millimeter distances. On this small-scale, do gravitational effects depart from the inverse square law? So far, no deviation has been observed.

![Diagram of a Cavendish experiment](image)

Figure 6.16 Cavendish used an apparatus like this to measure the gravitational attraction between the two suspended spheres (\(M \)) and the two on the stand (\(M \)) by observing the amount of torsion (twisting) created in the fiber. Distance between the masses can be varied to check the dependence of the force on distance. Modern experiments of this type continue to explore gravity.

6.4 Satellites and Kepler’s Laws: An Argument for Simplicity

Examples of gravitational orbits abound. Hundreds of artificial satellites orbit Earth together with thousands of pieces of debris. The Moon’s orbit about Earth has intrigued humans from time immemorial. The orbits of planets, asteroids, meteors, and comets about the Sun are no less interesting. If we look further, we see almost unimaginable numbers of stars, galaxies, and other celestial objects orbiting one another and interacting through gravity.

All these motions are governed by gravitational force, and it is possible to describe them to various degrees of precision. Precise descriptions of complex systems must be made with large computers. However, we can describe an important class of orbits without the use of computers, and we shall find it instructive to study them. These orbits have the following characteristics:

1. A **small mass** \(m \) **orbits a much larger mass** \(M \). This allows us to view the motion as if \(M \) were stationary—in fact, as if from an inertial frame of reference placed on \(M \) —without significant error. Mass \(m \) is the satellite of \(M \), if the orbit is gravitationally bound.

2. The system is isolated from other masses. This allows us to neglect any small effects due to outside masses.

The conditions are satisfied, to good approximation, by Earth’s satellites (including the Moon), by objects orbiting the Sun, and by the satellites of other planets. Historically, planets were studied first, and there is a classical set of three laws, called Kepler’s laws of planetary motion, that describe the orbits of all bodies satisfying the two previous conditions (not just planets in our solar system). These descriptive laws are named for the German astronomer Johannes Kepler (1571–1630), who devised them after careful study (over some 20 years) of a large amount of meticulously recorded observations of planetary motion done by Tycho Brahe (1546–1601). Such careful collection and detailed recording of methods and data are hallmarks of good science. Data constitute the evidence from which new interpretations and meanings can be constructed.

Kepler’s Laws of Planetary Motion

Kepler’s First Law

The orbit of each planet about the Sun is an ellipse with the Sun at one focus.
Figure 6.17 (a) An ellipse is a closed curve such that the sum of the distances from a point on the curve to the two foci (\(f_1\) and \(f_2\)) is a constant. You can draw an ellipse as shown by putting a pin at each focus, and then placing a string around a pencil and the pins and tracing a line on paper. A circle is a special case of an ellipse in which the two foci coincide (thus any point on the circle is the same distance from the center). (b) For any closed gravitational orbit, \(m\) follows an elliptical path with \(M\) at one focus. Kepler’s first law states this fact for planets orbiting the Sun.

Kepler’s Second Law

Each planet moves so that an imaginary line drawn from the Sun to the planet sweeps out equal areas in equal times (see Figure 6.18).

Kepler’s Third Law

The ratio of the squares of the periods of any two planets about the Sun is equal to the ratio of the cubes of their average distances from the Sun. In equation form, this is

\[
\frac{T_1^2}{T_2^2} = \frac{r_1^3}{r_2^3},
\]

where \(T\) is the period (time for one orbit) and \(r\) is the average radius. This equation is valid only for comparing two small masses orbiting the same large one. Most importantly, this is a descriptive equation only, giving no information as to the cause of the equality.
Note again that while, for historical reasons, Kepler’s laws are stated for planets orbiting the Sun, they are actually valid for all bodies satisfying the two previously stated conditions.

Example 6.4 Find the Time for One Orbit of an Earth Satellite

Given that the Moon orbits Earth each 27.3 \(\text{d} \) and that it is an average distance of \(3.84 \times 10^8 \text{ m} \) from the center of Earth, calculate the period of an artificial satellite orbiting at an average altitude of 1500 km above Earth’s surface.

Strategy

The period, or time for one orbit, is related to the radius of the orbit by Kepler’s third law, given in mathematical form in \(\frac{T_2^2}{T_1^2} = \frac{r_1^3}{r_2^3} \). Let us use the subscript 1 for the Moon and the subscript 2 for the satellite. We are asked to find \(T_2 \). The given information tells us that the orbital radius of the Moon is \(r_1 = 3.84 \times 10^8 \text{ m} \), and that the period of the Moon is \(T_1 = 27.3 \text{ d} \). The height of the artificial satellite above Earth’s surface is given, and so we must add the radius of Earth (6380 km) to get \(r_2 = (1500 + 6380) \text{ km} = 7880 \text{ km} \). Now all quantities are known, and so \(T_2 \) can be found.

Solution

Kepler’s third law is

\[
\frac{T_2^2}{T_1^2} = \frac{r_1^3}{r_2^3}. \tag{6.33}
\]

To solve for \(T_2 \), we cross-multiply and take the square root, yielding

\[
T_2^2 = T_1^2 \left(\frac{r_2}{r_1} \right)^3 \tag{6.34}
\]

\[
T_2 = T_1 \left(\frac{r_2}{r_1} \right)^{3/2}. \tag{6.35}
\]

Substituting known values yields

\[
T_2 = 27.3 \text{ d} \times \frac{24.0 \text{ h}}{1 \text{ d}} \times \left(\frac{7880 \text{ km}}{3.84 \times 10^8 \text{ km}} \right)^{3/2} = 1.93 \text{ h}. \tag{6.36}
\]

Discussion

This is a reasonable period for a satellite in a fairly low orbit. It is interesting that any satellite at this altitude will orbit in the same amount of time. This fact is related to the condition that the satellite’s mass is small compared with that of Earth.

People immediately search for deeper meaning when broadly applicable laws, like Kepler’s, are discovered. It was Newton who took the next giant step when he proposed the law of universal gravitation. While Kepler was able to discover what was happening, Newton discovered that gravitational force was the cause.
Derivation of Kepler’s Third Law for Circular Orbits

We shall derive Kepler’s third law, starting with Newton’s laws of motion and his universal law of gravitation. The point is to demonstrate that the force of gravity is the cause for Kepler’s laws (although we will only derive the third one).

Let us consider a circular orbit of a small mass \(m \) around a large mass \(M \), satisfying the two conditions stated at the beginning of this section. Gravity supplies the centripetal force to mass \(m \). Starting with Newton’s second law applied to circular motion,

\[
F_{\text{net}} = ma_c = m\frac{v^2}{r}.
\]

(6.37)

The net external force on mass \(m \) is gravity, and so we substitute the force of gravity for \(F_{\text{net}} \):

\[
G\frac{mM}{r^2} = m\frac{v^2}{r}.
\]

(6.38)

The mass \(m \) cancels, yielding

\[
GM = v^2.
\]

(6.39)

The fact that \(m \) cancels out is another aspect of the oft-noted fact that at a given location all masses fall with the same acceleration. Here we see that at a given orbital radius \(r \), all masses orbit at the same speed. (This was implied by the result of the preceding worked example.) Now, to get at Kepler’s third law, we must get the period \(T \) into the equation. By definition, period \(T \) is the time for one complete orbit. Now the average speed \(v \) is the circumference divided by the period—that is,

\[
v = \frac{2\pi r}{T}.
\]

(6.40)

Substituting this into the previous equation gives

\[
GM = \frac{4\pi^2 r^2}{T^2}.
\]

(6.41)

Solving for \(T^2 \) yields

\[
T^2 = \frac{4\pi^2}{GM} r^3.
\]

(6.42)

Using subscripts 1 and 2 to denote two different satellites, and taking the ratio of the last equation for satellite 1 to satellite 2 yields

\[
\frac{T_1^2}{T_2^2} = \frac{r_1^3}{r_2^3}.
\]

(6.43)

This is Kepler’s third law. Note that Kepler’s third law is valid only for comparing satellites of the same parent body, because only then does the mass of the parent body \(M \) cancel.

Now consider what we get if we solve \(T^2 = \frac{4\pi^2}{GM} r^3 \) for the ratio \(r^3 / T^2 \). We obtain a relationship that can be used to determine the mass \(M \) of a parent body from the orbits of its satellites:

\[
\frac{r^3}{T^2} = \frac{GM}{4\pi^2}.
\]

(6.44)

If \(r \) and \(T \) are known for a satellite, then the mass \(M \) of the parent can be calculated. This principle has been used extensively to find the masses of heavenly bodies that have satellites. Furthermore, the ratio \(r^3 / T^2 \) should be a constant for all satellites of the same parent body (because \(r^3 / T^2 = GM / 4\pi^2 \)). (See Table 6.1).

It is clear from Table 6.1 that the ratio of \(r^3 / T^2 \) is constant, at least to the third digit, for all listed satellites of the Sun, and for those of Jupiter. Small variations in that ratio have two causes—uncertainties in the \(r \) and \(T \) data, and perturbations of the orbits due to other bodies. Interestingly, those perturbations can be—and have been—used to predict the location of new planets and moons. This is another verification of Newton’s universal law of gravitation.

Making Connections

Newton’s universal law of gravitation is modified by Einstein’s general theory of relativity, as we shall see in Particle Physics (https://legacy.cnx.org/content/m42667/latest). Newton’s gravity is not seriously in error—it was and still is an extremely good approximation for most situations. Einstein’s modification is most noticeable in extremely large gravitational fields, such as near black holes. However, general relativity also explains such phenomena as small but long-known deviations of the orbit of the planet Mercury from classical predictions.
The Case for Simplicity

The development of the universal law of gravitation by Newton played a pivotal role in the history of ideas. While it is beyond the scope of this text to cover that history in any detail, we note some important points. The definition of planet set in 2006 by the International Astronomical Union (IAU) states that in the solar system, a planet is a celestial body that:

1. is in orbit around the Sun,
2. has sufficient mass to assume hydrostatic equilibrium and
3. has cleared the neighborhood around its orbit.

A non-satellite body fulfilling only the first two of the above criteria is classified as “dwarf planet.”

In 2006, Pluto was demoted to a ‘dwarf planet’ after scientists revised their definition of what constitutes a “true” planet.

<table>
<thead>
<tr>
<th>Parent</th>
<th>Satellite</th>
<th>Average orbital radius (r)(km)</th>
<th>Period (T)(y)</th>
<th>(r^3) / (T^2) (km(^3) / y(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth</td>
<td>Moon</td>
<td>3.84(\times)10(^5)</td>
<td>0.07481</td>
<td>1.01(\times)10(^{18})</td>
</tr>
<tr>
<td>Sun</td>
<td>Mercury</td>
<td>5.79(\times)10(^7)</td>
<td>0.2409</td>
<td>3.34(\times)10(^{24})</td>
</tr>
<tr>
<td></td>
<td>Venus</td>
<td>1.082(\times)10(^8)</td>
<td>0.6150</td>
<td>3.35(\times)10(^{24})</td>
</tr>
<tr>
<td></td>
<td>Earth</td>
<td>1.496(\times)10(^8)</td>
<td>1.000</td>
<td>3.35(\times)10(^{24})</td>
</tr>
<tr>
<td></td>
<td>Mars</td>
<td>2.279(\times)10(^8)</td>
<td>1.881</td>
<td>3.35(\times)10(^{24})</td>
</tr>
<tr>
<td></td>
<td>Jupiter</td>
<td>7.783(\times)10(^8)</td>
<td>11.86</td>
<td>3.35(\times)10(^{24})</td>
</tr>
<tr>
<td></td>
<td>Saturn</td>
<td>1.427(\times)10(^9)</td>
<td>29.46</td>
<td>3.35(\times)10(^{24})</td>
</tr>
<tr>
<td></td>
<td>Neptune</td>
<td>4.497(\times)10(^9)</td>
<td>164.8</td>
<td>3.35(\times)10(^{24})</td>
</tr>
<tr>
<td></td>
<td>Pluto</td>
<td>5.90(\times)10(^9)</td>
<td>248.3</td>
<td>3.33(\times)10(^{24})</td>
</tr>
<tr>
<td>Jupiter</td>
<td>Io</td>
<td>4.22(\times)10(^5)</td>
<td>0.00485 (1.77 d)</td>
<td>3.19(\times)10(^{21})</td>
</tr>
<tr>
<td></td>
<td>Europa</td>
<td>6.71(\times)10(^5)</td>
<td>0.00972 (3.55 d)</td>
<td>3.20(\times)10(^{21})</td>
</tr>
<tr>
<td></td>
<td>Ganymede</td>
<td>1.07(\times)10(^6)</td>
<td>0.0196 (7.16 d)</td>
<td>3.19(\times)10(^{21})</td>
</tr>
<tr>
<td></td>
<td>Callisto</td>
<td>1.88(\times)10(^6)</td>
<td>0.0457 (16.19 d)</td>
<td>3.20(\times)10(^{21})</td>
</tr>
</tbody>
</table>

The universal law of gravitation is a good example of a physical principle that is very broadly applicable. That single equation for the gravitational force describes all situations in which gravity acts. It gives a cause for a vast number of effects, such as the orbits of the planets and moons in the solar system. It epitomizes the underlying unity and simplicity of physics.

Before the discoveries of Kepler, Copernicus, Galileo, Newton, and others, the solar system was thought to revolve around Earth as shown in Figure 6.19(a). This is called the Ptolemaic view, for the Greek philosopher who lived in the second century AD. This model is characterized by a list of facts for the motions of planets with no cause and effect explanation. There tended to be a different rule for each heavenly body and a general lack of simplicity.

Figure 6.19(b) represents the modern or Copernican model. In this model, a small set of rules and a single underlying force explain not only all motions in the solar system, but all other situations involving gravity. The breadth and simplicity of the laws of physics are compelling. As our knowledge of nature has grown, the basic simplicity of its laws has become ever more evident.
Figure 6.19 (a) The Ptolemaic model of the universe has Earth at the center with the Moon, the planets, the Sun, and the stars revolving about it in complex superpositions of circular paths. This geocentric model, which can be made progressively more accurate by adding more circles, is purely descriptive, containing no hints as to what are the causes of these motions. (b) The Copernican model has the Sun at the center of the solar system. It is fully explained by a small number of laws of physics, including Newton's universal law of gravitation.

Glossary

banked curve: the curve in a road that is sloping in a manner that helps a vehicle negotiate the curve

center of mass: the point where the entire mass of an object can be thought to be concentrated

centripetal acceleration: the acceleration of an object moving in a circle, directed toward the center

centripetal force: any net force causing uniform circular motion

gravitational constant, \(G \): a proportionality factor used in the equation for Newton's universal law of gravitation; it is a universal constant—that is, it is thought to be the same everywhere in the universe

ideal angle: the angle at which a car can turn safely on a steep curve, which is in proportion to the ideal speed

ideal banking: the sloping of a curve in a road, where the angle of the slope allows the vehicle to negotiate the curve at a certain speed without the aid of friction between the tires and the road; the net external force on the vehicle equals the horizontal centripetal force in the absence of friction

ideal speed: the maximum safe speed at which a vehicle can turn on a curve without the aid of friction between the tire and the road

microgravity: an environment in which the apparent net acceleration of a body is small compared with that produced by Earth at its surface

Newton's universal law of gravitation: every particle in the universe attracts every other particle with a force along a line joining them; the force is directly proportional to the product of their masses and inversely proportional to the square of the distance between them

ultracentrifuge: a centrifuge optimized for spinning a rotor at very high speeds

uniform circular motion: the motion of an object in a circular path at constant speed

Section Summary

6.1 **Centripetal Acceleration**

- Centripetal acceleration \(a_c \) is the acceleration experienced while in uniform circular motion. It always points toward the center of rotation. It is perpendicular to the linear velocity \(v \) and has the magnitude

\[
a_c = \frac{v^2}{r}.
\]

- The unit of centripetal acceleration is \(\text{m/s}^2 \).

6.2 **Centripetal Force**

- Centripetal force \(F_c \) is any force causing uniform circular motion. It is a “center-seeking” force that always points toward the center of rotation. It is perpendicular to linear velocity \(v \) and has magnitude

\[
F_c = ma_c,
\]

which can also be expressed as

\[
F_c = m\frac{v^2}{r}.
\]
6.3 Newton’s Universal Law of Gravitation
- Newton’s universal law of gravitation: Every particle in the universe attracts every other particle with a force along a line joining them. The force is directly proportional to the product of their masses and inversely proportional to the square of the distance between them. In equation form, this is

\[F = \frac{GmM}{r^2}, \]

where \(F \) is the magnitude of the gravitational force, \(G \) is the gravitational constant, given by \(G = 6.673 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2 \).
- Newton’s law of gravitation applies universally.

6.4 Satellites and Kepler’s Laws: An Argument for Simplicity
- Kepler’s laws are stated for a small mass \(m \) orbiting a larger mass \(M \) in near-isolation. Kepler’s laws of planetary motion are then as follows:
 - Kepler’s first law
 The orbit of each planet about the Sun is an ellipse with the Sun at one focus.
 - Kepler’s second law
 Each planet moves so that an imaginary line drawn from the Sun to the planet sweeps out equal areas in equal times.
 - Kepler’s third law
 The ratio of the squares of the periods of any two planets about the Sun is equal to the ratio of the cubes of their average distances from the Sun:

\[\frac{T_1^2}{T_2^2} = \frac{r_1^3}{r_2^3}, \]

where \(T \) is the period (time for one orbit) and \(r \) is the average radius of the orbit.
- The period and radius of a satellite’s orbit about a larger body \(M \) are related by

\[T^2 = \frac{4\pi^2}{GM^3} \]

or

\[\frac{r^3}{T^2} = \frac{GM}{4\pi^2}. \]

Conceptual Questions

6.1 Centripetal Acceleration

6.2 Centripetal Force
2. If you wish to reduce the stress (which is related to centripetal force) on high-speed tires, would you use large- or small-diameter tires? Explain.
3. Define centripetal force. Can any type of force (for example, tension, gravitational force, friction, and so on) be a centripetal force? Can any combination of forces be a centripetal force?
4. If centripetal force is directed toward the center, why do you feel that you are ‘thrown’ away from the center as a car goes around a curve? Explain.
5. Race car drivers routinely cut corners as shown in Figure 6.20. Explain how this allows the curve to be taken at the greatest speed.
Figure 6.20 Two paths around a race track curve are shown. Race car drivers will take the inside path (called cutting the corner) whenever possible because it allows them to take the curve at the highest speed.

6. A number of amusement parks have rides that make vertical loops like the one shown in Figure 6.21. For safety, the cars are attached to the rails in such a way that they cannot fall off. If the car goes over the top at just the right speed, gravity alone will supply the centripetal force. What other force acts and what is its direction if:

(a) The car goes over the top at faster than this speed?
(b) The car goes over the top at slower than this speed?

![Figure 6.21 Amusement rides with a vertical loop are an example of a form of curved motion.](image)

7. What is the direction of the force exerted by the car on the passenger as the car goes over the top of the amusement ride pictured in Figure 6.21 under the following circumstances:

(a) The car goes over the top at such a speed that the gravitational force is the only force acting?
(b) The car goes over the top faster than this speed?
(c) The car goes over the top slower than this speed?

8. As a skater forms a circle, what force is responsible for making her turn? Use a free body diagram in your answer.

9. Do you feel yourself thrown to either side when you negotiate a curve that is ideally banked for your car’s speed? What is the direction of the force exerted on you by the car seat?

10. Suppose a mass is moving in a circular path on a frictionless table as shown in figure. In the Earth’s frame of reference, there is no centrifugal force pulling the mass away from the centre of rotation, yet there is a very real force stretching the string attaching the mass to the nail. Using concepts related to centripetal force and Newton’s third law, explain what force stretches the string, identifying its physical origin.

![Figure 6.22 A mass attached to a nail on a frictionless table moves in a circular path. The force stretching the string is real and not fictional. What is the physical origin of the force on the string?](image)

6.3 Newton’s Universal Law of Gravitation

11. Action at a distance, such as is the case for gravity, was once thought to be illogical and therefore untrue. What is the ultimate determinant of the truth in physics, and why was this action ultimately accepted?

12. Two friends are having a conversation. Anna says a satellite in orbit is in freefall because the satellite keeps falling toward Earth. Tom says a satellite in orbit is not in freefall because the acceleration due to gravity is not 9.80 m/s^2. Who do you agree with and why?
13. Draw a free body diagram for a satellite in an elliptical orbit showing why its speed increases as it approaches its parent body and decreases as it moves away.

14. Newton’s laws of motion and gravity were among the first to convincingly demonstrate the underlying simplicity and unity in nature. Many other examples have since been discovered, and we now expect to find such underlying order in complex situations. Is there proof that such order will always be found in new explorations?

6.4 Satellites and Kepler’s Laws: An Argument for Simplicity

15. In what frame(s) of reference are Kepler’s laws valid? Are Kepler’s laws purely descriptive, or do they contain causal information?
6.1 Centripetal Acceleration

1. A fairground ride spins its occupants inside a flying saucer-shaped container. If the horizontal circular path the riders follow has an 8.00 m radius, at how many revolutions per minute will the riders be subjected to a centripetal acceleration whose magnitude is 1.50 times that due to gravity?

2. A runner taking part in the 200 m dash must run around the end of a track that has a circular arc with a radius of curvature of 30. m. If he completes the 200 m dash in 23.2 s and runs at constant speed throughout the race, what is the magnitude of his centripetal acceleration as he runs the curved portion of the track?

3. Taking the age of Earth to be about 4 × 10^9 years and assuming its orbital radius of 1.5 × 10^11 m has not changed and is circular, calculate the approximate total distance Earth has traveled since its birth (in a frame of reference stationary with respect to the Sun).

4. An ordinary workshop grindstone has a radius of 7.50 cm and rotates at 6500 rev/min.
 (a) Calculate the magnitude of the centripetal acceleration at its edge in meters per second squared and convert it to multiples of g.
 (b) What is the linear speed of a point on its edge?

5. Helicopter blades withstand tremendous stresses. In addition to supporting the weight of a helicopter, they are spun at rapid rates and experience large centripetal accelerations, especially at the tip.
 (a) Calculate the magnitude of the centripetal acceleration at the tip of a 4.00 m long helicopter blade that rotates at 300 rev/min.
 (b) Compare the linear speed of the tip with the speed of sound (taken to be 340 m/s).

6. Verify that the linear speed of an ultracentrifuge is about 0.50 km/s, and Earth in its orbit is about 30 km/s by calculating:
 (a) The linear speed of a point on an ultracentrifuge 0.100 m from its center, rotating at 50,000 rev/min.
 (b) The linear speed of Earth in its orbit about the Sun (use data from the text on the radius of Earth's orbit and approximate it as being circular).

7. At takeoff, a commercial jet has a 60.0 m/s speed. Its tires have a diameter of 0.850 m.
 (a) At how many rev/min are the tires rotating?
 (b) What is the centripetal acceleration at the edge of the tire?
 (c) With what force must a determined 1.00×10^{-15} kg bacterium cling to the rim?
 (d) Take the ratio of this force to the bacterium's weight.

8. Integrated Concepts
 Riders in an amusement park ride shaped like a Viking ship hung from a large pivot are rotated back and forth like a rigid pendulum. Sometime near the middle of the ride, the ship is momentarily motionless at the top of its circular arc. The ship then swings down under the influence of gravity.
 (a) Assuming negligible friction, find the speed of the riders at the bottom of its arc, given the system's center of mass travels in an arc having a radius of 14.0 m and the riders are near the center of mass.
 (b) What is the centripetal acceleration at the bottom of the arc?
 (c) Draw a free body diagram of the forces acting on a rider at the bottom of the arc.
 (d) Find the force exerted by the ride on a 60.0 kg rider and compare it to her weight.
 (e) Discuss whether the answer seems reasonable.

9. Unreasonable Results

A mother pushes her child on a swing so that his speed is 9.00 m/s at the lowest point of his path. The swing is suspended 2.00 m above the child's center of mass.

(a) What is the magnitude of the centripetal acceleration of the child at the low point?
(b) What is the magnitude of the force the child exerts on the seat if his mass is 18.0 kg?
(c) What is unreasonable about these results?
(d) Which premises are unreasonable or inconsistent?

6.2 Centripetal Force

10. (a) A 22.0 kg child is riding a playground merry-go-round that is rotating at 40.0 rev/min. What centripetal force must she exert to stay on if she is 1.25 m from its center?
 (b) What centripetal force does she need to stay on an amusement park merry-go-round that rotates at 3.00 rev/min if she is 8.00 m from its center?
 (c) Compare each force with her weight.

11. Calculate the centripetal force on the end of a 100 m (radius) wind turbine blade that is rotating at 0.5 rev/s. Assume the mass is 4 kg.

12. What is the ideal banking angle for a gentle turn of 1.20 km radius on a highway with a 105 km/h speed limit (about 65 mi/h), assuming everyone travels at the limit?

13. What is the ideal speed to take a 100 m radius curve banked at a 20.0° angle?

14. (a) What is the radius of a bobsled turn banked at 75.0° and taken at 30.0 m/s, assuming it is ideally banked?
 (b) Calculate the centripetal acceleration.
 (c) Does this acceleration seem large to you?

15. Part of riding a bicycle involves leaning at the correct angle when making a turn, as seen in Figure 6.23. To be stable, the force exerted by the ground must be on a line going through the center of gravity. The force on the bicycle wheel can be resolved into two perpendicular components—friction parallel to the road (this must supply the centripetal force), and the vertical normal force (which must equal the system's weight).

(a) Show that \(\theta \) (as defined in the figure) is related to the speed \(v \) and radius of curvature \(r \) of the turn in the same way as for an ideally banked roadway—that is, \(\theta = \tan^{-1} \frac{v^2}{rg} \).

(b) Calculate \(\theta \) for a 12.0 m/s turn of radius 30.0 m (as in a race).
Figure 6.23 A bicyclist negotiating a turn on level ground must lean at the correct angle—the ability to do this becomes instinctive. The force of the ground on the wheel needs to be on a line through the center of gravity. The net external force on the system is the centripetal force. The vertical component of the force on the wheel cancels the weight of the system while its horizontal component must supply the centripetal force. This produces a relationship among the angle θ, the speed v, and the radius of curvature r of the turn similar to that for the ideal banking of roadways.

16. A large centrifuge, like the one shown in Figure 6.24(a), is used to expose aspiring astronauts to accelerations similar to those experienced in rocket launches and atmospheric reentries.

(a) At what angular velocity is the centripetal acceleration 10 g if the rider is 15.0 m from the center of rotation?

(b) The rider’s cage hangs on a pivot at the end of the arm, allowing it to swing outward during rotation as shown in Figure 6.24(b). At what angle θ below the horizontal will the cage hang when the centripetal acceleration is 10 g? (Hint: The arm supplies centripetal force and supports the weight of the cage. Draw a free body diagram of the forces to see what the angle θ should be.)

(a) NASA centrifuge and ride

(b) Free-body diagram

Figure 6.24 (a) NASA centrifuge used to subject trainees to accelerations similar to those experienced in rocket launches and reentries. (credit: NASA) (b) Rider in cage showing how the cage pivots outward during rotation. This allows the total force exerted on the rider by the cage to be along its axis at all times.

17. Integrated Concepts

If a car takes a banked curve at less than the ideal speed, friction is needed to keep it from sliding toward the inside of the curve (a real problem on icy mountain roads). (a) Calculate the ideal speed to take a 100 m radius curve banked at 15.0°. (b) What is the minimum coefficient of friction needed for a frightened driver to take the same curve at 20.0 km/h?

18. Modern roller coasters have vertical loops like the one shown in Figure 6.25. The radius of curvature is smaller at the top than on the sides so that the downward centripetal acceleration at the top will be greater than the acceleration due to gravity, keeping the passengers pressed firmly into their seats. What is the speed of the roller coaster at the top of the loop if the radius of curvature there is 15.0 m and the downward acceleration of the car is 1.50 g?

![Figure 6.25 Teardrop-shaped loops are used in the latest roller coasters so that the radius of curvature gradually decreases to a minimum at the top. This means that the centripetal acceleration builds from zero to a maximum at the top and gradually decreases again. A circular loop would cause a jolting change in acceleration at entry, a disadvantage discovered long ago in railroad curve design. With a small radius of curvature at the top, the centripetal acceleration can more easily be kept greater than g so that the passengers do not lose contact with their seats nor do they need seat belts to keep them in place.](image)

19. Unreasonable Results

(a) Calculate the minimum coefficient of friction needed for a car to negotiate an unbanked 50.0 m radius curve at 30.0 m/s.

(b) What is unreasonable about the result?

(c) Which premises are unreasonable or inconsistent?

6.3 Newton’s Universal Law of Gravitation

20. (a) Calculate Earth’s mass given the acceleration due to gravity at the North Pole is 9.830 m/s2 and the radius of the Earth is 6371 km from pole to pole.

(b) Compare this with the accepted value of 5.979×10^{24} kg.

21. (a) Calculate the magnitude of the acceleration due to gravity on the surface of Earth due to the Moon.

(b) Calculate the magnitude of the acceleration due to gravity at Earth due to the Sun.

(c) Take the ratio of the Moon’s acceleration to the Sun’s and comment on why the tides are predominantly due to the Moon in spite of this number.

22. (a) What is the acceleration due to gravity on the surface of the Moon?

(b) On the surface of Mars? The mass of Mars is 6.418×10^{23} kg and its radius is 3.38×10^6 m.

23. (a) Calculate the acceleration due to gravity on the surface of the Sun.

(b) By what factor would your weight increase if you could stand on the Sun? (Never mind that you cannot.)
24. The Moon and Earth rotate about their common center of mass, which is located about 4700 km from the center of Earth. (This is 1690 km below the surface.)
(a) Calculate the magnitude of the acceleration due to the Moon’s gravity at that point.
(b) Calculate the magnitude of the centripetal acceleration of the center of Earth as it rotates about that point once each lunar month (about 27.3 d) and compare it with the acceleration found in part (a). Comment on whether or not they are equal and why they should or should not be.
25. Solve part (b) of ??? using \(a_c = \frac{v^2}{r} \).
26. Astrology, that unlikely and vague pseudoscience, makes much of the position of the planets at the moment of one’s birth. The only known force a planet exerts on Earth is gravitational.
(a) Calculate the magnitude of the gravitational force exerted on a 4.20 kg baby by a 100 kg father 0.200 m away at birth (he is assisting, so he is close to the child).
(b) Calculate the magnitude of the force on the baby due to Jupiter if it is at its closest distance to Earth, some 6.29 \times 10^{11} \text{ m} away. How does the force of Jupiter on the baby compare to the force of the father on the baby? Other objects in the room and the hospital building also exert similar gravitational forces. (Of course, there could be an unknown force acting, but scientists first need to be convinced that there is even an effect, much less that an unknown force causes it.)
27. The existence of the dwarf planet Pluto was proposed based on irregularities in Neptune’s orbit. Pluto was subsequently discovered near its predicted position. But it now appears that the discovery was fortuitous, because Pluto is small and the irregularities in Neptune’s orbit were not well known. To illustrate that Pluto has a minor effect on the orbit of Neptune compared with the closest planet to Neptune:
(a) Calculate the acceleration due to gravity at Neptune due to Pluto when they are 4.50 \times 10^{12} \text{ m} apart, as they are at present. The mass of Pluto is 1.4 \times 10^{22} \text{ kg}.
(b) Calculate the acceleration due to gravity at Neptune due to Uranus, presently about 2.50 \times 10^{12} \text{ m} apart, and compare it with that due to Pluto. The mass of Uranus is 8.62 \times 10^{25} \text{ kg}.
28. (a) The Sun orbits the Milky Way galaxy once each 2.60 \times 10^8 \text{ y}, with a roughly circular orbit averaging 3.00 \times 10^4 \text{ light years in radius}. (A light year is the distance traveled by light in 1 y.) Calculate the centripetal acceleration of the Sun in its galactic orbit. Does your result support the contention that a nearly inertial frame of reference can be located at the Sun?
(b) Calculate the average speed of the Sun in its galactic orbit. Does the answer surprise you?
29. Unreasonable Result
A mountain 10.0 km from a person exerts a gravitational force on him equal to 2.00% of his weight.
(a) Calculate the mass of the mountain.
(b) Compare the mountain’s mass with that of Earth.
(c) What is unreasonable about these results?
(d) Which premises are unreasonable or inconsistent? (Note that accurate gravitational measurements can easily detect the effect of nearby mountains and variations in local geology.)

6.4 Satellites and Kepler’s Laws: An Argument for Simplicity
30. A geosynchronous Earth satellite is one that has an orbital period of precisely 1 day. Such orbits are useful for communication and weather observation because the satellite remains above the same point on Earth (provided it orbits in the equatorial plane in the same direction as Earth’s rotation). Calculate the radius of such an orbit based on the data for the moon in Table 6.1.
31. Calculate the mass of the Sun based on data for Earth’s orbit and compare the value obtained with the Sun’s actual mass.
32. Find the mass of Jupiter based on data for the orbit of one of its moons, and compare your result with its actual mass.
33. Find the ratio of the mass of Jupiter to that of Earth based on data in Table 6.1.
34. Astronomical observations of our Milky Way galaxy indicate that it has a mass of about 8.0×10^{11} solar masses. A star orbiting on the galaxy’s periphery is about 6.0×10^{3} light years from its center. (a) What should the orbital period of that star be? (b) If its period is 6.0×10^{2} instead, what is the mass of the galaxy? Such calculations are used to imply the existence of "dark matter" in the universe and have indicated, for example, the existence of very massive black holes at the centers of some galaxies.

35. Integrated Concepts
Space debris left from old satellites and their launchers is becoming a hazard to other satellites. (a) Calculate the speed of a satellite in an orbit 900 km above Earth’s surface. (b) Suppose a loose rivet is in an orbit of the same radius that intersects the satellite’s orbit at an angle of 90° relative to Earth. What is the velocity of the rivet relative to the satellite just before striking it? (c) Given the rivet is 3.00 mm in size, how long will its collision with the satellite last? (d) If its mass is 0.500 g, what is the average force it exerts on the satellite? (e) How much energy in joules is generated by the collision? (The satellite’s velocity does not change appreciably, because its mass is much greater than the rivet’s.)

36. Unreasonable Results
(a) Based on Kepler’s laws and information on the orbital characteristics of the Moon, calculate the orbital radius for an Earth satellite having a period of 1.00 h. (b) What is unreasonable about this result? (c) What is unreasonable or inconsistent about the premise of a 1.00 h orbit?

37. Construct Your Own Problem
On February 14, 2000, the NEAR spacecraft was successfully inserted into orbit around Eros, becoming the first artificial satellite of an asteroid. Construct a problem in which you determine the orbital speed for a satellite near Eros. You will need to find the mass of the asteroid and consider such things as a safe distance for the orbit. Although Eros is not spherical, calculate the acceleration due to gravity on its surface at a point an average distance from its center of mass. Your instructor may also wish to have you calculate the escape velocity from this point on Eros.
Introduction to Work, Energy, and Energy Resources

Energy plays an essential role both in everyday events and in scientific phenomena. You can no doubt name many forms of energy, from that provided by our foods, to the energy we use to run our cars, to the sunlight that warms us on the beach. You can also cite examples of what people call energy that may not be scientific, such as someone having an energetic personality. Not only does energy have many interesting forms, it is involved in almost all phenomena, and is one of the most important concepts of physics. What makes it even more important is that the total amount of energy in the universe is constant. Energy can change forms, but it cannot appear from nothing or disappear without a trace. Energy is thus one of a handful of physical quantities that we say is conserved.
Conservation of energy (as physicists like to call the principle that energy can neither be created nor destroyed) is based on experiment. Even as scientists discovered new forms of energy, conservation of energy has always been found to apply. Perhaps the most dramatic example of this was supplied by Einstein when he suggested that mass is equivalent to energy (his famous equation $E = mc^2$).

From a societal viewpoint, energy is one of the major building blocks of modern civilization. Energy resources are key limiting factors to economic growth. The world use of energy resources, especially oil, continues to grow, with ominous consequences economically, socially, politically, and environmentally. We will briefly examine the world’s energy use patterns at the end of this chapter.

There is no simple, yet accurate, scientific definition for energy. Energy is characterized by its many forms and the fact that it is conserved. We can loosely define energy as the ability to do work, admitting that in some circumstances not all energy is available to do work. Because of the association of energy with work, we begin the chapter with a discussion of work. Work is intimately related to energy and how energy moves from one system to another or changes form.

7.1 Work: The Scientific Definition

What It Means to Do Work

The scientific definition of work differs in some ways from its everyday meaning. Certain things we think of as hard work, such as writing an exam or carrying a heavy load on level ground, are not work as defined by a scientist. The scientific definition of work reveals its relationship to energy—whenever work is done, energy is transferred.

For work, in the scientific sense, to be done, a force must be exerted and there must be motion or displacement in the direction of the force.

Formally, the work done on a system by a constant force is defined to be the product of the component of the force in the direction of motion times the distance through which the force acts. For one-way motion in one dimension, this is expressed in equation form as

$$W = |F| (\cos \theta) |d|,$$

where W is work, d is the displacement of the system, and θ is the angle between the force vector \mathbf{F} and the displacement vector \mathbf{d}, as in Figure 7.2. We can also write this as

$$W = Fd \cos \theta.$$

(7.1)

(7.2)

To find the work done on a system that undergoes motion that is not one-way or that is in two or three dimensions, we divide the motion into one-way one-dimensional segments and add up the work done over each segment.

What is Work?

The work done on a system by a constant force is the product of the component of the force in the direction of motion times the distance through which the force acts. For one-way motion in one dimension, this is expressed in equation form as

$$W = Fd \cos \theta,$$

(7.3)

where W is work, F is the magnitude of the force on the system, d is the magnitude of the displacement of the system, and θ is the angle between the force vector \mathbf{F} and the displacement vector \mathbf{d}.

Figure 7.2 Examples of work. (a) The work done by the force \mathbf{F} on this lawn mower is $Fd \cos \theta$. Note that $F \cos \theta$ is the component of the force in the direction of motion. (b) A person holding a briefcase does no work on it, because there is no motion. No energy is transferred to or from the briefcase. (c) The person moving the briefcase horizontally at a constant speed does no work on it, and transfers no energy to it. (d) Work is done on the briefcase by carrying it up stairs at constant speed, because there is necessarily a component of force \mathbf{F} in the direction of the motion. Energy is transferred to the briefcase and could in turn be used to do work. (e) When the briefcase is lowered, energy is transferred out of the briefcase and into an electric generator. Here the work done on the briefcase by the generator is negative, removing energy from the briefcase, because \mathbf{F} and \mathbf{d} are in opposite directions.

To examine what the definition of work means, let us consider the other situations shown in Figure 7.2. The person holding the briefcase in Figure 7.2(b) does no work, for example. Here $d = 0$, so $W = 0$. Why is it you get tired just holding a load? The answer is that your muscles are doing work against one another, but they are doing no work on the system of interest (the “briefcase-Earth system”—see Gravitational Potential Energy for more details). There must be motion for work to be done, and there must be a component of the force in the direction of the motion. For example, the person carrying the briefcase on level ground in Figure 7.2(c) does no work on it, because the force is perpendicular to the motion. That is, $\cos 90^\circ = 0$, and so $W = 0$.

In contrast, when a force exerted on the system has a component in the direction of motion, such as in Figure 7.2(d), work is done—energy is transferred to the briefcase. Finally, in Figure 7.2(e), energy is transferred from the briefcase to a generator. There are two good ways to interpret this energy transfer. One interpretation is that the briefcase’s weight does work on the generator, giving it energy. The other interpretation is that the
generator does negative work on the briefcase, thus removing energy from it. The drawing shows the latter, with the force from the generator upward on the briefcase, and the displacement downward. This makes $\theta = 180^\circ$, and $\cos 180^\circ = -1$; therefore, W is negative.

Calculating Work
Work and energy have the same units. From the definition of work, we see that those units are force times distance. Thus, in SI units, work and energy are measured in **newton-meters**. A newton-meter is given the special name **joule** (J), and $1\text{ J} = 1 \text{ N} \cdot \text{ m} = 1 \text{ kg} \cdot \text{ m}^2/\text{s}^2$. One joule is not a large amount of energy; it would lift a small 100-gram apple a distance of about 1 meter.

Example 7.1 Calculating the Work You Do to Push a Lawn Mower Across a Large Lawn

How much work is done on the lawn mower by the person in Figure 7.2(a) if he exerts a constant force of 75.0 N at an angle 35° below the horizontal and pushes the mower 25.0 m on level ground? Convert the amount of work from joules to kilocalories and compare it with this person’s average daily intake of 10,000 kJ (about 2400 kcal) of food energy. One *calorie* (1 kcal) of heat is the amount required to warm 1 g of water by 1°C, and is equivalent to 4.184 J, while one *food calorie* (1 kcal) is equivalent to 4184 J.

Strategy
We can solve this problem by substituting the given values into the definition of work done on a system, stated in the equation $W = Fd \cos \theta$. The force, angle, and displacement are given, so that only the work W is unknown.

Solution
The equation for the work is

$$W = Fd \cos \theta.$$

Substituting the known values gives

$$W = (75.0 \text{ N})(25.0 \text{ m}) \cos (35.0^\circ)$$

$$= 1536 \text{ J} = 1.54 \times 10^3 \text{ J}.$$

Converting the work in joules to kilocalories yields $W = (1536 \text{ J})(1 \text{ kcal}/4184 \text{ J}) = 0.367 \text{ kcal}$. The ratio of the work done to the daily consumption is

$$\frac{W}{2400 \text{ kcal}} = 1.53 \times 10^{-4}.$$

Discussion
This ratio is a tiny fraction of what the person consumes, but it is typical. Very little of the energy released in the consumption of food is used to do work. Even when we “work” all day long, less than 10% of our food energy intake is used to do work and more than 90% is converted to thermal energy or stored as chemical energy in fat.

7.2 Kinetic Energy and the Work-Energy Theorem

Work Transfers Energy
What happens to the work done on a system? Energy is transferred into the system, but in what form? Does it remain in the system or move on? The answers depend on the situation. For example, if the lawn mower in Figure 7.2(a) is pushed just hard enough to keep it going at a constant speed, then energy put into the mower by the person is removed continuously by friction, and eventually leaves the system in the form of heat transfer. In contrast, work done on the briefcase by the person carrying it up stairs in Figure 7.2(d) is stored in the briefcase-Earth system and can be recovered at any time, as shown in Figure 7.2(e). In fact, the building of the pyramids in ancient Egypt is an example of storing energy in a system by doing work on the system. Some of the energy imparted to the stone blocks in lifting them during construction of the pyramids remains in the stone-Earth system and has the potential to do work.

In this section we begin the study of various types of work and forms of energy. We will find that some types of work leave the energy of a system constant, for example, whereas others change the system in some way, such as making it move. We will also develop definitions of important forms of energy, such as the energy of motion.

Net Work and the Work-Energy Theorem
We know from the study of Newton’s laws in **Dynamics: Force and Newton’s Laws of Motion** that net force causes acceleration. We will see in this section that work done by the net force gives a system energy of motion, and in the process we will also find an expression for the energy of motion.

Let us start by considering the total, or net, work done on a system. Net work is defined to be the sum of work done by all external forces—that is, net work is the work done by the net external force F_{net}. In equation form, this is $W_{\text{net}} = F_{\text{net}}d \cos \theta$ where θ is the angle between the force vector and the displacement vector.

Figure 7.3(a) shows a graph of force versus displacement for the component of the force in the direction of the displacement—that is, an $F \cos \theta$ vs. d graph. In this case, $F \cos \theta$ is constant. You can see that the area under the graph is $Fd \cos \theta$, or the work done. Figure 7.3(b) shows a more general process where the force varies. The area under the curve is divided into strips, each having an average force $(F \cos \theta)_{(\text{ave})}$. The
work done is \((F \cos \theta)_{\text{ave}} d_i\) for each strip, and the total work done is the sum of the \(W_i\). Thus the total work done is the total area under the curve, a useful property to which we shall refer later.

![Graph](image)

Figure 7.3 (a) A graph of \(F \cos \theta\) vs. \(d\), when \(F \cos \theta\) is constant. The area under the curve represents the work done by the force. (b) A graph of \(F \cos \theta\) vs. \(d\) in which the force varies. The work done for each interval is the area of each strip; thus, the total area under the curve equals the total work done.

Net work will be simpler to examine if we consider a one-dimensional situation where a force is used to accelerate an object in a direction parallel to its initial velocity. Such a situation occurs for the package on the roller belt conveyor system shown in **Figure 7.4**.

![Image](image)

Figure 7.4 A package on a roller belt is pushed horizontally through a distance \(d\).

The force of gravity and the normal force acting on the package are perpendicular to the displacement and do no work. Moreover, they are also equal in magnitude and opposite in direction so they cancel in calculating the net force. The net force arises solely from the horizontal applied force \(F_{\text{app}}\) and the horizontal friction force \(f\). Thus, as expected, the net force is parallel to the displacement, so that \(\theta = 0^\circ\) and \(\cos \theta = 1\), and the net work is given by

\[
W_{\text{net}} = F_{\text{net}} d. \tag{7.7}
\]

The effect of the net force \(F_{\text{net}}\) is to accelerate the package from \(v_0\) to \(v\). The kinetic energy of the package increases, indicating that the net work done on the system is positive. (See **Example 7.2**.) By using Newton's second law, and doing some algebra, we can reach an interesting conclusion. Substituting \(F_{\text{net}} = ma\) from Newton's second law gives

\[
W_{\text{net}} = mad. \tag{7.8}
\]

To get a relationship between net work and the speed given to a system by the net force acting on it, we take \(d = x - x_0\) and use the equation studied in Motion Equations for Constant Acceleration in One Dimension for the change in speed over a distance \(d\) if the acceleration has the constant value \(a\); namely, \(v^2 = v_0^2 + 2ad\) (note that \(a\) appears in the expression for the net work). Solving for acceleration gives \(a = \frac{v^2 - v_0^2}{2d}\). When \(a\) is substituted into the preceding expression for \(W_{\text{net}}\), we obtain
\[W_{\text{net}} = m \left(\frac{v^2 - v_0^2}{2d} \right) d. \]

(7.9)

The \(d \) cancels, and we rearrange this to obtain

\[W = \frac{1}{2} mv^2 - \frac{1}{2} mv_0^2. \]

(7.10)

This expression is called the **work-energy theorem**, and it actually applies *in general* (even for forces that vary in direction and magnitude), although we have derived it for the special case of a constant force parallel to the displacement. The theorem implies that the net work on a system equals the change in the quantity \(\frac{1}{2} mv^2 \). This quantity is our first example of a form of energy.

The Work-Energy Theorem

The net work on a system equals the change in the quantity \(\frac{1}{2} mv^2 \).

\[W_{\text{net}} = \frac{1}{2} mv^2 - \frac{1}{2} mv_0^2. \]

(7.11)

The quantity \(\frac{1}{2} mv^2 \) in the work-energy theorem is defined to be the translational **kinetic energy** (KE) of a mass \(m \) moving at a speed \(v \).

Translational kinetic energy is distinct from *rotational* kinetic energy, which is considered later.) In equation form, the translational kinetic energy,

\[KE = \frac{1}{2} mv^2, \]

(7.12)

is the energy associated with translational motion. Kinetic energy is a form of energy associated with the motion of a particle, single body, or system of objects moving together.

We are aware that it takes energy to get an object, like a car or the package in Figure 7.4, up to speed, but it may be a bit surprising that kinetic energy is proportional to speed squared. This proportionality means, for example, that a car traveling at 100 km/h has four times the kinetic energy it has at 50 km/h, helping to explain why high-speed collisions are so devastating. We will now consider a series of examples to illustrate various aspects of work and energy.

Example 7.2 Calculating the Kinetic Energy of a Package

Suppose a 30.0-kg package on the roller belt conveyor system in Figure 7.4 is moving at 0.500 m/s. What is its kinetic energy?

Strategy

Because the mass \(m \) and speed \(v \) are given, the kinetic energy can be calculated from its definition as given in the equation \(KE = \frac{1}{2} mv^2 \).

Solution

The kinetic energy is given by

\[KE = \frac{1}{2} mv^2. \]

(7.13)

Entering known values gives

\[KE = 0.5(30.0 \text{ kg})(0.500 \text{ m/s})^2, \]

(7.14)

which yields

\[KE = 3.75 \text{ kg} \cdot \text{m}^2/\text{s}^2 = 3.75 \text{ J}. \]

(7.15)

Discussion

Note that the unit of kinetic energy is the joule, the same as the unit of work, as mentioned when work was first defined. It is also interesting that, although this is a fairly massive package, its kinetic energy is not large at this relatively low speed. This fact is consistent with the observation that people can move packages like this without exhausting themselves.

Example 7.3 Determining the Work to Accelerate a Package

Suppose that you push on the 30.0-kg package in Figure 7.4 with a constant force of 120 N through a distance of 0.800 m, and that the opposing friction force averages 5.00 N.

(a) Calculate the net work done on the package. (b) Solve the same problem as in part (a), this time by finding the work done by each force that contributes to the net force.

Strategy and Concept for (a)
This is a motion in one dimension problem, because the downward force (from the weight of the package) and the normal force have equal magnitude and opposite direction, so that they cancel in calculating the net force, while the applied force, friction, and the displacement are all horizontal. (See Figure 7.4.) As expected, the net work is the net force times distance.

Solution for (a)

The net force is the push force minus friction, or $F_{\text{net}} = 120 \, \text{N} - 5.00 \, \text{N} = 115 \, \text{N}$. Thus the net work is

$$W_{\text{net}} = F_{\text{net}}d = (115 \, \text{N})(0.800 \, \text{m}) = 92.0 \, \text{N} \cdot \text{m} = 92.0 \, \text{J}.$$

(7.16)

Discussion for (a)

This value is the net work done on the package. The person actually does more work than this, because friction opposes the motion. Friction does negative work and removes some of the energy the person expends and converts it to thermal energy. The net work equals the sum of the work done by each individual force.

Strategy and Concept for (b)

The forces acting on the package are gravity, the normal force, the force of friction, and the applied force. The normal force and force of gravity are each perpendicular to the displacement, and therefore do no work.

Solution for (b)

The applied force does work.

$$W_{\text{app}} = F_{\text{app}}d \cos(0^\circ) = F_{\text{app}}d = (120 \, \text{N})(0.800 \, \text{m}) = 96.0 \, \text{J}.$$

(7.17)

The friction force and displacement are in opposite directions, so that $\theta = 180^\circ$, and the work done by friction is

$$W_{\text{fr}} = F_{\text{fr}}d \cos(180^\circ) = -F_{\text{fr}}d = -(5.00 \, \text{N})(0.800 \, \text{m}) = -4.00 \, \text{J}.$$

(7.18)

So the amounts of work done by gravity, by the normal force, by the applied force, and by friction are, respectively,

$$W_{\text{gr}} = 0,$$

$$W_{\text{N}} = 0,$$

$$W_{\text{app}} = 96.0 \, \text{J},$$

$$W_{\text{fr}} = -4.00 \, \text{J}.$$

(7.19)

The total work done as the sum of the work done by each force is then seen to be

$$W_{\text{total}} = W_{\text{gr}} + W_{\text{N}} + W_{\text{app}} + W_{\text{fr}} = 92.0 \, \text{J}.$$

(7.20)

Discussion for (b)

The calculated total work W_{total} as the sum of the work by each force agrees, as expected, with the work W_{net} done by the net force. The work done by a collection of forces acting on an object can be calculated by either approach.

Example 7.4 Determining Speed from Work and Energy

Find the speed of the package in Figure 7.4 at the end of the push, using work and energy concepts.

Strategy

Here the work-energy theorem can be used, because we have just calculated the net work, W_{net}, and the initial kinetic energy, $\frac{1}{2}mv_0^2$. These calculations allow us to find the final kinetic energy, $\frac{1}{2}mv^2$, and thus the final speed v.

Solution

The work-energy theorem in equation form is

$$W_{\text{net}} = \frac{1}{2}mv^2 - \frac{1}{2}mv_0^2.$$

(7.21)

Solving for $\frac{1}{2}mv^2$ gives

$$\frac{1}{2}mv^2 = W_{\text{net}} + \frac{1}{2}mv_0^2.$$

(7.22)
Thus,
\[
\frac{1}{2}mv^2 = 92.0 \text{ J} + 3.75 \text{ J} = 95.75 \text{ J}.
\] (7.23)

Solving for the final speed as requested and entering known values gives
\[
v = \sqrt{\frac{2(95.75 \text{ J})}{m}} = \sqrt{\frac{191.5 \text{ kg} \cdot \text{ m}^2/\text{s}^2}{30.0 \text{ kg}}}
\]
\[
= 2.53 \text{ m/s}.
\] (7.24)

Discussion
Using work and energy, we not only arrive at an answer, we see that the final kinetic energy is the sum of the initial kinetic energy and the net work done on the package. This means that the work indeed adds to the energy of the package.

Example 7.5 Work and Energy Can Reveal Distance, Too

How far does the package in Figure 7.4 coast after the push, assuming friction remains constant? Use work and energy considerations.

Strategy
We know that once the person stops pushing, friction will bring the package to rest. In terms of energy, friction does negative work until it has removed all of the package’s kinetic energy. The work done by friction is the force of friction times the distance traveled times the cosine of the angle between the friction force and displacement; hence, this gives us a way of finding the distance traveled after the person stops pushing.

Solution
The normal force and force of gravity cancel in calculating the net force. The horizontal friction force is then the net force, and it acts opposite to the displacement, so \(\theta = 180^\circ \). To reduce the kinetic energy of the package to zero, the work \(W_{ft} \) by friction must be minus the kinetic energy that the package started with plus what the package accumulated due to the pushing. Thus \(W_{ft} = -95.75 \text{ J} \). Furthermore,
\[
W_{ft} = f d' \cos \theta = -fd',
\]
where \(d' \) is the distance it takes to stop. Thus,
\[
d' = \frac{-W_{ft}}{f} = \frac{-95.75 \text{ J}}{5.00 \text{ N}}.
\] (7.25)

and so
\[
d' = 19.2 \text{ m}.
\] (7.26)

Discussion
This is a reasonable distance for a package to coast on a relatively friction-free conveyor system. Note that the work done by friction is negative (the force is in the opposite direction of motion), so it removes the kinetic energy.

Some of the examples in this section can be solved without considering energy, but at the expense of missing out on gaining insights about what work and energy are doing in this situation. On the whole, solutions involving energy are generally shorter and easier than those using kinematics and dynamics alone.

7.3 Gravitational Potential Energy

Work Done Against Gravity

Climbing stairs and lifting objects is work in both the scientific and everyday sense—it is work done against the gravitational force. When there is work, there is a transformation of energy. The work done against the gravitational force goes into an important form of stored energy that we will explore in this section.

Let us calculate the work done in lifting an object of mass \(m \) through a height \(h \), such as in Figure 7.5. If the object is lifted straight up at constant speed, then the force needed to lift it is equal to its weight \(mg \). The work done on the mass is then \(W = Fd = mgh \). We define this to be the **gravitational potential energy** (\(\text{PE}_g \)) put into (or gained by) the object-Earth system. This energy is associated with the state of separation between two objects that attract each other by the gravitational force. For convenience, we refer to this as the \(\text{PE}_g \) gained by the object, recognizing that this is energy stored in the gravitational field of Earth. Why do we use the word “system”? Potential energy is a property of a system rather than of a single object—due to its physical position. An object's gravitational potential is due to its position relative to the surroundings within the Earth-object system. The force applied to the object is an external force, from outside the system. When it does positive work it increases the gravitational potential energy of the system. Because gravitational potential energy depends on relative position, we need a reference level at which to set the potential energy equal to 0. We usually choose this point to be Earth’s surface, but this point is arbitrary; what is important is the difference in gravitational potential energy, because this difference is what relates to the work done. The difference in gravitational potential energy of an object (in the Earth-object system) between two rungs of a ladder will be the same for the first two rungs as for the last two rungs.
Converting Between Potential Energy and Kinetic Energy

Gravitational potential energy may be converted to other forms of energy, such as kinetic energy. If we release the mass, gravitational force will do an amount of work equal to \(mgh \) on it, thereby increasing its kinetic energy by that same amount (by the work-energy theorem). We will find it more useful to consider just the conversion of \(\text{PE}_g \) to \(\text{KE} \) without explicitly considering the intermediate step of work. (See Example 7.7.) This shortcut makes it is easier to solve problems using energy (if possible) rather than explicitly using forces.

More precisely, we define the change in gravitational potential energy \(\Delta \text{PE}_g \) to be

\[
\Delta \text{PE}_g = mgh,
\]

where, for simplicity, we denote the change in height by \(h \) rather than the usual \(\Delta h \). Note that \(h \) is positive when the final height is greater than the initial height, and vice versa. For example, if a 0.500-kg mass hung from a cuckoo clock is raised 1.00 m, then its change in gravitational potential energy is

\[
\begin{align*}
 mgh &= (0.500 \text{ kg})(9.80 \text{ m/s}^2)(1.00 \text{ m}) \\
 &= 4.90 \text{ kg} \cdot \text{m}^2/\text{s}^2 = 4.90 \text{ J}.
\end{align*}
\]

Note that the units of gravitational potential energy turn out to be joules, the same as for work and other forms of energy. As the clock runs, the mass is lowered. We can think of the mass as gradually giving up its 4.90 J of gravitational potential energy, without directly considering the force of gravity that does the work.

Using Potential Energy to Simplify Calculations

The equation \(\Delta \text{PE}_g = mgh \) applies for any path that has a change in height of \(h \), not just when the mass is lifted straight up. (See Figure 7.6.) It is much easier to calculate \(mgh \) (a simple multiplication) than it is to calculate the work done along a complicated path. The idea of gravitational potential energy has the double advantage that it is very broadly applicable and it makes calculations easier. From now on, we will consider that any change in vertical position \(h \) of a mass \(m \) is accompanied by a change in gravitational potential energy \(mgh \), and we will avoid the equivalent but more difficult task of calculating work done by or against the gravitational force.
Figure 7.6 The change in gravitational potential energy \(\Delta P_{Eg} \) between points A and B is independent of the path. \(\Delta P_{Eg} = mgh \) for any path between the two points. Gravity is one of a small class of forces where the work done by or against the force depends only on the starting and ending points, not on the path between them.

Example 7.6 The Force to Stop Falling

A 60.0-kg person jumps onto the floor from a height of 3.00 m. If he lands stiffly (with his knee joints compressing by 0.500 cm), calculate the force on the knee joints.

Strategy

This person’s energy is brought to zero in this situation by the work done on him by the floor as he stops. The initial \(PE_{g} \) is transformed into KE as he falls. The work done by the floor reduces this kinetic energy to zero.

Solution

The work done on the person by the floor as he stops is given by

\[
W = Fd \cos \theta = -Fd,
\]
(7.29)

with a minus sign because the displacement while stopping and the force from floor are in opposite directions \(\cos \theta = \cos 180^\circ = -1 \). The floor removes energy from the system, so it does negative work.

The kinetic energy the person has upon reaching the floor is the amount of potential energy lost by falling through height \(h \):

\[
KE = -\Delta P_{Eg} = -mgh,
\]
(7.30)

The distance \(d \) that the person’s knees bend is much smaller than the height \(h \) of the fall, so the additional change in gravitational potential energy during the knee bend is ignored.

The work \(W \) done by the floor on the person stops the person and brings the person’s kinetic energy to zero:

\[
W = -KE = mgh.
\]
(7.31)

Combining this equation with the expression for \(W \) gives

\[
-Fd = mgh.
\]
(7.32)

Recalling that \(h \) is negative because the person fell down, the force on the knee joints is given by

\[
F = -\frac{mgh}{d} = -\frac{(60.0 \text{ kg})(9.80 \text{ m/s}^2)(-3.00 \text{ m})}{5.00 \times 10^{-3} \text{ m}} = 3.53 \times 10^5 \text{ N}.
\]
(7.33)

Discussion

Such a large force (500 times more than the person’s weight) over the short impact time is enough to break bones. A much better way to cushion the shock is by bending the legs or rolling on the ground, increasing the time over which the force acts. A bending motion of 0.5 m this way yields
a force 100 times smaller than in the example. A kangaroo's hopping shows this method in action. The kangaroo is the only large animal to use hopping for locomotion, but the shock in hopping is cushioned by the bending of its hind legs in each jump. (See Figure 7.7.)

![Image](https://via.placeholder.com/150)

Figure 7.7 The work done by the ground upon the kangaroo reduces its kinetic energy to zero as it lands. However, by applying the force of the ground on the hind legs over a longer distance, the impact on the bones is reduced. (credit: Chris Samuel, Flickr)

Example 7.7 Finding the Speed of a Roller Coaster from its Height

(a) What is the final speed of the roller coaster shown in Figure 7.8 if it starts from rest at the top of the 20.0 m hill and work done by frictional forces is negligible? (b) What is its final speed (again assuming negligible friction) if its initial speed is 5.00 m/s?

![Diagram](https://via.placeholder.com/150)

Figure 7.8 The speed of a roller coaster increases as gravity pulls it downhill and is greatest at its lowest point. Viewed in terms of energy, the roller-coaster-Earth system's gravitational potential energy is converted to kinetic energy. If work done by friction is negligible, all \(\Delta P E_g \) is converted to KE.

Strategy

The roller coaster loses potential energy as it goes downhill. We neglect friction, so that the remaining force exerted by the track is the normal force, which is perpendicular to the direction of motion and does no work. The net work on the roller coaster is then done by gravity alone. The loss of gravitational potential energy from moving downward through a distance \(h \) equals the gain in kinetic energy. This can be written in equation form as \(-\Delta P E_g = \Delta K E \). Using the equations for \(P E_g \) and \(K E \), we can solve for the final speed \(v \), which is the desired quantity.

Solution for (a)

Here the initial kinetic energy is zero, so that \(\Delta K E = \frac{1}{2} m v^2 \). The equation for change in potential energy states that \(\Delta P E_g = m g h \). Since \(h \) is negative in this case, we will rewrite this as \(\Delta P E_g = -m g \ | \ h \ | \) to show the minus sign clearly. Thus,

\[
-\Delta P E_g = \Delta K E
\]

becomes

\[
mg \ | \ h \ | = \frac{1}{2} m v^2.
\]
Solving for v, we find that mass cancels and that

$$v = \sqrt{2gh}.$$

Substituting known values,

$$v = \sqrt{2(9.80 \text{ m/s}^2)(20.0 \text{ m})} = 19.8 \text{ m/s}.$$

Solution for (b)

Again, $-\Delta \text{PE}_g = \Delta \text{KE}$. In this case there is initial kinetic energy, so

$$\Delta \text{KE} = \frac{1}{2}mv^2 - \frac{1}{2}mv_0^2.\tag{7.38}$$

Rearranging gives

$$\frac{1}{2}mv^2 = mg\frac{1}{2}h + \frac{1}{2}mv_0^2.\tag{7.39}$$

This means that the final kinetic energy is the sum of the initial kinetic energy and the gravitational potential energy. Mass again cancels, and

$$v = \sqrt{2gh + v_0^2}.\tag{7.40}$$

This equation is very similar to the kinematics equation $v = \sqrt{v_0^2 + 2ad}$, but it is more general—the kinematics equation is valid only for constant acceleration, whereas our equation above is valid for any path regardless of whether the object moves with a constant acceleration. Now, substituting known values gives

$$v = \sqrt{2(9.80 \text{ m/s}^2)(20.0 \text{ m}) + (5.00 \text{ m/s})^2} = 20.4 \text{ m/s}.$$

Discussion and Implications

First, note that mass cancels. This is quite consistent with observations made in *Falling Objects* that all objects fall at the same rate if friction is negligible. Second, only the speed of the roller coaster is considered; there is no information about its direction at any point. This reveals another general truth. When friction is negligible, the speed of a falling body depends only on its initial speed and height, and not on its mass or the path taken. For example, the roller coaster will have the same final speed whether it falls 20.0 m straight down or takes a more complicated path like the one in the figure. Third, and perhaps unexpectedly, the final speed in part (b) is greater than in part (a), but by far less than 5.00 m/s. Finally, note that speed can be found at any height along the way by simply using the appropriate value of h at the point of interest.

We have seen that work done by or against the gravitational force depends only on the starting and ending points, and not on the path between, allowing us to define the simplifying concept of gravitational potential energy. We can do the same thing for a few other forces, and we will see that this leads to a formal definition of the law of conservation of energy.

Making Connections: Take-Home Investigation—Converting Potential to Kinetic Energy

One can study the conversion of gravitational potential energy into kinetic energy in this experiment. On a smooth, level surface, place a ruler of the kind that has a groove running along its length and a book to make an incline (see Figure 7.9). Place a marble at the 10-cm position on the ruler and let it roll down the ruler. When it hits the level surface, measure the time it takes to roll one meter. Now place the marble at the 20-cm and the 30-cm positions and again measure the times it takes to roll 1 m on the level surface. Find the velocity of the marble on the level surface for all three positions. Plot velocity squared versus the distance traveled by the marble. What is the shape of each plot? If the shape is a straight line, the plot shows that the marble’s kinetic energy at the bottom is proportional to its potential energy at the release point.

![Figure 7.9 A marble rolls down a ruler, and its speed on the level surface is measured.](https://legacy.cnx.org/content/col11588/1.13)
7.4 Conservative Forces and Potential Energy

Potential Energy and Conservative Forces

Work is done by a force, and some forces, such as weight, have special characteristics. A **conservative force** is one, like the gravitational force, for which work done by or against it depends only on the starting and ending points of a motion and not on the path taken. We can define a **potential energy** (PE) for any conservative force, just as we did for the gravitational force. For example, when you wind up a toy, an egg timer, or an old-fashioned watch, you do work against its spring and store energy in it. (We treat these springs as ideal, in that we assume there is no friction and no production of thermal energy.) This stored energy is recoverable as work, and it is useful to think of it as potential energy contained in the spring. Indeed, the reason that the spring has this characteristic is that its force is conservative. That is, a conservative force results in stored or potential energy. Gravitational potential energy is one example, as is the energy stored in a spring. We will also see how conservative forces are related to the conservation of energy.

Potential Energy and Conservative Forces

Potential energy is the energy a system has due to position, shape, or configuration. It is stored energy that is completely recoverable.

A conservative force is one for which work done by or against it depends only on the starting and ending points of a motion and not on the path taken.

We can define a potential energy (PE) for any conservative force. The work done against a conservative force to reach a final configuration depends on the configuration, not the path followed, and is the potential energy added.

Potential Energy of a Spring

First, let us obtain an expression for the potential energy stored in a spring (PEₙ). We calculate the work done to stretch or compress a spring that obeys Hooke’s law. (Hooke’s law was examined in *Elasticity: Stress and Strain* (https://legacy.cnx.org/content/m42081/latest), and states that the magnitude of force \(F \) on the spring and the resulting deformation \(\Delta L \) are proportional, \(F = k\Delta L \) (See Figure 7.10.) For our spring, we will replace \(\Delta L \) (the amount of deformation produced by a force \(F \)) by the distance \(x \) that the spring is stretched or compressed along its length. So the force needed to stretch the spring has magnitude \(F = kx \), where \(k \) is the spring’s force constant. The force increases linearly from 0 at the start to \(kx \) in the fully stretched position. The average force is \(kx / 2 \). Thus the work done in stretching or compressing the spring is

\[
W_s = Fd = \left(\frac{kx}{2} \right)x = \frac{1}{2}kx^2.
\]

Alternatively, we noted in *Kinetic Energy and the Work-Energy Theorem* that the area under a graph of \(F \) vs. \(x \) is the work done by the force. In Figure 7.10(c) we see that this area is also \(\frac{1}{2}kx^2 \). We therefore define the **potential energy of a spring**, \(\text{PE}_s \), to be

\[
\text{PE}_s = \frac{1}{2}kx^2,
\]

(7.42)

where \(k \) is the spring’s force constant and \(x \) is the displacement from its undeformed position. The potential energy represents the work done on the spring and the energy stored in it as a result of stretching or compressing it a distance \(x \). The potential energy of the spring \(\text{PE}_s \) does not depend on the path taken; it depends only on the stretch or squeeze \(x \) in the final configuration.

![Figure 7.10](https://example.com/figure7_10.png)

Figure 7.10 (a) An undeformed spring has no \(\text{PE}_s \) stored in it. (b) The force needed to stretch (or compress) the spring a distance \(x \) has a magnitude \(F = kx \), and the work done to stretch (or compress) it is \(\frac{1}{2}kx^2 \). Because the force is conservative, this work is stored as potential energy (\(\text{PE}_s \)) in the spring, and it can be fully recovered.

(c) A graph of \(F \) vs. \(x \) has a slope of \(k \), and the area under the graph is \(\frac{1}{2}kx^2 \). Thus the work done or potential energy stored is \(\frac{1}{2}kx^2 \).

The equation \(\text{PE}_s = \frac{1}{2}kx^2 \) has general validity beyond the special case for which it was derived. Potential energy can be stored in any elastic medium by deforming it. Indeed, the general definition of **potential energy** is energy due to position, shape, or configuration. For shape or position deformations, stored energy is \(\text{PE}_s = \frac{1}{2}kx^2 \), where \(k \) is the force constant of the particular system and \(x \) is its deformation. Another example is seen in Figure 7.11 for a guitar string.
Conservation of Mechanical Energy

Let us now consider what form the work-energy theorem takes when only conservative forces are involved. This will lead us to the conservation of energy principle. The work-energy theorem states that the net work done by all forces acting on a system equals its change in kinetic energy. In equation form, this is

\[W_{\text{net}} = \frac{1}{2}mv^2 - \frac{1}{2}mv_0^2 = \Delta KE. \]

(7.43)

If only conservative forces act, then

\[W_{\text{net}} = W_c. \]

(7.44)

where \(W_c \) is the total work done by all conservative forces. Thus,

\[W_c = \Delta KE. \]

(7.45)

Now, if the conservative force, such as the gravitational force or a spring force, does work, the system loses potential energy. That is, \(W_c = -\Delta PE \). Therefore,

\[-\Delta PE = \Delta KE \]

(7.46)

or

\[\Delta KE + \Delta PE = 0. \]

(7.47)

This equation means that the total kinetic and potential energy is constant for any process involving only conservative forces. That is,

\[\begin{align*}
\text{conservative forces only}, \quad KE + PE &= \text{constant} \\
\text{or} \quad KE_i + PE_i &= KE_f + PE_f
\end{align*} \]

(7.48)

where \(i \) and \(f \) denote initial and final values. This equation is a form of the work-energy theorem for conservative forces; it is known as the conservation of mechanical energy principle. Remember that this applies to the extent that all the forces are conservative, so that friction is negligible. The total kinetic plus potential energy of a system is defined to be its mechanical energy, \((KE + PE) \). In a system that experiences only conservative forces, there is a potential energy associated with each force, and the energy only changes form between \(KE \) and the various types of \(PE \), with the total energy remaining constant.

Example 7.8 Using Conservation of Mechanical Energy to Calculate the Speed of a Toy Car

A 0.100-kg toy car is propelled by a compressed spring, as shown in Figure 7.12. The car follows a track that rises 0.180 m above the starting point. The spring is compressed 4.00 cm and has a force constant of 250.0 N/m. Assuming work done by friction to be negligible, find (a) how fast the car is going before it starts up the slope and (b) how fast it is going at the top of the slope.
Figure 7.12 A toy car is pushed by a compressed spring and coasts up a slope. Assuming negligible friction, the potential energy in the spring is first completely converted to kinetic energy, and then to a combination of kinetic and gravitational potential energy as the car rises. The details of the path are unimportant because all forces are conservative—the car would have the same final speed if it took the alternate path shown.

Strategy

The spring force and the gravitational force are conservative forces, so conservation of mechanical energy can be used. Thus,

\[
\text{KE}_i + \text{PE}_i = \text{KE}_f + \text{PE}_f
\]

(7.49)

or

\[
\frac{1}{2}mv_i^2 + mgh_i + \frac{1}{2}kx_i^2 = \frac{1}{2}mv_f^2 + mgh_f + \frac{1}{2}kx_f^2,
\]

(7.50)

where \(h \) is the height (vertical position) and \(x \) is the compression of the spring. This general statement looks complex but becomes much simpler when we start considering specific situations. First, we must identify the initial and final conditions in a problem; then, we enter them into the last equation to solve for an unknown.

Solution for (a)

This part of the problem is limited to conditions just before the car is released and just after it leaves the spring. Take the initial height to be zero, so that both \(h_i \) and \(h_f \) are zero. Furthermore, the initial speed \(v_i \) is zero and the final compression of the spring \(x_f \) is zero, and so several terms in the conservation of mechanical energy equation are zero and it simplifies to

\[
\frac{1}{2}kx_i^2 = \frac{1}{2}mv_f^2.
\]

(7.51)

In other words, the initial potential energy in the spring is converted completely to kinetic energy in the absence of friction. Solving for the final speed and entering known values yields

\[
v_f = \sqrt{\frac{k}{m}x_i}
\]

(7.52)

\[
= \sqrt{\frac{250.0 \text{ N/m}}{0.100 \text{ kg}} (0.0400 \text{ m})}
\]

\[
= 2.00 \text{ m/s}.
\]

Solution for (b)

One method of finding the speed at the top of the slope is to consider conditions just before the car is released and just after it reaches the top of the slope, completely ignoring everything in between. Doing the same type of analysis to find which terms are zero, the conservation of mechanical energy becomes

\[
\frac{1}{2}kx_i^2 = \frac{1}{2}mv_f^2 + mgh_f.
\]

(7.53)

This form of the equation means that the spring’s initial potential energy is converted partly to gravitational potential energy and partly to kinetic energy. The final speed at the top of the slope will be less than at the bottom. Solving for \(v_f \) and substituting known values gives

\[
v_f = \sqrt{\frac{kx_i^2}{m} - 2gh_f}
\]

(7.54)

\[
= \sqrt{\left(\frac{250.0 \text{ N/m}}{0.100 \text{ kg}}\right)(0.0400 \text{ m})^2 - 2(9.80 \text{ m/s}^2)(0.180 \text{ m})}
\]

\[
= 0.687 \text{ m/s}.
\]

Discussion

Another way to solve this problem is to realize that the car’s kinetic energy before it goes up the slope is converted partly to potential energy—that is, to take the final conditions in part (a) to be the initial conditions in part (b).

Note that, for conservative forces, we do not directly calculate the work they do; rather, we consider their effects through their corresponding potential energies, just as we did in Example 7.8. Note also that we do not consider details of the path taken—only the starting and ending points are important (as long as the path is not impossible). This assumption is usually a tremendous simplification, because the path may be complicated and forces may vary along the way.
7.5 Nonconservative Forces

Nonconservative Forces and Friction

Forces are either conservative or nonconservative. Conservative forces were discussed in Conservative Forces and Potential Energy. A nonconservative force is one for which work depends on the path taken. Friction is a good example of a nonconservative force. As illustrated in Figure 7.14, work done against friction depends on the length of the path between the starting and ending points. Because of this dependence on path, there is no potential energy associated with nonconservative forces. An important characteristic is that the work done by a nonconservative force adds or removes mechanical energy from a system. Friction, for example, creates thermal energy that dissipates, removing energy from the system. Furthermore, even if the thermal energy is retained or captured, it cannot be fully converted back to work, so it is lost or not recoverable in that sense as well.

![Figure 7.14](image_url)

How Nonconservative Forces Affect Mechanical Energy

Mechanical energy may not be conserved when nonconservative forces act. For example, when a car is brought to a stop by friction on level ground, it loses kinetic energy, which is dissipated as thermal energy, reducing its mechanical energy. Figure 7.15 compares the effects of conservative and nonconservative forces. We often choose to understand simpler systems such as that described in Figure 7.15(a) first before studying more complicated systems as in Figure 7.15(b).

![Figure 7.15](image_url)
How the Work-Energy Theorem Applies

Now let us consider what form the work-energy theorem takes when both conservative and nonconservative forces act. We will see that the work done by nonconservative forces equals the change in the mechanical energy of a system. As noted in *Kinetic Energy and the Work-Energy Theorem*, the work-energy theorem states that the net work on a system equals the change in its kinetic energy, or \(W_{\text{net}} = \Delta KE \). The net work is the sum of the work by nonconservative forces plus the work by conservative forces. That is,
\[
W_{\text{net}} = W_{\text{nc}} + W_c,
\]
so that
\[
W_{\text{nc}} + W_c = \Delta KE, \tag{7.56}
\]
where \(W_{\text{nc}} \) is the total work done by all nonconservative forces and \(W_c \) is the total work done by all conservative forces.

Consider Figure 7.16, in which a person pushes a crate up a ramp and is opposed by friction. As in the previous section, we note that work done by a conservative force comes from a loss of gravitational potential energy, so that \(W_c = -\Delta PE \). Substituting this equation into the previous one and solving for \(W_{\text{nc}} \) gives
\[
W_{\text{nc}} = \Delta KE + \Delta PE. \tag{7.57}
\]
This equation means that the total mechanical energy \((KE + PE)\) changes by exactly the amount of work done by nonconservative forces. In Figure 7.16, this is the work done by the person minus the work done by friction. So even if energy is not conserved for the system of interest (such as the crate), we know that an equal amount of work was done to cause the change in total mechanical energy.

We rearrange \(W_{\text{nc}} = \Delta KE + \Delta PE \) to obtain
\[
KE_i + PE_i + W_{\text{nc}} = KE_f + PE_f, \tag{7.58}
\]
This means that the amount of work done by nonconservative forces adds to the mechanical energy of a system. If \(W_{\text{nc}} \) is positive, then mechanical energy is increased, such as when the person pushes the crate up the ramp in Figure 7.16. If \(W_{\text{nc}} \) is negative, then mechanical energy is decreased, such as when the rock hits the ground in Figure 7.15(b). If \(W_{\text{nc}} \) is zero, then mechanical energy is conserved, and nonconservative forces are balanced. For example, when you push a lawn mower at constant speed on level ground, your work done is removed by the work of friction, and the mower has a constant energy.

Applying Energy Conservation with Nonconservative Forces

When no change in potential energy occurs, applying \(KE_i + PE_i + W_{\text{nc}} = KE_f + PE_f \) amounts to applying the work-energy theorem by setting the change in kinetic energy to be equal to the net work done on the system, which in the most general case includes both conservative and nonconservative forces. But when seeking instead to find a change in total mechanical energy in situations that involve changes in both potential and kinetic energy, the previous equation \(KE_i + PE_i + W_{\text{nc}} = KE_f + PE_f \) says that you can start by finding the change in mechanical energy that would have resulted from just the conservative forces, including the potential energy changes, and add to it the work done, with the proper sign, by any nonconservative forces involved.

Example 7.9 Calculating Distance Traveled: How Far a Baseball Player Slides

Consider the situation shown in Figure 7.17, where a baseball player slides to a stop on level ground. Using energy considerations, calculate the distance the 65.0-kg baseball player slides, given that his initial speed is 6.00 m/s and the force of friction against him is a constant 450 N.
Figure 7.17 The baseball player slides to a stop in a distance d. In the process, friction removes the player’s kinetic energy by doing an amount of work fd equal to the initial kinetic energy.

Strategy

Friction stops the player by converting his kinetic energy into other forms, including thermal energy. In terms of the work-energy theorem, the work done by friction, which is negative, is added to the initial kinetic energy to reduce it to zero. The work done by friction is negative, because f is in the opposite direction of the motion (that is, $\theta = 180^\circ$, and so $\cos \theta = -1$). Thus $W_{nc} = -fd$. The equation simplifies to

$$\frac{1}{2}mv_1^2 - fd = 0$$

or

$$fd = \frac{1}{2}mv_i^2. \tag{7.60}$$

This equation can now be solved for the distance d.

Solution

Solving the previous equation for d and substituting known values yields

$$d = \frac{mv_i^2}{2f}$$

$$= \frac{(65.0 \text{ kg})(6.00 \text{ m/s})^2}{(2)(450 \text{ N})}$$

$$= 2.60 \text{ m.} \tag{7.61}$$

Discussion

The most important point of this example is that the amount of nonconservative work equals the change in mechanical energy. For example, you must work harder to stop a truck, with its large mechanical energy, than to stop a mosquito.

Example 7.10 Calculating Distance Traveled: Sliding Up an Incline

Suppose that the player from Example 7.9 is running up a hill having a 5.00° incline upward with a surface similar to that in the baseball stadium. The player slides with the same initial speed. Determine how far he slides.

Figure 7.18 The same baseball player slides to a stop on a 5.00° slope.

Strategy

In this case, the work done by the nonconservative friction force on the player reduces the mechanical energy he has from his kinetic energy at zero height, to the final mechanical energy he has by moving through distance d to reach height h along the hill, with $h = d \sin 5.00^\circ$. This is expressed by the equation

$$h = d \sin 5^\circ$$
KE + PE_i + W_{nc} = KE_f + PE_f. \hspace{1cm} (7.62)

Solution

The work done by friction is again $W_{nc} = -fd$; initially the potential energy is $PE_i = mg \cdot 0 = 0$ and the kinetic energy is $KE_i = \frac{1}{2}mv_i^2$; the final energy contributions are $KE_f = 0$ for the kinetic energy and $PE_f = mgh = mgd \sin \theta$ for the potential energy.

Substituting these values gives

$$\frac{1}{2}mv_i^2 + 0 + \left(-fd \right) = 0 + mgd \sin \theta.$$ \hspace{1cm} (7.63)

Solve this for d to obtain

$$d = \frac{\left(\frac{1}{2}mv_i^2 \right)}{f + mg \sin \theta}$$ \hspace{1cm} (7.64)

$$= \frac{(0.5)(65.0 \text{ kg})(6.00 \text{ m/s})^2}{450 \text{ N} + (65.0 \text{ kg})(9.80 \text{ m/s}^2) \sin (5.00^\circ)}$$

$$= 2.31 \text{ m}.$$

Discussion

As might have been expected, the player slides a shorter distance by sliding uphill. Note that the problem could also have been solved in terms of the forces directly and the work energy theorem, instead of using the potential energy. This method would have required combining the normal force and force of gravity vectors, which no longer cancel each other because they point in different directions, and friction, to find the net force. You could then use the net force and the net work to find the distance d that reduces the kinetic energy to zero. By applying conservation of energy and using the potential energy instead, we need only consider the gravitational potential energy mgh, without combining and resolving force vectors. This simplifies the solution considerably.

Making Connections: Take-Home Investigation—Determining Friction from the Stopping Distance

This experiment involves the conversion of gravitational potential energy into thermal energy. Use the ruler, book, and marble from Take-Home Investigation—Converting Potential to Kinetic Energy. In addition, you will need a foam cup with a small hole in the side, as shown in Figure 7.19. From the 10-cm position on the ruler, let the marble roll into the cup positioned at the bottom of the ruler. Measure the distance d the cup moves before stopping. What forces caused it to stop? What happened to the kinetic energy of the marble at the bottom of the ruler? Next, place the marble at the 20-cm and the 30-cm positions and again measure the distance the cup moves after the marble enters it. Plot the distance the cup moves versus the initial marble position on the ruler. Is this relationship linear?

With some simple assumptions, you can use these data to find the coefficient of kinetic friction μ_k of the cup on the table. The force of friction f on the cup is $\mu_k N$, where the normal force N is just the weight of the cup plus the marble. The normal force and force of gravity do no work because they are perpendicular to the displacement of the cup, which moves horizontally. The work done by friction is fd. You will need the mass of the marble as well to calculate its initial kinetic energy.

It is interesting to do the above experiment also with a steel marble (or ball bearing). Releasing it from the same positions on the ruler as you did with the glass marble, is the velocity of this steel marble the same as the velocity of the marble at the bottom of the ruler? Is the distance the cup moves proportional to the mass of the steel and glass marbles?

![Figure 7.19 Rolling a marble down a ruler into a foam cup.](image)

PhET Explorations: The Ramp

Explore forces, energy and work as you push household objects up and down a ramp. Lower and raise the ramp to see how the angle of inclination affects the parallel forces acting on the file cabinet. Graphs show forces, energy and work.
7.6 Conservation of Energy

Law of Conservation of Energy

Energy, as we have noted, is conserved, making it one of the most important physical quantities in nature. The law of conservation of energy can be stated as follows:

Total energy is constant in any process. It may change in form or be transferred from one system to another, but the total remains the same.

We have explored some forms of energy and some ways it can be transferred from one system to another. This exploration led to the definition of two major types of energy—mechanical energy (KE + PE) and energy transferred via work done by nonconservative forces (W_{nc}). But energy takes many other forms, manifesting itself in many different ways, and we need to be able to deal with all of these before we can write an equation for the above general statement of the conservation of energy.

Other Forms of Energy than Mechanical Energy

At this point, we deal with all other forms of energy by lumping them into a single group called *other energy* (OE). Then we can state the conservation of energy in equation form as

\[KE_i + PE_i + W_{nc} + OE_i = KE_f + PE_f + OE_f. \] (7.65)

All types of energy and work can be included in this very general statement of conservation of energy. Kinetic energy is KE, work done by a conservative force is represented by PE, work done by nonconservative forces is W_{nc}, and all other energies are included as OE. This equation applies to all previous examples; in those situations OE was constant, and so it subtracted out and was not directly considered.

Making Connections: Usefulness of the Energy Conservation Principle

The fact that energy is conserved and has many forms makes it very important. You will find that energy is discussed in many contexts, because it is involved in all processes. It will also become apparent that many situations are best understood in terms of energy and that problems are often most easily conceptualized and solved by considering energy.

When does OE play a role? One example occurs when a person eats. Food is oxidized with the release of carbon dioxide, water, and energy. Some of this chemical energy is converted to kinetic energy when the person moves, to potential energy when the person changes altitude, and to thermal energy (another form of OE).

Some of the Many Forms of Energy

What are some other forms of energy? You can probably name a number of forms of energy not yet discussed. Many of these will be covered in later chapters, but let us detail a few here. Electrical energy is a common form that is converted to many other forms and does work in a wide range of practical situations. Fuels, such as gasoline and food, carry chemical energy that can be transferred to a system through oxidation. Chemical fuel can also produce electrical energy, such as in batteries. Batteries can in turn produce light, which is a very pure form of energy. Most energy sources on Earth are in fact stored energy from the energy we receive from the Sun. We sometimes refer to this as radiant energy, or electromagnetic radiation, which includes visible light, infrared, and ultraviolet radiation. Nuclear energy comes from processes that convert measurable amounts of mass into energy. Nuclear energy is transformed into the energy of sunlight, into electrical energy in power plants, and into the energy of the heat transfer and blast in weapons. Atoms and molecules inside all objects are in random motion. This internal mechanical energy from the random motions is called thermal energy, because it is related to the temperature of the object. These and all other forms of energy can be converted into one another and can do work.

Table 7.1 gives the amount of energy stored, used, or released from various objects and in various phenomena. The range of energies and the variety of types and situations is impressive.

Problem-Solving Strategies for Energy

You will find the following problem-solving strategies useful whenever you deal with energy. The strategies help in organizing and reinforcing energy concepts. In fact, they are used in the examples presented in this chapter. The familiar general problem-solving strategies presented earlier—including identifying physical principles, knowns, and unknowns, checking units, and so on—continue to be relevant here.

Step 1. Determine the system of interest and identify what information is given and what quantity is to be calculated. A sketch will help.

Step 2. Examine all the forces involved and determine whether you know or are given the potential energy from the work done by the forces. Then use step 3 or step 4.

Step 3. If you know the potential energies for the forces that enter into the problem, then forces are all conservative, and you can apply conservation of mechanical energy simply in terms of potential and kinetic energy. The equation expressing conservation of energy is
\[KE_i + PE_i = KE_f + PE_f. \]

Step 4. If you know the potential energy for only some of the forces, possibly because some of them are nonconservative and do not have a potential energy, or if there are other energies that are not easily treated in terms of force and work, then the conservation of energy law in its most general form must be used.

\[KE_i + PE_i + W_{nc} + OE_i = KE_f + PE_f + OE_f. \]

In most problems, one or more of the terms is zero, simplifying its solution. Do not calculate \(W_c \), the work done by conservative forces; it is already incorporated in the \(PE \) terms.

Step 5. You have already identified the types of work and energy involved (in step 2). Before solving for the unknown, eliminate terms wherever possible to simplify the algebra. For example, choose \(h = 0 \) at either the initial or final point, so that \(PE_g \) is zero there. Then solve for the unknown in the customary manner.

Step 6. Check the answer to see if it is reasonable. Once you have solved a problem, reexamine the forms of work and energy to see if you have set up the conservation of energy equation correctly. For example, work done against friction should be negative, potential energy at the bottom of a hill should be less than that at the top, and so on. Also check to see that the numerical value obtained is reasonable. For example, the final speed of a skateboarder who coasts down a 3-m-high ramp could reasonably be 20 km/h, but not 80 km/h.

Transformation of Energy

The transformation of energy from one form into others is happening all the time. The chemical energy in food is converted into thermal energy through metabolism; light energy is converted into chemical energy through photosynthesis. In a larger example, the chemical energy contained in coal is converted into thermal energy as it burns to turn water into steam in a boiler. This thermal energy in the steam in turn is converted to mechanical energy as it spins a turbine, which is connected to a generator to produce electrical energy. (In all of these examples, not all of the initial energy is converted into the forms mentioned. This important point is discussed later in this section.)

Another example of energy conversion occurs in a solar cell. Sunlight impinging on a solar cell (see Figure 7.21) produces electricity, which in turn can be used to run an electric motor. Energy is converted from the primary source of solar energy into electrical energy and then into mechanical energy.

Figure 7.21 Solar energy is converted into electrical energy by solar cells, which is used to run a motor in this solar-power aircraft. (credit: NASA)
Table 7.1 Energy of Various Objects and Phenomena

<table>
<thead>
<tr>
<th>Object/phenomenon</th>
<th>Energy in joules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big Bang</td>
<td>10^{68}</td>
</tr>
<tr>
<td>Energy released in a supernova</td>
<td>10^{44}</td>
</tr>
<tr>
<td>Fusion of all the hydrogen in Earth's oceans</td>
<td>10^{34}</td>
</tr>
<tr>
<td>Annual world energy use</td>
<td>4×10^{20}</td>
</tr>
<tr>
<td>Large fusion bomb (9 megaton)</td>
<td>3.8×10^{16}</td>
</tr>
<tr>
<td>1 kg hydrogen (fusion to helium)</td>
<td>6.4×10^{14}</td>
</tr>
<tr>
<td>1 kg uranium (nuclear fission)</td>
<td>8.0×10^{13}</td>
</tr>
<tr>
<td>Hiroshima-size fission bomb (10 kiloton)</td>
<td>4.2×10^{13}</td>
</tr>
<tr>
<td>90,000-ton aircraft carrier at 30 knots</td>
<td>1.1×10^{10}</td>
</tr>
<tr>
<td>1 barrel crude oil</td>
<td>5.9×10^{9}</td>
</tr>
<tr>
<td>1 ton TNT</td>
<td>4.2×10^{9}</td>
</tr>
<tr>
<td>1 gallon of gasoline</td>
<td>1.2×10^{8}</td>
</tr>
<tr>
<td>Daily home electricity use (developed countries)</td>
<td>7×10^{7}</td>
</tr>
<tr>
<td>Daily adult food intake (recommended)</td>
<td>1.2×10^{7}</td>
</tr>
<tr>
<td>1000-kg car at 90 km/h</td>
<td>3.1×10^{5}</td>
</tr>
<tr>
<td>1 g fat (9.3 kcal)</td>
<td>3.9×10^{4}</td>
</tr>
<tr>
<td>ATP hydrolysis reaction</td>
<td>3.2×10^{4}</td>
</tr>
<tr>
<td>1 g carbohydrate (4.1 kcal)</td>
<td>1.7×10^{4}</td>
</tr>
<tr>
<td>1 g protein (4.1 kcal)</td>
<td>1.7×10^{4}</td>
</tr>
<tr>
<td>Tennis ball at 100 km/h</td>
<td>22</td>
</tr>
<tr>
<td>Mosquito (10^{-2} g at 0.5 m/s)</td>
<td>1.3×10^{-6}</td>
</tr>
<tr>
<td>Single electron in a TV tube beam</td>
<td>4.0×10^{-15}</td>
</tr>
<tr>
<td>Energy to break one DNA strand</td>
<td>10^{-19}</td>
</tr>
</tbody>
</table>

Efficiency

Even though energy is conserved in an energy conversion process, the output of *useful energy* or work will be less than the energy input. The **efficiency** Eff of an energy conversion process is defined as

$$\text{Efficiency (Eff)} = \frac{\text{useful energy or work output}}{\text{total energy input}} = \frac{W_{\text{out}}}{E_{\text{in}}}.$$

(7.68)

Table 7.2 lists some efficiencies of mechanical devices and human activities. In a coal-fired power plant, for example, about 40% of the chemical energy in the coal becomes useful electrical energy. The other 60% transforms into other (perhaps less useful) energy forms, such as thermal energy, which is then released to the environment through combustion gases and cooling towers.
Table 7.2 Efficiency of the Human Body and Mechanical Devices

<table>
<thead>
<tr>
<th>Activity/device</th>
<th>Efficiency (%)[^1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycling and climbing</td>
<td>20</td>
</tr>
<tr>
<td>Swimming, surface</td>
<td>2</td>
</tr>
<tr>
<td>Swimming, submerged</td>
<td>4</td>
</tr>
<tr>
<td>Shoveling</td>
<td>3</td>
</tr>
<tr>
<td>Weightlifting</td>
<td>9</td>
</tr>
<tr>
<td>Steam engine</td>
<td>17</td>
</tr>
<tr>
<td>Gasoline engine</td>
<td>30</td>
</tr>
<tr>
<td>Diesel engine</td>
<td>35</td>
</tr>
<tr>
<td>Nuclear power plant</td>
<td>35</td>
</tr>
<tr>
<td>Coal power plant</td>
<td>42</td>
</tr>
<tr>
<td>Electric motor</td>
<td>98</td>
</tr>
<tr>
<td>Compact fluorescent light</td>
<td>20</td>
</tr>
<tr>
<td>Gas heater (residential)</td>
<td>90</td>
</tr>
<tr>
<td>Solar cell</td>
<td>10</td>
</tr>
</tbody>
</table>

[^1]: Representative values

PhET Explorations: Masses and Springs

A realistic mass and spring laboratory. Hang masses from springs and adjust the spring stiffness and damping. You can even slow time. Transport the lab to different planets. A chart shows the kinetic, potential, and thermal energies for each spring.

Figure 7.22 Masses and Springs (http://legacy.cnx.org/content/m42151/1.5/mass-spring-lab_en.jar)

7.7 Power

What is Power?

Power—the word conjures up many images: a professional football player muscling aside his opponent, a dragster roaring away from the starting line, a volcano blowing its lava into the atmosphere, or a rocket blasting off, as in Figure 7.23.

![Rocket blasting off](https://example.com/rocket_blasting_off.png)

Figure 7.23 This powerful rocket on the Space Shuttle *Endeavor* did work and consumed energy at a very high rate. (credit: NASA)

These images of power have in common the rapid performance of work, consistent with the scientific definition of *power* \(P \) as the rate at which work is done.
Power

Power is the rate at which work is done.

\[P = \frac{W}{t} \quad (7.69) \]

The SI unit for power is the watt \((W) \), where 1 watt equals 1 joule/second \((1 \text{ W} = 1 \text{ J/s}) \).

Because work is energy transfer, power is also the rate at which energy is expended. A 60-W light bulb, for example, expends 60 J of energy per second. Great power means a large amount of work or energy developed in a short time. For example, when a powerful car accelerates rapidly, it does a large amount of work and consumes a large amount of fuel in a short time.

Calculating Power from Energy

Example 7.11 Calculating the Power to Climb Stairs

What is the power output for a 60.0-kg woman who runs up a 3.00 m high flight of stairs in 3.50 s, starting from rest but having a final speed of 2.00 m/s? (See Figure 7.24.)

![Figure 7.24](image)

Figure 7.24 When this woman runs upstairs starting from rest, she converts the chemical energy originally from food into kinetic energy and gravitational potential energy. Her power output depends on how fast she does this.

Strategy and Concept

The work going into mechanical energy is \(W = KE + PE \). At the bottom of the stairs, we take both \(KE \) and \(PE_g \) as initially zero; thus,

\[W = KE_f + PE_g = \frac{1}{2}mv_f^2 + mgh, \]

where \(h \) is the vertical height of the stairs. Because all terms are given, we can calculate \(W \) and then divide it by time to get power.

Solution

Substituting the expression for \(W \) into the definition of power given in the previous equation, \(P = W/t \) yields

\[P = \frac{W}{t} = \frac{\frac{1}{2}mv_f^2 + mgh}{t}. \quad (7.70) \]

Entering known values yields

\[P = \frac{0.5(60.0 \text{ kg})(2.00 \text{ m/s})^2 + (60.0 \text{ kg})(9.80 \text{ m/s}^2)(3.00 \text{ m})}{3.50 \text{ s}} \]

\[= \frac{120 \text{ J} + 1764 \text{ J}}{3.50 \text{ s}} \]

\[= 538 \text{ W}. \quad (7.71) \]

Discussion

The woman does 1764 J of work to move up the stairs compared with only 120 J to increase her kinetic energy; thus, most of her power output is required for climbing rather than accelerating.

It is impressive that this woman's useful power output is slightly less than 1 horsepower \((1 \text{ hp} = 746 \text{ W}) \)! People can generate more than a horsepower with their leg muscles for short periods of time by rapidly converting available blood sugar and oxygen into work output. (A horse can put...
out 1 hp for hours on end.) Once oxygen is depleted, power output decreases and the person begins to breathe rapidly to obtain oxygen to metabolize more food—this is known as the aerobic stage of exercise. If the woman climbed the stairs slowly, then her power output would be much less, although the amount of work done would be the same.

Making Connections: Take-Home Investigation—Measure Your Power Rating

Determine your own power rating by measuring the time it takes you to climb a flight of stairs. We will ignore the gain in kinetic energy, as the above example showed that it was a small portion of the energy gain. Don’t expect that your output will be more than about 0.5 hp.

Examples of Power

Examples of power are limited only by the imagination, because there are as many types as there are forms of work and energy. (See Table 7.3 for some examples.) Sunlight reaching Earth’s surface carries a maximum power of about 1.3 kilowatts per square meter (kW/m²). A tiny fraction of this is retained by Earth over the long term. Our consumption rate of fossil fuels is far greater than the rate at which they are stored, so it is inevitable that they will be depleted. Power implies that energy is transferred, perhaps changing form. It is never possible to change one form completely into another without losing some of it as thermal energy. For example, a 60-W incandescent bulb converts only 5 W of electrical power to light, with 55 W dissipating into thermal energy. Furthermore, the typical electric power plant converts only 35 to 40% of its fuel into electricity. The remainder becomes a huge amount of thermal energy that must be dispersed as heat transfer, as rapidly as it is created. A coal-fired power plant may produce 1000 megawatts; 1 megawatt (MW) is 10^6 W of electric power. But the power plant consumes chemical energy at a rate of about 2500 MW, creating heat transfer to the surroundings at a rate of 1500 MW. (See Figure 7.25.)

![Figure 7.25](credit: Kleinolive, Wikimedia Commons)
Table 7.3 Power Output or Consumption

<table>
<thead>
<tr>
<th>Object or Phenomenon</th>
<th>Power in Watts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supernova (at peak)</td>
<td>5×10^{37}</td>
</tr>
<tr>
<td>Milky Way galaxy</td>
<td>10^{37}</td>
</tr>
<tr>
<td>Crab Nebula pulsar</td>
<td>10^{28}</td>
</tr>
<tr>
<td>The Sun</td>
<td>4×10^{26}</td>
</tr>
<tr>
<td>Volcanic eruption (maximum)</td>
<td>4×10^{15}</td>
</tr>
<tr>
<td>Lightning bolt</td>
<td>2×10^{12}</td>
</tr>
<tr>
<td>Nuclear power plant (total electric and heat transfer)</td>
<td>3×10^9</td>
</tr>
<tr>
<td>Aircraft carrier (total useful and heat transfer)</td>
<td>10^8</td>
</tr>
<tr>
<td>Dragster (total useful and heat transfer)</td>
<td>2×10^6</td>
</tr>
<tr>
<td>Car (total useful and heat transfer)</td>
<td>8×10^4</td>
</tr>
<tr>
<td>Football player (total useful and heat transfer)</td>
<td>5×10^3</td>
</tr>
<tr>
<td>Clothes dryer</td>
<td>4×10^3</td>
</tr>
<tr>
<td>Person at rest (all heat transfer)</td>
<td>100</td>
</tr>
<tr>
<td>Typical incandescent light bulb (total useful and heat transfer)</td>
<td>60</td>
</tr>
<tr>
<td>Heart, person at rest (total useful and heat transfer)</td>
<td>8</td>
</tr>
<tr>
<td>Electric clock</td>
<td>3</td>
</tr>
<tr>
<td>Pocket calculator</td>
<td>10^{-3}</td>
</tr>
</tbody>
</table>

Power and Energy Consumption

We usually have to pay for the energy we use. It is interesting and easy to estimate the cost of energy for an electrical appliance if its power consumption rate and time used are known. The higher the power consumption rate and the longer the appliance is used, the greater the cost of that appliance. The power consumption rate is $P = W / t = E / t$, where E is the energy supplied by the electricity company. So the energy consumed over a time t is

$$E = Pt. \quad (7.72)$$

Electricity bills state the energy used in units of **kilowatt-hours** (kW · h), which is the product of power in kilowatts and time in hours. This unit is convenient because electrical power consumption at the kilowatt level for hours at a time is typical.

Example 7.12 Calculating Energy Costs

What is the cost of running a 0.200-kW computer 6.00 h per day for 30.0 d if the cost of electricity is $0.120 per kW · h?

Strategy

Cost is based on energy consumed; thus, we must find E from $E = Pt$ and then calculate the cost. Because electrical energy is expressed in kW · h, at the start of a problem such as this it is convenient to convert the units into kW and hours.

Solution

The energy consumed in kW · h is

$$E = Pt = (0.200 \, \text{kW})(6.00 \, \text{h/d})(30.0 \, \text{d}) \quad (7.73)$$

and the cost is simply given by

$$\text{cost} = (36.0 \, \text{kW} \cdot \text{h})($0.120 \, \text{per kW} \cdot \text{h}) = $4.32 \, \text{per month.} \quad (7.74)$$

Discussion

The cost of using the computer in this example is neither exorbitant nor negligible. It is clear that the cost is a combination of power and time. When both are high, such as for an air conditioner in the summer, the cost is high.
The motivation to save energy has become more compelling with its ever-increasing price. Armed with the knowledge that energy consumed is the product of power and time, you can estimate costs for yourself and make the necessary value judgments about where to save energy. Either power or time must be reduced. It is most cost-effective to limit the use of high-power devices that normally operate for long periods of time, such as water heaters and air conditioners. This would not include relatively high power devices like toasters, because they are on only a few minutes per day. It would also not include electric clocks, in spite of their 24-hour-per-day usage, because they are very low power devices. It is sometimes possible to use devices that have greater efficiencies—that is, devices that consume less power to accomplish the same task. One example is the compact fluorescent light bulb, which produces over four times more light per watt of power consumed than its incandescent cousin.

Modern civilization depends on energy, but current levels of energy consumption and production are not sustainable. The likelihood of a link between global warming and fossil fuel use (with its concomitant production of carbon dioxide), has made reduction in energy use as well as a shift to non-fossil fuels of the utmost importance. Even though energy in an isolated system is a conserved quantity, the final result of most energy transformations is waste heat transfer to the environment, which is no longer useful for doing work. As we will discuss in more detail in Thermodynamics (https://legacy.cnx.org/content/m42231/latest), the potential for energy to produce useful work has been “degraded” in the energy transformation.

7.8 Work, Energy, and Power in Humans

Energy Conversion in Humans

Our own bodies, like all living organisms, are energy conversion machines. Conservation of energy implies that the chemical energy stored in food is converted into work, thermal energy, and/or stored as chemical energy in fatty tissue. (See Figure 7.26.) The fraction going into each form depends both on how much we eat and on our level of physical activity. If we eat more than is needed to do work and stay warm, the remainder goes into body fat.

![Energy Conversion Diagram](https://example.com/energy_conversion_diagram.png)

Figure 7.26 Energy consumed by humans is converted to work, thermal energy, and stored fat. By far the largest fraction goes to thermal energy, although the fraction varies depending on the type of physical activity.

Power Consumed at Rest

The rate at which the body uses food energy to sustain life and to do different activities is called the metabolic rate. The total energy conversion rate of a person at rest is called the basal metabolic rate (BMR) and is divided among various systems in the body, as shown in Table 7.4. The largest fraction goes to the liver and spleen, with the brain coming next. Of course, during vigorous exercise, the energy consumption of the skeletal muscles and heart increase markedly. About 75% of the calories burned in a day go into these basic functions. The BMR is a function of age, gender, total body weight, and amount of muscle mass (which burns more calories than body fat). Athletes have a greater BMR due to this last factor.

<table>
<thead>
<tr>
<th>Table 7.4 Basal Metabolic Rates (BMR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organ</td>
</tr>
<tr>
<td>Liver & spleen</td>
</tr>
<tr>
<td>Brain</td>
</tr>
<tr>
<td>Skeletal muscle</td>
</tr>
<tr>
<td>Kidney</td>
</tr>
<tr>
<td>Heart</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>Totals</td>
</tr>
</tbody>
</table>

Energy consumption is directly proportional to oxygen consumption because the digestive process is basically one of oxidizing food. We can measure the energy people use during various activities by measuring their oxygen use. (See Figure 7.27.) Approximately 20 kJ of energy are produced for each liter of oxygen consumed, independent of the type of food. Table 7.5 shows energy and oxygen consumption rates (power expended) for a variety of activities.

Power of Doing Useful Work

Work done by a person is sometimes called useful work, which is work done on the outside world, such as lifting weights. Useful work requires a force exerted through a distance on the outside world, and so it excludes internal work, such as that done by the heart when pumping blood. Useful work does include that done in climbing stairs or accelerating to a full run, because these are accomplished by exerting forces on the outside world.
Forces exerted by the body are nonconservative, so that they can change the mechanical energy \((KE + PE) \) of the system worked upon, and this is often the goal. A baseball player throwing a ball, for example, increases both the ball’s kinetic and potential energy.

If a person needs more energy than they consume, such as when doing vigorous work, the body must draw upon the chemical energy stored in fat. So exercise can be helpful in losing fat. However, the amount of exercise needed to produce a loss in fat, or to burn off extra calories consumed that day, can be large, as Example 7.13 illustrates.

Example 7.13 Calculating Weight Loss from Exercising

If a person who normally requires an average of 12,000 kJ (3000 kcal) of food energy per day consumes 13,000 kJ per day, he will steadily gain weight. How much bicycling per day is required to work off this extra 1000 kJ?

Solution

Table 7.5 states that 400 W are used when cycling at a moderate speed. The time required to work off 1000 kJ at this rate is then

\[
\text{Time} = \frac{\text{energy}}{\text{energy/time}} = \frac{1000 \text{ kJ}}{400 \text{ W}} = 2500 \text{ s} = 42 \text{ min.}
\]

(7.75)

Discussion

If this person uses more energy than he or she consumes, the person’s body will obtain the needed energy by metabolizing body fat. If the person uses 13,000 kJ but consumes only 12,000 kJ, then the amount of fat loss will be

\[
\text{Fat loss} = (1000 \text{ kJ})\left(\frac{1.0 \text{ g fat}}{39 \text{ kJ}}\right) = 26 \text{ g.}
\]

(7.76)

assuming the energy content of fat to be 39 kJ/g.

![Pulse oximeter](https://content.legacy.cnx.org/content/col11588/1.13/figure/7.27)

Figure 7.27 A pulse oximeter is an apparatus that measures the amount of oxygen in blood. Oximeters can be used to determine a person’s metabolic rate, which is the rate at which food energy is converted to another form. Such measurements can indicate the level of athletic conditioning as well as certain medical problems. (credit: UusiAjaja, Wikimedia Commons)

<table>
<thead>
<tr>
<th>Activity</th>
<th>Energy consumption in watts</th>
<th>Oxygen consumption in liters O(_2)/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sleeping</td>
<td>83</td>
<td>0.24</td>
</tr>
<tr>
<td>Sitting at rest</td>
<td>120</td>
<td>0.34</td>
</tr>
<tr>
<td>Standing relaxed</td>
<td>125</td>
<td>0.36</td>
</tr>
<tr>
<td>Sitting in class</td>
<td>210</td>
<td>0.60</td>
</tr>
<tr>
<td>Walking (5 km/h)</td>
<td>280</td>
<td>0.80</td>
</tr>
<tr>
<td>Cycling (13–18 km/h)</td>
<td>400</td>
<td>1.14</td>
</tr>
<tr>
<td>Shivering</td>
<td>425</td>
<td>1.21</td>
</tr>
<tr>
<td>Playing tennis</td>
<td>440</td>
<td>1.26</td>
</tr>
<tr>
<td>Swimming breaststroke</td>
<td>475</td>
<td>1.36</td>
</tr>
<tr>
<td>Ice skating (14.5 km/h)</td>
<td>545</td>
<td>1.56</td>
</tr>
<tr>
<td>Climbing stairs (116/min)</td>
<td>685</td>
<td>1.96</td>
</tr>
<tr>
<td>Cycling (21 km/h)</td>
<td>700</td>
<td>2.00</td>
</tr>
<tr>
<td>Running cross-country</td>
<td>740</td>
<td>2.12</td>
</tr>
<tr>
<td>Playing basketball</td>
<td>800</td>
<td>2.28</td>
</tr>
<tr>
<td>Cycling, professional racer</td>
<td>1855</td>
<td>5.30</td>
</tr>
<tr>
<td>Sprinting</td>
<td>2415</td>
<td>6.90</td>
</tr>
</tbody>
</table>

2. for an average 76-kg male
All bodily functions, from thinking to lifting weights, require energy. (See Figure 7.28.) The many small muscle actions accompanying all quiet activity, from sleeping to head scratching, ultimately become thermal energy, as do less visible muscle actions by the heart, lungs, and digestive tract. Shivering, in fact, is an involuntary response to low body temperature that pits muscles against one another to produce thermal energy in the body (and do no work). The kidneys and liver consume a surprising amount of energy, but the biggest surprise of all is that a full 25% of all energy consumed by the body is used to maintain electrical potentials in all living cells. (Nerve cells use this electrical potential in nerve impulses.) This bioelectrical energy ultimately becomes mostly thermal energy, but some is utilized to power chemical processes such as in the kidneys and liver, and in fat production.

![Image](image.png)

Figure 7.28 This fMRI scan shows an increased level of energy consumption in the vision center of the brain. Here, the patient was being asked to recognize faces. (credit: NIH via Wikimedia Commons)

7.9 World Energy Use

Energy is an important ingredient in all phases of society. We live in a very interdependent world, and access to adequate and reliable energy resources is crucial for economic growth and for maintaining the quality of our lives. But current levels of energy consumption and production are not sustainable. About 40% of the world’s energy comes from oil, and much of that goes to transportation uses. Oil prices are dependent as much upon new (or foreseen) discoveries as they are upon political events and situations around the world. The U.S., with 4.5% of the world’s population, consumes 24% of the world’s oil production per year; 66% of that oil is imported!

Renewable and Nonrenewable Energy Sources

The principal energy resources used in the world are shown in Figure 7.29. The fuel mix has changed over the years but now is dominated by oil, although natural gas and solar contributions are increasing. Renewable forms of energy are those sources that cannot be used up, such as water, wind, solar, and biomass. About 85% of our energy comes from nonrenewable fossil fuels—oil, natural gas, coal. The likelihood of a link between global warming and fossil fuel use, with its production of carbon dioxide through combustion, has made, in the eyes of many scientists, a shift to nonfossil fuels of utmost importance—but it will not be easy.

![Image](image.png)

Figure 7.29 World energy consumption by source, in billions of kilowatt-hours: 2006. (credit: KVDP)

The World’s Growing Energy Needs

World energy consumption continues to rise, especially in the developing countries. (See Figure 7.30.) Global demand for energy has tripled in the past 50 years and might triple again in the next 30 years. While much of this growth will come from the rapidly booming economies of China and India, many of the developed countries, especially those in Europe, are hoping to meet their energy needs by expanding the use of renewable sources. Although presently only a small percentage, renewable energy is growing very fast, especially wind energy. For example, Germany plans to meet 20% of its electricity and 10% of its overall energy needs with renewable resources by the year 2020. (See Figure 7.31.) Energy is a key constraint in the rapid economic growth of China and India. In 2003, China surpassed Japan as the world’s second largest consumer of oil. However, over 1/3 of this is imported. Unlike most Western countries, coal dominates the commercial energy resources of China, accounting for 2/3 of its
energy consumption. In 2009 China surpassed the United States as the largest generator of \(\text{CO}_2 \). In India, the main energy resources are biomass (wood and dung) and coal. Half of India’s oil is imported. About 70% of India’s electricity is generated by highly polluting coal. Yet there are sizeable strides being made in renewable energy. India has a rapidly growing wind energy base, and it has the largest solar cooking program in the world.

![World Energy Consumption](image)

Figure 7.30 Past and projected world energy use (source: Based on data from U.S. Energy Information Administration, 2011)

![Solar cells](image)

Figure 7.31 Solar cell arrays at a power plant in Steinfeld, Germany (credit: Michael Böke, Flickr)

Table 7.6 displays the 2006 commercial energy mix by country for some of the prime energy users in the world. While non-renewable sources dominate, some countries get a sizeable percentage of their electricity from renewable resources. For example, about 67% of New Zealand’s electricity demand is met by hydroelectric. Only 10% of the U.S. electricity is generated by renewable resources, primarily hydroelectric. It is difficult to determine total contributions of renewable energy in some countries with a large rural population, so these percentages in this table are left blank.

<table>
<thead>
<tr>
<th>Country</th>
<th>Consumption, in EJ (10^{18} J)</th>
<th>Oil</th>
<th>Natural Gas</th>
<th>Coal</th>
<th>Nuclear</th>
<th>Hydro</th>
<th>Other Renewables</th>
<th>Electricity Use per capita (kWh/yr)</th>
<th>Energy Use per capita (GJ/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>5.4</td>
<td>34%</td>
<td>17%</td>
<td>44%</td>
<td>0%</td>
<td>3%</td>
<td>1%</td>
<td>10000</td>
<td>260</td>
</tr>
<tr>
<td>Brazil</td>
<td>9.6</td>
<td>48%</td>
<td>7%</td>
<td>5%</td>
<td>1%</td>
<td>35%</td>
<td>2%</td>
<td>2000</td>
<td>50</td>
</tr>
<tr>
<td>China</td>
<td>63</td>
<td>22%</td>
<td>3%</td>
<td>69%</td>
<td>1%</td>
<td>6%</td>
<td></td>
<td>1500</td>
<td>35</td>
</tr>
<tr>
<td>Egypt</td>
<td>2.4</td>
<td>50%</td>
<td>41%</td>
<td>1%</td>
<td>0%</td>
<td>6%</td>
<td></td>
<td>990</td>
<td>32</td>
</tr>
<tr>
<td>Germany</td>
<td>16</td>
<td>37%</td>
<td>24%</td>
<td>24%</td>
<td>11%</td>
<td>1%</td>
<td>3%</td>
<td>6400</td>
<td>173</td>
</tr>
<tr>
<td>India</td>
<td>15</td>
<td>34%</td>
<td>7%</td>
<td>52%</td>
<td>1%</td>
<td>5%</td>
<td></td>
<td>470</td>
<td>13</td>
</tr>
<tr>
<td>Indonesia</td>
<td>4.9</td>
<td>51%</td>
<td>26%</td>
<td>16%</td>
<td>0%</td>
<td>2%</td>
<td>3%</td>
<td>420</td>
<td>22</td>
</tr>
<tr>
<td>Japan</td>
<td>24</td>
<td>48%</td>
<td>14%</td>
<td>21%</td>
<td>12%</td>
<td>4%</td>
<td>1%</td>
<td>7100</td>
<td>176</td>
</tr>
<tr>
<td>New Zealand</td>
<td>0.44</td>
<td>32%</td>
<td>26%</td>
<td>6%</td>
<td>0%</td>
<td>11%</td>
<td>19%</td>
<td>8500</td>
<td>102</td>
</tr>
<tr>
<td>Russia</td>
<td>31</td>
<td>19%</td>
<td>53%</td>
<td>16%</td>
<td>5%</td>
<td>6%</td>
<td></td>
<td>5700</td>
<td>202</td>
</tr>
<tr>
<td>U.S.</td>
<td>105</td>
<td>40%</td>
<td>23%</td>
<td>22%</td>
<td>8%</td>
<td>3%</td>
<td>1%</td>
<td>12500</td>
<td>340</td>
</tr>
<tr>
<td>World</td>
<td>432</td>
<td>39%</td>
<td>23%</td>
<td>24%</td>
<td>6%</td>
<td>6%</td>
<td>2%</td>
<td>2600</td>
<td>71</td>
</tr>
</tbody>
</table>
Energy and Economic Well-being

The last two columns in this table examine the energy and electricity use per capita. Economic well-being is dependent upon energy use, and in most countries higher standards of living, as measured by GDP (gross domestic product) per capita, are matched by higher levels of energy consumption per capita. This is borne out in Figure 7.32. Increased efficiency of energy use will change this dependency. A global problem is balancing energy resource development against the harmful effects upon the environment in its extraction and use.

![GDP per capita vs kWcapita for various countries](image)

Figure 7.32 Power consumption per capita versus GDP per capita for various countries. Note the increase in energy usage with increasing GDP. (2007, credit: Frank van Mierlo, Wikimedia Commons)

Conserving Energy

As we finish this chapter on energy and work, it is relevant to draw some distinctions between two sometimes misunderstood terms in the area of energy use. As has been mentioned elsewhere, the “law of the conservation of energy” is a very useful principle in analyzing physical processes. It is a statement that cannot be proven from basic principles, but is a very good bookkeeping device, and no exceptions have ever been found. It states that the total amount of energy in an isolated system will always remain constant. Related to this principle, but remarkably different from it, is the important philosophy of energy conservation. This concept has to do with seeking to decrease the amount of energy used by an individual or group through (1) reduced activities (e.g., turning down thermostats, driving fewer kilometers) and/or (2) increasing conversion efficiencies in the performance of a particular task—such as developing and using more efficient room heaters, cars that have greater miles-per-gallon ratings, energy-efficient compact fluorescent lights, etc.

Since energy in an isolated system is not destroyed or created or generated, one might wonder why we need to be concerned about our energy resources, since energy is a conserved quantity. The problem is that the final result of most energy transformations is waste heat transfer to the environment and conversion to energy forms no longer useful for doing work. To state it in another way, the potential for energy to produce useful work has been “degraded” in the energy transformation. (This will be discussed in more detail in Thermodynamics (https://legacy.cnx.org/content/m42231/latest/).)

Glossary

basal metabolic rate: the total energy conversion rate of a person at rest

chemical energy: the energy in a substance stored in the bonds between atoms and molecules that can be released in a chemical reaction

conservation of mechanical energy: the rule that the sum of the kinetic energies and potential energies remains constant if only conservative forces act on and within a system

conservative force: a force that does the same work for any given initial and final configuration, regardless of the path followed

efficiency: a measure of the effectiveness of the input of energy to do work; useful energy or work divided by the total input of energy

electrical energy: the energy carried by a flow of charge

energy: the ability to do work

fossil fuels: oil, natural gas, and coal

friction: the force between surfaces that opposes one sliding on the other; friction changes mechanical energy into thermal energy

gravitational potential energy: the energy an object has due to its position in a gravitational field
horsepower: an older non-SI unit of power, with 1 hp = 746 W

joule: SI unit of work and energy, equal to one newton-meter

kilowatt-hour: (kW ⋅ h) unit used primarily for electrical energy provided by electric utility companies

kinetic energy: the energy an object has by reason of its motion, equal to \(\frac{1}{2}mv^2 \) for the translational (i.e., non-rotational) motion of an object of mass \(m \) moving at speed \(v \)

law of conservation of energy: the general law that total energy is constant in any process; energy may change in form or be transferred from one system to another, but the total remains the same

mechanical energy: the sum of kinetic energy and potential energy

metabolic rate: the rate at which the body uses food energy to sustain life and to do different activities

net work: work done by the net force, or vector sum of all the forces, acting on an object

nonconservative force: a force whose work depends on the path followed between the given initial and final configurations

nuclear energy: energy released by changes within atomic nuclei, such as the fusion of two light nuclei or the fission of a heavy nucleus

potential energy: energy due to position, shape, or configuration

potential energy of a spring: the stored energy of a spring as a function of its displacement; when Hooke's law applies, it is given by the expression \(\frac{1}{2}kx^2 \) where \(x \) is the distance the spring is compressed or extended and \(k \) is the spring constant

power: the rate at which work is done

radiant energy: the energy carried by electromagnetic waves

renewable forms of energy: those sources that cannot be used up, such as water, wind, solar, and biomass

thermal energy: the energy within an object due to the random motion of its atoms and molecules that accounts for the object's temperature

useful work: work done on an external system

watt: (W) SI unit of power, with 1 W = 1 J/s

work: the transfer of energy by a force that causes an object to be displaced; the product of the component of the force in the direction of the displacement and the magnitude of the displacement

work-energy theorem: the result, based on Newton's laws, that the net work done on an object is equal to its change in kinetic energy

Section Summary

7.1 Work: The Scientific Definition
- Work is the transfer of energy by a force acting on an object as it is displaced.
- The work \(W \) that a force \(F \) does on an object is the product of the magnitude \(F \) of the force, times the magnitude \(d \) of the displacement, times the cosine of the angle \(\theta \) between them. In symbols,
 \[
 W = Fd \cos \theta.
 \]
- The SI unit for work and energy is the joule (J), where 1 J = 1 N ⋅ m = 1 kg ⋅ m^2/s^2.
- The work done by a force is zero if the displacement is either zero or perpendicular to the force.
- The work done is positive if the force and displacement have the same direction, and negative if they have opposite direction.

7.2 Kinetic Energy and the Work-Energy Theorem
- The net work \(W_{net} \) is the work done by the net force acting on an object.
- Work done on an object transfers energy to the object.
- The translational kinetic energy of an object of mass \(m \) moving at speed \(v \) is \(KE = \frac{1}{2}mv^2 \).
- The work-energy theorem states that the net work \(W_{net} \) on a system changes its kinetic energy, \(W_{net} = \frac{1}{2}mv^2 - \frac{1}{2}mv_0^2 \).

7.3 Gravitational Potential Energy
- Work done against gravity in lifting an object becomes potential energy of the object-Earth system.
• The change in gravitational potential energy, \(\Delta PE_g \), is \(\Delta PE_g = mgh \), with \(h \) being the increase in height and \(g \) the acceleration due to gravity.
• The gravitational potential energy of an object near Earth’s surface is due to its position in the mass-Earth system. Only differences in gravitational potential energy, \(\Delta PE_g \), have physical significance.
• As an object descends without friction, its gravitational potential energy changes into kinetic energy corresponding to increasing speed, so that \(\Delta KE = -\Delta PE_g \).

7.4 Conservative Forces and Potential Energy
• A conservative force is one for which work depends only on the starting and ending points of a motion, not on the path taken.
• We can define potential energy (PE) for any conservative force, just as we defined \(PE_g \) for the gravitational force.

\[
\text{The potential energy of a spring is } PE_s = \frac{1}{2}kx^2, \text{ where } k \text{ is the spring’s force constant and } x \text{ is the displacement from its undeformed position.}
\]
• Mechanical energy is defined to be \(KE + PE \) for a conservative force.
• When only conservative forces act on and within a system, the total mechanical energy is constant. In equation form,

\[
\begin{align*}
\text{KE + PE} & = \text{constant} \\
\text{or} & \\
\text{KE}_i + PE_i & = \text{KE}_f + PE_f
\end{align*}
\]

where \(i \) and \(f \) denote initial and final values. This is known as the conservation of mechanical energy.

7.5 Nonconservative Forces
• A nonconservative force is one for which work depends on the path.
• Friction is an example of a nonconservative force that changes mechanical energy into thermal energy.
• Work \(W_{nc} \) done by a nonconservative force changes the mechanical energy of a system. In equation form, \(W_{nc} = \Delta KE + \Delta PE \) or, equivalently, \(KE_i + PE_i + W_{nc} = KE_f + PE_f \).
• When both conservative and nonconservative forces act, energy conservation can be applied and used to calculate motion in terms of the known potential energies of the conservative forces and the work done by nonconservative forces, instead of finding the net work from the net force, or having to directly apply Newton’s laws.

7.6 Conservation of Energy
• The law of conservation of energy states that the total energy is constant in any process. Energy may change in form or be transferred from one system to another, but the total remains the same.
• When all forms of energy are considered, conservation of energy is written in equation form as

\[
KE_i + PE_i + W_{nc} + OE_i = KE_f + PE_f + OE_f,
\]

where \(OE \) is all other forms of energy besides mechanical energy.
• Commonly encountered forms of energy include electric energy, chemical energy, radiant energy, nuclear energy, and thermal energy.
• Energy is often utilized to do work, but it is not possible to convert all the energy of a system to work.
• The efficiency \(Eff \) of a machine or human is defined to be \(Eff = \frac{W_{out}}{E_{in}} \), where \(W_{out} \) is useful work output and \(E_{in} \) is the energy consumed.

7.7 Power
• Power is the rate at which work is done, or in equation form, for the average power \(P \) for work \(W \) done over a time \(t \), \(P = \frac{W}{t} \).
• The SI unit for power is the watt (W), where \(1 \text{ W} = 1 \text{ J/s} \).
• The power of many devices such as electric motors is also often expressed in horsepower (hp), where \(1 \text{ hp} = 746 \text{ W} \).

7.8 Work, Energy, and Power in Humans
• The human body converts energy stored in food into work, thermal energy, and/or chemical energy that is stored in fatty tissue.
• The rate at which the body uses food energy to sustain life and to do different activities is called the metabolic rate, and the corresponding rate when at rest is called the basal metabolic rate (BMR).
• The energy included in the basal metabolic rate is divided among various systems in the body, with the largest fraction going to the liver and spleen, and the brain coming next.
• About 75% of food calories are used to sustain basic body functions included in the basal metabolic rate.
• The energy consumption of people during various activities can be determined by measuring their oxygen use, because the digestive process is basically one of oxidizing food.

7.9 World Energy Use
• The relative use of different fuels to provide energy has changed over the years, but fuel use is currently dominated by oil, although natural gas and solar contributions are increasing.
• Although non-renewable sources dominate, some countries meet a sizeable percentage of their electricity needs from renewable resources.
• The United States obtains only about 10% of its energy from renewable sources, mostly hydroelectric power.
Economic well-being is dependent upon energy use, and in most countries higher standards of living, as measured by GDP (Gross Domestic Product) per capita, are matched by higher levels of energy consumption per capita. Even though, in accordance with the law of conservation of energy, energy can never be created or destroyed, energy that can be used to do work is always partly converted to less useful forms, such as waste heat to the environment, in all of our uses of energy for practical purposes.

Conceptual Questions

7.1 Work: The Scientific Definition
1. Give an example of something we think of as work in everyday circumstances that is not work in the scientific sense. Is energy transferred or changed in form in your example? If so, explain how this is accomplished without doing work.
2. Give an example of a situation in which there is a force and a displacement, but the force does no work. Explain why it does no work.
3. Describe a situation in which a force is exerted for a long time but does no work. Explain.

7.2 Kinetic Energy and the Work-Energy Theorem
4. The person in Figure 7.33 does work on the lawn mower. Under what conditions would the mower gain energy? Under what conditions would it lose energy?

![Figure 7.33](image)

5. Work done on a system puts energy into it. Work done by a system removes energy from it. Give an example for each statement.
6. When solving for speed in Example 7.4, we kept only the positive root. Why?

7.3 Gravitational Potential Energy
7. In Example 7.7, we calculated the final speed of a roller coaster that descended 20 m in height and had an initial speed of 5 m/s downhill. Suppose the roller coaster had had an initial speed of 5 m/s uphill instead, and it coasted uphill, stopped, and then rolled back down to a final point 20 m below the start. We would find in that case that it had the same final speed. Explain in terms of conservation of energy.

7.4 Conservative Forces and Potential Energy
9. What is a conservative force?
10. The force exerted by a diving board is conservative, provided the internal friction is negligible. Assuming friction is negligible, describe changes in the potential energy of a diving board as a swimmer dives from it, starting just before the swimmer steps on the board until just after his feet leave it.
11. Define mechanical energy. What is the relationship of mechanical energy to nonconservative forces? What happens to mechanical energy if only conservative forces act?
12. What is the relationship of potential energy to conservative force?

7.6 Conservation of Energy
13. Consider the following scenario. A car for which friction is not negligible accelerates from rest down a hill, running out of gasoline after a short distance. The driver lets the car coast farther down the hill, then up and over a small crest. He then coasts down that hill into a gas station, where he brakes to a stop and fills the tank with gasoline. Identify the forms of energy the car has, and how they are changed and transferred in this series of events. (See Figure 7.34.)
14. Describe the energy transfers and transformations for a javelin, starting from the point at which an athlete picks up the javelin and ending when the javelin is stuck into the ground after being thrown.

15. Do devices with efficiencies of less than one violate the law of conservation of energy? Explain.

16. List four different forms or types of energy. Give one example of a conversion from each of these forms to another form.

17. List the energy conversions that occur when riding a bicycle.

7.7 Power

18. Most electrical appliances are rated in watts. Does this rating depend on how long the appliance is on? (When off, it is a zero-watt device.) Explain in terms of the definition of power.

19. Explain, in terms of the definition of power, why energy consumption is sometimes listed in kilowatt-hours rather than joules. What is the relationship between these two energy units?

20. A spark of static electricity, such as that you might receive from a doorknob on a cold dry day, may carry a few hundred watts of power. Explain why you are not injured by such a spark.

7.8 Work, Energy, and Power in Humans

21. Explain why it is easier to climb a mountain on a zigzag path rather than one straight up the side. Is your increase in gravitational potential energy the same in both cases? Is your energy consumption the same in both?

22. Do you do work on the outside world when you rub your hands together to warm them? What is the efficiency of this activity?

23. Shivering is an involuntary response to lowered body temperature. What is the efficiency of the body when shivering, and is this a desirable value?

24. Discuss the relative effectiveness of dieting and exercise in losing weight, noting that most athletic activities consume food energy at a rate of 400 to 500 W, while a single cup of yogurt can contain 1360 kJ (325 kcal). Specifically, is it likely that exercise alone will be sufficient to lose weight? You may wish to consider that regular exercise may increase the metabolic rate, whereas protracted dieting may reduce it.

7.9 World Energy Use

25. What is the difference between energy conservation and the law of conservation of energy? Give some examples of each.

26. If the efficiency of a coal-fired electrical generating plant is 35%, then what do we mean when we say that energy is a conserved quantity?
7.1 Work: The Scientific Definition

1. How much work does a supermarket checkout attendant do on a can of soup he pushes 0.600 m horizontally with a force of 5.00 N? Express your answer in joules and kilocalories.

2. A 75.0-kg person climbs stairs, gaining 2.50 meters in height. Find the work done to accomplish this task.

3. (a) Calculate the work done on a 1500-kg elevator car by its cable to lift it 40.0 m at constant speed, assuming friction averages 100 N. (b) What is the work done on the lift by the gravitational force in this process? (c) What is the total work done on the lift?

4. Suppose a car travels 108 km at a speed of 30.0 m/s, and uses 2.0 gal of gasoline. Only 30% of the gasoline goes into useful work by the force that keeps the car moving at constant speed despite friction. (See Table 7.1 for the energy content of gasoline.) (a) What is the magnitude of the force exerted to keep the car moving at constant speed? (b) If the required force is directly proportional to speed, how many gallons will be used to drive 108 km at a speed of 28.0 m/s?

5. Calculate the work done by an 85.0-kg man who pushes a crate 4.00 m up along a ramp that makes an angle of 20.0° with the horizontal. (See Figure 7.35.) He exerts a force of 500 N on the crate parallel to the ramp and moves at a constant speed. Be certain to include the work he does on the crate and on his body to get up the ramp.

6. How much work is done by the boy pulling his sister 30.0 m in a wagon as shown in Figure 7.36? Assume no friction acts on the wagon.

7. A shopper pushes a grocery cart 20.0 m at constant speed on level ground, against a 35.0 N frictional force. He pushes in a direction 25.0° below the horizontal. (a) What is the work done on the cart by friction? (b) What is the work done on the cart by the gravitational force? (c) What is the work done on the cart by the shopper? (d) Find the force the shopper exerts, using energy considerations. (e) What is the total work done on the cart?

8. Suppose the ski patrol lowers a rescue sled and victim, having a total mass of 90.0 kg, down a 60.0° slope at constant speed, as shown in Figure 7.37. The coefficient of friction between the sled and the snow is 0.100. (a) How much work is done by friction as the sled moves 30.0 m along the hill? (b) How much work is done by the rope on the sled in this distance? (c) What is the work done by the gravitational force on the sled? (d) What is the total work done?

7.2 Kinetic Energy and the Work-Energy Theorem

9. Compare the kinetic energy of a 20,000-kg truck moving at 110 km/h with that of an 80.0-kg astronaut in orbit moving at 27,500 km/h.

10. (a) How fast must a 3000-kg elephant move to have the same kinetic energy as a 65.0-kg sprinter running at 10.0 m/s? (b) Discuss how the larger energies needed for the movement of larger animals would relate to metabolic rates.

11. Confirm the value given for the kinetic energy of an aircraft carrier in Table 7.1. You will need to look up the definition of a nautical mile (1 knot = 1 nautical mile/h).

12. (a) Calculate the force needed to bring a 950-kg car to rest from a speed of 90.0 km/h in a distance of 120 m (a fairly typical distance for a non-panic stop). (b) Suppose instead the car hits a concrete abutment at full speed and is brought to a stop in 2.00 m. Calculate the force exerted on the car and compare it with the force found in part (a).

13. A car’s bumper is designed to withstand a 4.0-km/h (1.1-m/s) collision with an immovable object without damage to the body of the car. The bumper cushions the shock by absorbing the force over a distance. Calculate the magnitude of the average force on a bumper that collapses 0.200 m while bringing a 900-kg car to rest from an initial speed of 1.1 m/s.

14. Boxing gloves are padded to lessen the force of a blow. (a) Calculate the force exerted by a boxing glove on an opponent’s face, if the glove and face compress 7.50 cm during a blow in which the 7.00-kg arm and glove are brought to rest from an initial speed of 10.0 m/s. (b) Calculate the force exerted by an identical blow in the gory old days when no gloves were used and the knuckles and face would compress only 2.00 cm. (c) Discuss the magnitude of the force with glove on. Does it seem high enough to cause damage even though it is lower than the force with no glove?

15. Using energy considerations, calculate the average force a 60.0-kg sprinter exerts backward on the track to accelerate from 2.00 to 8.00 m/s in a distance of 25.0 m, if he encounters a headwind that exerts an average force of 30.0 N against him.

7.3 Gravitational Potential Energy

16. A hydroelectric power facility (see Figure 7.38) converts the gravitational potential energy of water behind a dam to electric energy. (a) What is the gravitational potential energy relative to the generators of a lake of volume 50.0 km³ (mass = 5.00×10¹³ kg), given that the lake has an average height of 40.0 m above the generators? (b) Compare this with the energy stored in a 9-megaton fusion bomb.
17. (a) How much gravitational potential energy (relative to the ground on which it is built) is stored in the Great Pyramid of Cheops, given that its mass is about 7×10^9 kg and its center of mass is 36.5 m above the surrounding ground? (b) How does this energy compare with the daily food intake of a person?

18. Suppose a 350-g kookaburra (a large kingfisher bird) picks up a 75-g snake and raises it 2.5 m from the ground to a branch. (a) How much work did the bird do on the snake? (b) How much work did it do to raise its own center of mass to the branch?

19. In Example 7.7, we found that the speed of a roller coaster that had descended 20.0 m was only slightly greater when it had an initial speed of 5.00 m/s than when it started from rest. This implies that $\Delta PE >> KE_i$. Confirm this statement by taking the ratio of ΔPE to KE_i. (Note that mass cancels.)

20. A 100-g toy car is propelled by a compressed spring that starts it moving. The car follows the curved track in Figure 7.39. Show that the final speed of the toy car is 0.987 m/s if its initial speed is 2.00 m/s and it coasts up the frictionless slope, gaining 0.180 m in altitude.

21. In a downhill ski race, surprisingly, little advantage is gained by getting a running start. (This is because the initial kinetic energy is small compared with the gain in gravitational potential energy on even small hills.) To demonstrate this, find the final speed and the time taken for a skier who skis 70.0 m along a 30° slope neglecting friction: (a) Starting from rest. (b) Starting with an initial speed of 2.50 m/s. (c) Does the answer surprise you? Discuss why it is still advantageous to get a running start in very competitive events.

22. A 5.00×10^5-kg subway train is brought to a stop from a speed of 0.500 m/s in 0.400 m by a large spring bumper at the end of its track. What is the force constant k of the spring?

23. A pogo stick has a spring with a force constant of 2.50×10^4 N/m, which can be compressed 12.0 cm. To what maximum height can a child jump on the stick using only the energy in the spring, if the child and stick have a total mass of 40.0 kg? Explicitly show how you follow the steps in the Problem-Solving Strategies for Energy.

7.5 Nonconservative Forces

24. A 60.0-kg skier with an initial speed of 12.0 m/s coasts up a 2.50-m-high rise as shown in Figure 7.40. Find her final speed at the top, given that the coefficient of friction between her skis and the snow is 0.0800. (Hint: Find the distance traveled up the incline assuming a straight-line path as shown in the figure.)

25. (a) How high a hill can a car coast up (engine disengaged)? If work done by friction is negligible and its initial speed is 110 km/h? (b) If, in actuality, a 750-kg car with an initial speed of 110 km/h is observed to coast up a hill to a height 22.0 m above its starting point, how much thermal energy was generated by friction? (c) What is the average force of friction if the hill has a slope 2.5° above the horizontal?

7.6 Conservation of Energy

26. Using values from Table 7.1, how many DNA molecules could be broken by the energy carried by a single electron in the beam of an old-fashioned TV tube? (These electrons were not dangerous in themselves, but they did create dangerous x rays. Later model tube TVs had shielding that absorbed x rays before they escaped and exposed viewers.)

27. Using energy considerations and assuming negligible air resistance, show that a rock thrown from a bridge 20.0 m above water with an initial speed of 15.0 m/s strikes the water with a speed of 24.8 m/s independent of the direction thrown.

28. If the energy in fusion bombs were used to supply the energy needs of the world, how many of the 9-megaton variety would be needed for a year’s supply of energy (using data from Table 7.1)? This is not as far-fetched as it may sound—there are thousands of nuclear bombs, and their energy can be trapped in underground explosions and converted to electricity, as natural geothermal energy is.

29. (a) Use of hydrogen fusion to supply energy is a dream that may be realized in the next century. Fusion would be a relatively clean and almost limitless supply of energy, as can be seen from Table 7.1. To illustrate this, calculate how many years the present energy needs of the world could be supplied by one millith of the oceans’ hydrogen fusion energy. (b) How does this time compare with historically significant events, such as the duration of stable economic systems?

7.7 Power

30. The Crab Nebula (see Figure 7.41) pulsar is the remnant of a supernova that occurred in A.D. 1054. Using data from Table 7.3, calculate the approximate factor by which the power output of this astronomical object has declined since its explosion.
31. Suppose a star 1000 times brighter than our Sun (that is, emitting 1000 times the power) suddenly goes supernova. Using data from Table 7.3: (a) By what factor does its power output increase? (b) How many times brighter than our entire Milky Way galaxy is the supernova? (c) Based on your answers, discuss whether it should be possible to observe supernovas in distant galaxies. Note that there are on the order of 10^{11} observable galaxies, the average brightness of which is somewhat less than our own galaxy.

32. A person in good physical condition can put out 100 W of useful power for several hours at a stretch, perhaps by pedaling a mechanism that drives an electric generator. Neglecting any problems of generator efficiency and practical considerations such as resting time: (a) How many people would it take to run a 4.00-kW electrical clothes dryer? (b) How many people would it take to replace a large electric power plant that generates 800 MW?

33. What is the cost of operating a 3.00-W electric clock for a year if the cost of electricity is $0.0900 per kW · h?

34. A large household air conditioner may consume 15.0 kW of power. What is the cost of operating this air conditioner 3.00 h per day for 30.0 d if the cost of electricity is $0.110 per kW · h?

35. (a) What is the average power consumption in watts of an appliance that uses 5.00 kW · h of energy per day? (b) How many joules of energy does this appliance consume in a year?

36. (a) What is the average useful power output of a person who does 6.00×10^8 J of useful work in 8.00 h? (b) Working at this rate, how long will it take this person to lift 2000 kg of bricks 1.50 m to a platform? (Work done to lift his body can be omitted because it is not considered useful output here.)

37. A 500-kg dragster accelerates from rest to a final speed of 110 m/s in 400 m (about a quarter of a mile) and encounters an average frictional force of 1200 N. What is its average power output in watts and horsepower if this takes 7.30 s?

38. (a) How long will it take an 850-kg car with a useful power output of 40.0 hp (1 hp = 746 W) to reach a speed of 15.0 m/s, neglecting friction? (b) How long will this acceleration take if the car also climbs a 3.00-m-high hill in the process?

39. (a) Find the useful power output of an elevator motor that lifts a 2500-kg load a height of 35.0 m in 12.0 s, if it also increases the speed from rest to 4.00 m/s. Note that the total mass of the counterbalanced system is 10,000 kg—so that only 2500 kg is raised in height, but the full 10,000 kg is accelerated. (b) What does it cost, if electricity is $0.0900 per kW · h?

40. (a) What is the available energy content, in joules, of a battery that operates a 2.00-W electric clock for 18 months? (b) How long can a battery that can supply 8.00×10^4 J run a pocket calculator that consumes energy at the rate of 1.00×10^{-3} W?

41. (a) How long would it take a 1.50×10^5 -kg airplane with engines that produce 100 MW of power to reach a speed of 250 m/s and an altitude of 12.0 km if air resistance were negligible? (b) If it actually takes 900 s, what is the power? (c) Given this power, what is the average force of air resistance if the airplane takes 1200 s? (Hint: You must find the distance the plane travels in 1200 s assuming constant acceleration.)

42. Calculate the power output needed for a 950-kg car to climb a 2.00° slope at a constant 30.0 m/s while encountering wind resistance and friction totaling 600 N. Explicitly show how you follow the steps in the Problem-Solving Strategies for Energy.

43. (a) Calculate the power per square meter reaching Earth’s upper atmosphere from the Sun. (Take the power output of the Sun to be 4.00×10^26 W.) (b) Part of this is absorbed and reflected by the atmosphere, so that a maximum of 1.30 kW/m^2 reaches Earth’s surface. Calculate the area in km^2 of solar energy collectors needed to replace an electric power plant that generates 750 MW if the collectors convert an average of 20.0% of the maximum power into electricity. (This small conversion efficiency is due to the devices themselves, and the fact that the sun is directly overhead only briefly.) With the same assumptions, what area would be needed to meet the United States’ energy needs (1.05×10^20 J)? Australia’s energy needs (5.4×10^{18} J)? China’s energy needs (6.3×10^{19} J)? (These energy consumption values are from 2006.)

7.8 Work, Energy, and Power in Humans

44. (a) How long can you rapidly climb stairs (116/min) on the 93.0 kcal of energy in a 10.0-g pat of butter? (b) How many flights is this if each flight has 16 stairs?

45. (a) What is the power output in watts and horsepower of a 70.0-kg sprinter who accelerates from rest to 10.0 m/s in 3.00 s? (b) Considering the amount of power generated, do you think a well-trained athlete could do this repetitively for long periods of time?

46. Calculate the power output in watts and horsepower of a shot-putter who takes 1.20 s to accelerate the 7.27-kg shot from rest to 14.0 m/s, while raising it 0.800 m. (Do not include the power produced to accelerate his body.)

47. (a) What is the efficiency of an out-of-condition professor who does 2.10×10^5 J of useful work while metabolizing 500 kcal of food energy? (b) How many food calories would a well-conditioned athlete metabolize in doing the same work with an efficiency of 20%?
48. Energy that is not utilized for work or heat transfer is converted to the chemical energy of body fat containing about 39 kJ/g. How many grams of fat will you gain if you eat 10,000 kJ (about 2500 kcal) one day and do nothing but sit relaxed for 16.0 h and sleep for the other 8.0 h? Use data from Table 7.5 for the energy consumption rates of these activities.

49. Using data from Table 7.5, calculate the daily energy needs of a person who sleeps for 7.00 h, walks for 2.00 h, attends classes for 4.00 h, cycles for 2.00 h, sits relaxed for 3.00 h, and studies for 6.00 h. (Studying consumes energy at the same rate as sitting in class.)

50. What is the efficiency of a subject on a treadmill who puts out work at the rate of 100 W while consuming oxygen at the rate of 2.00 L/min? (Hint: See Table 7.5.)

51. Shoveling snow can be extremely taxing because the arms have such a low efficiency in this activity. Suppose a person shoveling a footpath metabolizes food at the rate of 800 W. (a) What is her useful power output? (b) How long will it take her to lift 3000 kg of snow 1.20 m? (This could be the amount of heavy snow on 20 m of footpath.) (c) How much waste heat transfer in kilojoules will she generate in the process?

52. Very large forces are produced in joints when a person jumps from some height to the ground. (a) Calculate the magnitude of the force produced if an 80.0-kg person jumps from a 0.600-m-high ledge and lands stiffly, compressing joint material 1.50 cm as a result. (Be certain to include the weight of the person.) (b) In practice the knees bend almost involuntarily to help extend the distance over which you stop. Calculate the magnitude of the force produced if the stopping distance is 0.300 m. (c) Compare both forces with the weight of the person.

53. Jogging on hard surfaces with insufficiently padded shoes produces large forces in the feet and legs. (a) Calculate the magnitude of the force needed to stop the downward motion of a jogger’s leg, if his leg has a mass of 13.0 kg, a speed of 6.00 m/s, and stops in a distance of 1.50 cm. (Be certain to include the weight of the 75.0-kg jogger’s body.) (b) Compare this force with the weight of the jogger.

54. (a) Calculate the energy in kJ used by a 55.0-kg woman who does 50 deep knee bends in which her center of mass is lowered and raised 0.400 m. (She does work in both directions.) You may assume her efficiency is 20%. (b) What is the average power consumption rate in watts if she does this in 3.00 min?

55. Kanellos Kanellopoulos flew 119 km from Crete to Santorini, Greece, on April 23, 1988, in the Daedalus 88, an aircraft powered by a bicycle-type drive mechanism (see Figure 7.43). His useful power output for the 234-min trip was about 350 W. Using the efficiency for cycling from Table 7.2, calculate the food energy in kilojoules he metabolized during the flight.

57. Mountain climbers carry bottled oxygen when at very high altitudes. (a) Assuming that a mountain climber uses oxygen at twice the rate for climbing 116 stairs per minute (because of low air temperature and winds), calculate how many liters of oxygen a climber would need for 10.0 h of climbing. (These are liters at sea level.) Note that only 40% of the inhaled oxygen is utilized; the rest is exhaled. (b) How much useful work does the climber do if he and his equipment have a mass of 90.0 kg and he gains 1000 m of altitude? (c) What is his efficiency for the 10.0-h climb?

58. The awe-inspiring Great Pyramid of Cheops was built more than 4500 years ago. Its square base, originally 230 m on a side, covered 13.1 acres, and it was 146 m high, with a mass of about \(7 \times 10^9 \) kg. (The pyramid’s dimensions are slightly different today due to quarrying and some sagging.) Historians estimate that 20,000 workers spent 20 years to construct it, working 12-hour days, 330 days per year. (a) Calculate the gravitational potential energy stored in the pyramid, given its center of mass is at one-fourth its height. (b) Only a fraction of the workers lifted blocks; most were involved in support services such as building ramps (see Figure 7.45), bringing food and water, and hauling blocks to the site. Calculate the efficiency of the workers who did the lifting, assuming there were 1000 of them and they consumed food energy at the rate of 300 kcal/h. What does your answer imply about how much of their work went into block-lifting, versus how much work went into friction and lifting and lowering their own bodies? (c) Calculate the mass of food that had to be supplied each day, assuming that the average worker required 3600 kcal per day and that their diet was 5% protein, 60% carbohydrate, and 35% fat. (These proportions neglect the mass of bulk and nondigestible materials consumed.)

59. (a) How long can you play tennis on the 800 kJ (about 200 kcal) of energy in a candy bar? (b) Does this seem like a long time? Discuss why exercise is necessary but may not be sufficient to cause a person to lose weight.

7.9 World Energy Use

60. Integrated Concepts

(a) Calculate the force the woman in Figure 7.46 exerts to do a push-up at constant speed, taking all data to be known to three digits. (b) How much work does she do if her center of mass rises 0.240 m? (c) What is her useful power output if she does 25 push-ups in 1 min? (Should work done lowering her body be included? See the discussion of useful work in Work, Energy, and Power in Humans.)
61. Integrated Concepts
A 75.0-kg cross-country skier is climbing a 3.0° slope at a constant speed of 2.00 m/s and encounters air resistance of 25.0 N. Find his power output for work done against the gravitational force and air resistance. (b) What average force does he exert backward on the snow to accomplish this? (c) If he continues to exert this force and to experience the same air resistance when he reaches a level area, how long will it take him to reach a velocity of 10.0 m/s?

62. Integrated Concepts
The 70.0-kg swimmer in Figure 7.44 starts a race with an initial velocity of 1.25 m/s and exerts an average force of 80.0 N backward with his arms during each 1.80 m long stroke. (a) What is his initial acceleration if water resistance is 45.0 N? (b) What is the subsequent average resistance force from the water during the 5.00 s it takes him to reach his top velocity of 2.50 m/s? (c) Discuss whether water resistance seems to increase linearly with velocity.

63. Integrated Concepts
A toy gun uses a spring with a force constant of 300 N/m to propel a 10.0-g steel ball. If the spring is compressed 7.00 cm and friction is negligible: (a) How much force is needed to compress the spring? (b) To what maximum height can the ball be shot? (c) At what angles above the horizontal may a child aim to hit a target 3.00 m away at the same height as the gun? (d) What is the gun’s maximum range on level ground?

64. Integrated Concepts
(a) What force must be supplied by an elevator cable to produce an acceleration of 0.800 m/s² against a 200-N frictional force, if the mass of the loaded elevator is 1500 kg? (b) How much work is done by the cable in lifting the elevator 20.0 m? (c) What is the final speed of the elevator if it starts from rest? (d) How much work went into thermal energy?

65. Unreasonable Results
A car advertisement claims that its 900-kg car accelerated from rest to 30.0 m/s and drove 100 km, gaining 3.00 km in altitude, on 1.0 gal of gasoline. The average force of friction including air resistance was 700 N. Assume all values are known to three significant figures. (a) Calculate the car’s efficiency. (b) What is unreasonable about the result? (c) Which premise is unreasonable, or which premises are inconsistent?

66. Unreasonable Results
Body fat is metabolized, supplying 9.30 kcal/g, when dietary intake is less than needed to fuel metabolism. The manufacturers of an exercise bicycle claim that you can lose 0.500 kg of fat per day by vigorously exercising for 2.00 h per day on their machine. (a) How many kcal are supplied by the metabolism of 0.500 kg of fat? (b) Calculate the kcal/min that you would have to utilize to metabolize fat at the rate of 0.500 kg in 2.00 h. (c) What is unreasonable about the results? (d) Which premise is unreasonable, or which premises are inconsistent?

67. Construct Your Own Problem
Consider a person climbing and descending stairs. Construct a problem in which you calculate the long-term rate at which stairs can be climbed considering the mass of the person, his ability to generate power with his legs, and the height of a single stair step. Also consider why the same person can descend stairs at a faster rate for a nearly unlimited
8 LINEAR MOMENTUM AND COLLISIONS

8.1. Linear Momentum and Force
- Define linear momentum.
- Explain the relationship between momentum and force.
- State Newton’s second law of motion in terms of momentum.
- Calculate momentum given mass and velocity.

8.2. Impulse
- Define impulse.
- Describe effects of impulses in everyday life.
- Determine the average effective force using graphical representation.
- Calculate average force and impulse given mass, velocity, and time.

8.3. Conservation of Momentum
- Describe the principle of conservation of momentum.
- Derive an expression for the conservation of momentum.
- Explain conservation of momentum with examples.
- Explain the principle of conservation of momentum as it relates to atomic and subatomic particles.

8.4. Elastic Collisions in One Dimension
- Describe an elastic collision of two objects in one dimension.
- Define internal kinetic energy.
- Derive an expression for conservation of internal kinetic energy in a one dimensional collision.
- Determine the final velocities in an elastic collision given masses and initial velocities.

8.5. Inelastic Collisions in One Dimension
- Define inelastic collision.
- Explain perfectly inelastic collision.
- Apply an understanding of collisions to sports.
- Determine recoil velocity and loss in kinetic energy given mass and initial velocity.

8.6. Collisions of Point Masses in Two Dimensions
- Discuss two dimensional collisions as an extension of one dimensional analysis.
- Define point masses.
- Derive an expression for conservation of momentum along x-axis and y-axis.
- Describe elastic collisions of two objects with equal mass.
- Determine the magnitude and direction of the final velocity given initial velocity, and scattering angle.

Introduction to Linear Momentum and Collisions

We use the term momentum in various ways in everyday language, and most of these ways are consistent with its precise scientific definition. We speak of sports teams or politicians gaining and maintaining the momentum to win. We also recognize that momentum has something to do with collisions. For example, looking at the rugby players in the photograph colliding and falling to the ground, we expect their momenta to have great effects in the resulting collisions. Generally, momentum implies a tendency to continue on course—to move in the same direction—and is associated with great mass and speed.
Momentum, like energy, is important because it is conserved. Only a few physical quantities are conserved in nature, and studying them yields fundamental insight into how nature works, as we shall see in our study of momentum.

8.1 Linear Momentum and Force

Linear Momentum

The scientific definition of linear momentum is consistent with most people’s intuitive understanding of momentum: a large, fast-moving object has greater momentum than a smaller, slower object. **Linear momentum** is defined as the product of a system’s mass multiplied by its velocity. In symbols, linear momentum is expressed as

$$ p = mv. \quad (8.1) $$

Momentum is directly proportional to the object’s mass and also its velocity. Thus the greater an object’s mass or the greater its velocity, the greater its momentum. Momentum \(p \) is a vector having the same direction as the velocity \(v \). The SI unit for momentum is \(\text{kg} \cdot \text{m/s} \).

Linear Momentum

Linear momentum is defined as the product of a system’s mass multiplied by its velocity:

$$ p = mv. \quad (8.2) $$

Example 8.1 Calculating Momentum: A Football Player and a Football

(a) Calculate the momentum of a 110-kg football player running at 8.00 m/s. (b) Compare the player’s momentum with the momentum of a hard-thrown 0.410-kg football that has a speed of 25.0 m/s.

Strategy

No information is given regarding direction, and so we can calculate only the magnitude of the momentum, \(p \). (As usual, a symbol that is in italics is a magnitude, whereas one that is italicized, boldfaced, and has an arrow is a vector.) In both parts of this example, the magnitude of momentum can be calculated directly from the definition of momentum given in the equation, which becomes

$$ p = mv $$

when only magnitudes are considered.

Solution for (a)

To determine the momentum of the player, substitute the known values for the player’s mass and speed into the equation.

$$ p_{\text{player}} = (110 \text{ kg})(8.00 \text{ m/s}) = 880 \text{ kg} \cdot \text{m/s} \quad (8.4) $$

Solution for (b)

To determine the momentum of the ball, substitute the known values for the ball’s mass and speed into the equation.

$$ p_{\text{ball}} = (0.410 \text{ kg})(25.0 \text{ m/s}) = 10.3 \text{ kg} \cdot \text{m/s} \quad (8.5) $$

The ratio of the player’s momentum to that of the ball is

$$ \frac{p_{\text{player}}}{p_{\text{ball}}} = \frac{880}{10.3} = 85.9. \quad (8.6) $$

Discussion

Although the ball has greater velocity, the player has a much greater mass. Thus the momentum of the player is much greater than the momentum of the football, as you might guess. As a result, the player’s motion is only slightly affected if he catches the ball. We shall quantify what happens in such collisions in terms of momentum in later sections.

Momentum and Newton’s Second Law

The importance of momentum, unlike the importance of energy, was recognized early in the development of classical physics. Momentum was deemed so important that it was called the “quantity of motion.” Newton actually stated his **second law of motion** in terms of momentum: The net external force equals the change in momentum of a system divided by the time over which it changes. Using symbols, this law is

$$ F_{\text{net}} = \frac{\Delta p}{\Delta t}, \quad (8.7) $$

where \(F_{\text{net}} \) is the net external force, \(\Delta p \) is the change in momentum, and \(\Delta t \) is the change in time.

Newton’s Second Law of Motion in Terms of Momentum

The net external force equals the change in momentum of a system divided by the time over which it changes.

$$ F_{\text{net}} = \frac{\Delta p}{\Delta t} \quad (8.8) $$

This content is available for free at https://legacy.cnx.org/content/col11588/1.13
Making Connections: Force and Momentum

Force and momentum are intimately related. Force acting over time can change momentum, and Newton’s second law of motion, can be stated in its most broadly applicable form in terms of momentum. Momentum continues to be a key concept in the study of atomic and subatomic particles in quantum mechanics.

This statement of Newton’s second law of motion includes the more familiar \(F_{\text{net}} = ma \) as a special case. We can derive this form as follows. First, note that the change in momentum \(\Delta p \) is given by

\[
\Delta p = \Delta (mv).
\]
(8.9)

If the mass of the system is constant, then

\[
\Delta (mv) = m \Delta v.
\]
(8.10)

So that for constant mass, Newton’s second law of motion becomes

\[
F_{\text{net}} = \frac{\Delta p}{\Delta t} = \frac{m \Delta v}{\Delta t}.
\]
(8.11)

Because \(\frac{\Delta v}{\Delta t} = a \), we get the familiar equation

\[
F_{\text{net}} = ma
\]
(8.12)

when the mass of the system is constant.

Newton’s second law of motion stated in terms of momentum is more generally applicable because it can be applied to systems where the mass is changing, such as rockets, as well as to systems of constant mass. We will consider systems with varying mass in some detail; however, the relationship between momentum and force remains useful when mass is constant, such as in the following example.

Example 8.2 Calculating Force: Venus Williams’ Racquet

During the 2007 French Open, Venus Williams hit the fastest recorded serve in a premier women’s match, reaching a speed of 58 m/s (209 km/h). What is the average force exerted on the 0.057-kg tennis ball by Venus Williams’ racquet, assuming that the ball’s speed just after impact is 58 m/s, that the initial horizontal component of the velocity before impact is negligible, and that the ball remained in contact with the racquet for 5.0 ms (milliseconds)?

Strategy

This problem involves only one dimension because the ball starts from having no horizontal velocity component before impact. Newton’s second law stated in terms of momentum is then written as

\[
F_{\text{net}} = \frac{\Delta p}{\Delta t}.
\]
(8.13)

As noted above, when mass is constant, the change in momentum is given by

\[
\Delta p = m \Delta v = m(v_f - v_i).
\]
(8.14)

In this example, the velocity just after impact and the change in time are given; thus, once \(\Delta p \) is calculated, \(F_{\text{net}} = \frac{\Delta p}{\Delta t} \) can be used to find the force.

Solution

To determine the change in momentum, substitute the values for the initial and final velocities into the equation above.

\[
\Delta p = m(v_f - v_i)
\]
(8.15)

\[
= (0.057 \text{ kg})(58 \text{ m/s} - 0 \text{ m/s})
\]
\[
= 3.306 \text{ kg} \cdot \text{m/s} \approx 3.3 \text{ kg} \cdot \text{m/s}
\]

Now the magnitude of the net external force can determined by using \(F_{\text{net}} = \frac{\Delta p}{\Delta t} \):

\[
F_{\text{net}} = \frac{\Delta p}{\Delta t} = \frac{3.306 \text{ kg} \cdot \text{m/s}}{5.0 \times 10^{-3} \text{ s}}
\]
\[
= 661 \text{ N} \approx 660 \text{ N},
\]

where we have retained only two significant figures in the final step.

Discussion

This quantity was the average force exerted by Venus Williams’ racquet on the tennis ball during its brief impact (note that the ball also experienced the 0.56-N force of gravity, but that force was not due to the racquet). This problem could also be solved by first finding the acceleration and then using \(F_{\text{net}} = ma \), but one additional step would be required compared with the strategy used in this example.
8.2 Impulse

The effect of a force on an object depends on how long it acts, as well as how great the force is. In Example 8.1, a very large force acting for a short time had a great effect on the momentum of the tennis ball. A small force could cause the same change in momentum, but it would have to act for a much longer time. For example, if the ball were thrown upward, the gravitational force (which is much smaller than the tennis racquet’s force) would eventually reverse the momentum of the ball. Quantitatively, the effect we are talking about is the change in momentum \(\Delta p \).

By rearranging the equation \(F_{\text{net}} = \frac{\Delta p}{\Delta t} \) to be

\[
\Delta p = F_{\text{net}} \Delta t,
\]

we can see how the change in momentum equals the average net external force multiplied by the time this force acts. The quantity \(F_{\text{net}} \Delta t \) is given the name impulse. Impulse is the same as the change in momentum.

Impulse: Change in Momentum

Change in momentum equals the average net external force multiplied by the time this force acts.

\[
\Delta p = F_{\text{net}} \Delta t
\]

(8.18)

The quantity \(F_{\text{net}} \Delta t \) is given the name impulse.

There are many ways in which an understanding of impulse can save lives, or at least limbs. The dashboard padding in a car, and certainly the airbags, allow the net force on the occupants in the car to act over a much longer time when there is a sudden stop. The momentum change is the same for an occupant, whether an air bag is deployed or not, but the force (to bring the occupant to a stop) will be much less if it acts over a larger time. Cars today have many plastic components. One advantage of plastics is their lighter weight, which results in better gas mileage. Another advantage is that a car will crumple in a collision, especially in the event of a head-on collision. A longer collision time means the force on the car will be less. Deaths during car races decreased dramatically when the rigid frames of racing cars were replaced with parts that could crumple or collapse in the event of an accident.

Bones in a body will fracture if the force on them is too large. If you jump onto the floor from a table, the force on your legs can be immense if you land stiff-legged on a hard surface. Rolling on the ground after jumping from the table, or landing with a parachute, extends the time over which the force (on you from the ground) acts.

Example 8.3 Calculating Magnitudes of Impulses: Two Billiard Balls Striking a Rigid Wall

Two identical billiard balls strike a rigid wall with the same speed, and are reflected without any change of speed. The first ball strikes perpendicular to the wall. The second ball strikes the wall at an angle of 30° from the perpendicular, and bounces off at an angle of 30° from perpendicular to the wall.

(a) Determine the direction of the force on the wall due to each ball.

(b) Calculate the ratio of the magnitudes of impulses on the two balls by the wall.

Strategy for (a)

In order to determine the force on the wall, consider the force on the ball due to the wall using Newton’s second law and then apply Newton’s third law to determine the direction. Assume the \(x \)-axis to be normal to the wall and to be positive in the initial direction of motion. Choose the \(y \)-axis to be along the wall in the plane of the second ball’s motion. The momentum direction and the velocity direction are the same.

Solution for (a)

The first ball bounces directly into the wall and exerts a force on it in the \(+x \) direction. Therefore the wall exerts a force on the ball in the \(-x \) direction. The second ball continues with the same momentum component in the \(y \) direction, but reverses its \(x \)-component of momentum, as seen by sketching a diagram of the angles involved and keeping in mind the proportionality between velocity and momentum. These changes mean the change in momentum for both balls is in the \(-x \) direction, so the force of the wall on each ball is along the \(-x \) direction.

Strategy for (b)

Calculate the change in momentum for each ball, which is equal to the impulse imparted to the ball.

Solution for (b)

Let \(u \) be the speed of each ball before and after collision with the wall, and \(m \) the mass of each ball. Choose the \(x \)-axis and \(y \)-axis as previously described, and consider the change in momentum of the first ball which strikes perpendicular to the wall.

\[
p_{xi} = mu; \ p_{yi} = 0
\]

\[
p_{xf} = -mu; \ p_{yf} = 0
\]

Impulse is the change in momentum vector. Therefore the \(x \)-component of impulse is equal to \(-2mu\) and the \(y \)-component of impulse is equal to zero.

Now consider the change in momentum of the second ball.
\[p_{x_i} = mu \cos 30º; \quad p_{y_i} = -mu \sin 30º \]
(8.21)

\[p_{x_f} = -mu \cos 30º; \quad p_{y_f} = -mu \sin 30º \]
(8.22)

It should be noted here that while \(p_x \) changes sign after the collision, \(p_y \) does not. Therefore the \(x \)-component of impulse is equal to \(-2mu \cos 30º\) and the \(y \)-component of impulse is equal to zero.

The ratio of the magnitudes of the impulse imparted to the balls is

\[\frac{2mu}{2mu \cos 30º} = \frac{2}{\sqrt{3}} = 1.155. \]
(8.23)

Discussion

The direction of impulse and force is the same as in the case of (a); it is normal to the wall and along the negative \(x \)-direction. Making use of Newton’s third law, the force on the wall due to each ball is normal to the wall along the positive \(x \)-direction.

Our definition of impulse includes an assumption that the force is constant over the time interval \(\Delta t \). **Forces are usually not constant.** Forces vary considerably even during the brief time intervals considered. It is, however, possible to find an average effective force \(F_{eff} \) that produces the same result as the corresponding time-varying force. Figure 8.2 shows a graph of what an actual force looks like as a function of time for a ball bouncing off the floor. The area under the curve has units of momentum and is equal to the impulse or change in momentum between times \(t_1 \) and \(t_2 \). That area is equal to the area inside the rectangle bounded by \(F_{eff} \), \(t_1 \), and \(t_2 \). Thus the impulses and their effects are the same for both the actual and effective forces.

Making Connections: Take-Home Investigation—Hand Movement and Impulse

Try catching a ball while “giving” with the ball, pulling your hands toward your body. Then, try catching a ball while keeping your hands still. Hit water in a tub with your full palm. After the water has settled, hit the water again by diving your hand with your fingers first into the water. (Your full palm represents a swimmer doing a belly flop and your diving hand represents a swimmer doing a dive.) Explain what happens in each case and why. Which orientations would you advise people to avoid and why?

Making Connections: Constant Force and Constant Acceleration

The assumption of a constant force in the definition of impulse is analogous to the assumption of a constant acceleration in kinematics. In both cases, nature is adequately described without the use of calculus.

8.3 Conservation of Momentum

Momentum is an important quantity because it is conserved. Yet it was not conserved in the examples in Impulse and Linear Momentum and Force, where large changes in momentum were produced by forces acting on the system of interest. Under what circumstances is momentum conserved?

The answer to this question entails considering a sufficiently large system. It is always possible to find a larger system in which total momentum is constant, even if momentum changes for components of the system. If a football player runs into the goalpost in the end zone, there will be a force on him that causes him to bounce backward. However, the Earth also recoils—conserving momentum—because of the force applied to it through the goalpost. Because Earth is many orders of magnitude more massive than the player, its recoil is immeasurably small and can be neglected in any practical sense, but it is real nevertheless.

Consider what happens if the masses of two colliding objects are more similar than the masses of a football player and Earth—for example, one car bumping into another, as shown in Figure 8.3. Both cars are coasting in the same direction when the lead car (labeled \(m_2 \)) is bumped by the trailing
car (labeled \(m_1 \)). The only unbalanced force on each car is the force of the collision. (Assume that the effects due to friction are negligible.) Car 1 slows down as a result of the collision, losing some momentum, while car 2 speeds up and gains some momentum. We shall now show that the total momentum of the two-car system remains constant.

Using the definition of impulse, the change in momentum of car 1 is given by

\[
\Delta p_1 = F_1 \Delta t,
\]

where \(F_1 \) is the force on car 1 due to car 2, and \(\Delta t \) is the time the force acts (the duration of the collision). Intuitively, it seems obvious that the collision time is the same for both cars, but it is only true for objects traveling at ordinary speeds. This assumption must be modified for objects travelling near the speed of light, without affecting the result that momentum is conserved.

Similarly, the change in momentum of car 2 is

\[
\Delta p_2 = F_2 \Delta t,
\]

where \(F_2 \) is the force on car 2 due to car 1, and we assume the duration of the collision \(\Delta t \) is the same for both cars. We know from Newton’s third law that \(F_2 = -F_1 \), and so

\[
\Delta p_2 = -F_1 \Delta t = -\Delta p_1.
\]

Thus, the changes in momentum are equal and opposite, and

\[
\Delta p_1 + \Delta p_2 = 0.
\]

Because the changes in momentum add to zero, the total momentum of the two-car system is constant. That is,

\[
p_1 + p_2 = \text{constant},
\]

\[
p_1 + p_2 = p_1' + p_2',
\]

where \(p_1' \) and \(p_2' \) are the momenta of cars 1 and 2 after the collision. (We often use primes to denote the final state.)

This result—that momentum is conserved—has validity far beyond the preceding one-dimensional case. It can be similarly shown that total momentum is conserved for any isolated system, with any number of objects in it. In equation form, the conservation of momentum principle for an isolated system is written

\[
p_{\text{tot}} = \text{constant},
\]

or

\[
p_{\text{tot}} = p'_{\text{tot}}.
\]

where \(p_{\text{tot}} \) is the total momentum (the sum of the momenta of the individual objects in the system) and \(p'_{\text{tot}} \) is the total momentum some time later. (The total momentum can be shown to be the momentum of the center of mass of the system.) An isolated system is defined to be one for which the net external force is zero \((F_{\text{net}} = 0) \).
Conservation of Momentum Principle

\[p_{\text{tot}} = \text{constant} \]
\[p_{\text{tot}} = p'_{\text{tot}} \text{ (isolated system)} \]

(8.32)

Isolated System

An isolated system is defined to be one for which the net external force is zero \((F_{\text{net}} = 0) \).

Perhaps an easier way to see that momentum is conserved for an isolated system is to consider Newton’s second law in terms of momentum,

\[F_{\text{net}} = \frac{\Delta p_{\text{tot}}}{\Delta t} \]

For an isolated system, \((F_{\text{net}} = 0) \); thus, \(\Delta p_{\text{tot}} = 0 \), and \(p_{\text{tot}} \) is constant.

We have noted that the three length dimensions in nature—\(x \), \(y \), and \(z \)—are independent, and it is interesting to note that momentum can be conserved in different ways along each dimension. For example, during projectile motion and where air resistance is negligible, momentum is conserved in the horizontal direction because horizontal forces are zero and momentum is unchanged. But along the vertical direction, the net vertical force is not zero and the momentum of the projectile is not conserved. (See Figure 8.4.) However, if the momentum of the projectile-Earth system is considered in the vertical direction, we find that the total momentum is conserved.

![Diagram of projectile motion](image)

Figure 8.4 The horizontal component of a projectile’s momentum is conserved if air resistance is negligible, even in this case where a space probe separates. The forces causing the separation are internal to the system, so that the net external horizontal force \(F_x - \text{net} \) is still zero. The vertical component of the momentum is not conserved, because the net vertical force \(F_y - \text{net} \) is not zero. In the vertical direction, the space probe-Earth system needs to be considered and we find that the total momentum is conserved. The center of mass of the space probe takes the same path it would if the separation did not occur.

The conservation of momentum principle can be applied to systems as different as a comet striking Earth and a gas containing huge numbers of atoms and molecules. Conservation of momentum is violated only when the net external force is not zero. But another larger system can always be considered in which momentum is conserved by simply including the source of the external force. For example, in the collision of two cars considered above, the two-car system conserves momentum while each one-car system does not.

Making Connections: Take-Home Investigation—Drop of Tennis Ball and a Basketball

Hold a tennis ball side by side and in contact with a basketball. Drop the balls together. (Be careful!) What happens? Explain your observations. Now hold the tennis ball above and in contact with the basketball. What happened? Explain your observations. What do you think will happen if the basketball ball is held above and in contact with the tennis ball?

Making Connections: Take-Home Investigation—Two Tennis Balls in a Ballistic Trajectory

Tie two tennis balls together with a string about a foot long. Hold one ball and let the other hang down and throw it in a ballistic trajectory. Explain your observations. Now mark the center of the string with bright ink or attach a brightly colored sticker to it and throw again. What happened? Explain your observations.

Some aquatic animals such as jellyfish move around based on the principles of conservation of momentum. A jellyfish fills its umbrella section with water and then pushes the water out resulting in motion in the opposite direction to that of the jet of water. Squids propel themselves in a similar manner but, in contrast with jellyfish, are able to control the direction in which they move by aiming their nozzle forward or backward. Typical squids can move at speeds of 8 to 12 km/h.

The ballistocardiograph (BCG) was a diagnostic tool used in the second half of the 20th century to study the strength of the heart. About once a second, your heart beats, forcing blood into the aorta. A force in the opposite direction is exerted on the rest of your body (recall Newton’s third law). A ballistocardiograph is a device that can measure this reaction force. This measurement is done by using a sensor (resting on the person) or by using a moving table suspended from the ceiling. This technique can gather information on the strength of the heart beat and the volume of
blood passing from the heart. However, the electrocardiogram (ECG or EKG) and the echocardiogram (cardiac ECHO or ECHO; a technique that uses ultrasound to see an image of the heart) are more widely used in the practice of cardiology.

Making Connections: Conservation of Momentum and Collision

Conservation of momentum is quite useful in describing collisions. Momentum is crucial to our understanding of atomic and subatomic particles because much of what we know about these particles comes from collision experiments.

Subatomic Collisions and Momentum

The conservation of momentum principle not only applies to the macroscopic objects, it is also essential to our explorations of atomic and subatomic particles. Giant machines hurl subatomic particles at one another, and researchers evaluate the results by assuming conservation of momentum (among other things).

On the small scale, we find that particles and their properties are invisible to the naked eye but can be measured with our instruments, and models of these subatomic particles can be constructed to describe the results. Momentum is found to be a property of all subatomic particles including massless particles such as photons that compose light. Momentum being a property of particles hints that momentum may have an identity beyond the description of an object's mass multiplied by the object's velocity. Indeed, momentum relates to wave properties and plays a fundamental role in what measurements are taken and how we take these measurements. Furthermore, we find that the conservation of momentum principle is valid when considering systems of particles. We use this principle to analyze the masses and other properties of previously undetected particles, such as the nucleus of an atom and the existence of quarks that make up particles of nuclei. Figure 8.5 below illustrates how a particle scattering backward from another implies that its target is massive and dense. Experiments seeking evidence that quarks make up protons (one type of particle that makes up nuclei) scattered high-energy electrons off of protons (nuclei of hydrogen atoms). Electrons occasionally scattered straight backward in a manner that implied a very small and very dense particle makes up the proton—this observation is considered nearly direct evidence of quarks. The analysis was based partly on the same conservation of momentum principle that works so well on the large scale.

![Diagram of subatomic particle scattering](image)

Figure 8.5 A subatomic particle scatters straight backward from a target particle. In experiments seeking evidence for quarks, electrons were observed to occasionally scatter straight backward from a proton.

8.4 Elastic Collisions in One Dimension

Let us consider various types of two-object collisions. These collisions are the easiest to analyze, and they illustrate many of the physical principles involved in collisions. The conservation of momentum principle is very useful here, and it can be used whenever the net external force on a system is zero.

We start with the elastic collision of two objects moving along the same line—a one-dimensional problem. An elastic collision is one that also conserves internal kinetic energy. **Internal kinetic energy** is the sum of the kinetic energies of the objects in the system. Figure 8.6 illustrates an elastic collision in which internal kinetic energy and momentum are conserved.

Truly elastic collisions can only be achieved with subatomic particles, such as electrons striking nuclei. Macroscopic collisions can be very nearly, but not quite, elastic—some kinetic energy is always converted into other forms of energy such as heat transfer due to friction and sound. One macroscopic collision that is nearly elastic is that of two steel blocks on ice. Another nearly elastic collision is that between two carts with spring bumpers on an air track. Icy surfaces and air tracks are nearly frictionless, more readily allowing nearly elastic collisions on them.

Elastic Collision

An **elastic collision** is one that conserves internal kinetic energy.

Internal Kinetic Energy

Internal kinetic energy is the sum of the kinetic energies of the objects in the system.
Figure 8.6 An elastic one-dimensional two-object collision. Momentum and internal kinetic energy are conserved.

Now, to solve problems involving one-dimensional elastic collisions between two objects we can use the equations for conservation of momentum and conservation of internal kinetic energy. First, the equation for conservation of momentum for two objects in a one-dimensional collision is

$$p_1 + p_2 = p_1' + p_2' \quad (F_{net} = 0)$$

(8.33)

or

$$m_1 v_1 + m_2 v_2 = m_1 v_1' + m_2 v_2' \quad (F_{net} = 0),$$

(8.34)

where the primes (’) indicate values after the collision. By definition, an elastic collision conserves internal kinetic energy, and so the sum of kinetic energies before the collision equals the sum after the collision. Thus,

$$\frac{1}{2}m_1 v_1^2 + \frac{1}{2}m_2 v_2^2 = \frac{1}{2}m_1 v_1'^2 + \frac{1}{2}m_2 v_2'^2 \quad \text{(two-object elastic collision)}$$

(8.35)

expresses the equation for conservation of internal kinetic energy in a one-dimensional collision.

Example 8.4 Calculating Velocities Following an Elastic Collision

Calculate the velocities of two objects following an elastic collision, given that

$$m_1 = 0.500 \text{ kg}, \quad m_2 = 3.50 \text{ kg}, \quad v_1 = 4.00 \text{ m/s}, \quad \text{and} \quad v_2 = 0.$$

(8.36)

Strategy and Concept

First, visualize what the initial conditions mean—a small object strikes a larger object that is initially at rest. This situation is slightly simpler than the situation shown in Figure 8.6 where both objects are initially moving. We are asked to find two unknowns (the final velocities v_1' and v_2').

To find two unknowns, we must use two independent equations. Because this collision is elastic, we can use the above two equations. Both can be simplified by the fact that object 2 is initially at rest, and thus $v_2 = 0$. Once we simplify these equations, we combine them algebraically to solve for the unknowns.

Solution

For this problem, note that $v_2 = 0$ and use conservation of momentum. Thus,

$$p_1 = p_1' + p_2'$$

(8.37)

or

$$m_1 v_1 = m_1 v_1' + m_2 v_2.'$$

(8.38)

Using conservation of internal kinetic energy and that $v_2 = 0$,

$$\frac{1}{2}m_1 v_1^2 = \frac{1}{2}m_1 v_1'^2 + \frac{1}{2}m_2 v_2'^2.$$

(8.39)
Solving the first equation (momentum equation) for v_2', we obtain

$$v_2' = \frac{m_1}{m_2} (v_1 - v_1').$$ \hfill (8.40)

Substituting this expression into the second equation (internal kinetic energy equation) eliminates the variable v_2', leaving only v_1' as an unknown (the algebra is left as an exercise for the reader). There are two solutions to any quadratic equation; in this example, they are

$$v_1' = 4.00 \text{ m/s}$$ \hfill (8.41)

and

$$v_1' = -3.00 \text{ m/s}.$$ \hfill (8.42)

As noted when quadratic equations were encountered in earlier chapters, both solutions may or may not be meaningful. In this case, the first solution is the same as the initial condition. The first solution thus represents the situation before the collision and is discarded. The second solution ($v_1' = -3.00 \text{ m/s}$) is negative, meaning that the first object bounces backward. When this negative value of v_1' is used to find the velocity of the second object after the collision, we get

$$v_2' = \frac{m_1}{m_2} (v_1 - v_1') = \frac{0.500 \text{ kg}}{3.50 \text{ kg}} [4.00 - (-3.00)] \text{ m/s}$$ \hfill (8.43)

or

$$v_2' = 1.00 \text{ m/s}.$$ \hfill (8.44)

Discussion

The result of this example is intuitively reasonable. A small object strikes a larger one at rest and bounces backward. The larger one is knocked forward, but with a low speed. (This is like a compact car bouncing backward off a full-size SUV that is initially at rest.) As a check, try calculating the internal kinetic energy before and after the collision. You will see that the internal kinetic energy is unchanged at 4.00 J. Also check the total momentum before and after the collision; you will find it, too, is unchanged.

The equations for conservation of momentum and internal kinetic energy as written above can be used to describe any one-dimensional elastic collision of two objects. These equations can be extended to more objects if needed.

Making Connections: Take-Home Investigation—Ice Cubes and Elastic Collision

Find a few ice cubes which are about the same size and a smooth kitchen tabletop or a table with a glass top. Place the ice cubes on the surface several centimeters away from each other. Flick one ice cube toward a stationary ice cube and observe the path and velocities of the ice cubes after the collision. Try to avoid edge-on collisions and collisions with rotating ice cubes. Have you created approximately elastic collisions? Explain the speeds and directions of the ice cubes using momentum.

PhET Explorations: Collision Lab

Investigate collisions on an air hockey table. Set up your own experiments: vary the number of discs, masses and initial conditions. Is momentum conserved? Is kinetic energy conserved? Vary the elasticity and see what happens.

PhET Interactive Simulation

Figure 8.7 Collision Lab (http://legacy.cnx.org/content/m42163/1.3/collision-lab_en.jar)

8.5 Inelastic Collisions in One Dimension

We have seen that in an elastic collision, internal kinetic energy is conserved. An inelastic collision is one in which the internal kinetic energy changes (it is not conserved). This lack of conservation means that the forces between colliding objects may remove or add internal kinetic energy. Work done by internal forces may change the forms of energy within a system. For inelastic collisions, such as when colliding objects stick together, this internal work may transform some internal kinetic energy into heat transfer. Or it may convert stored energy into internal kinetic energy, such as when exploding bolts separate a satellite from its launch vehicle.

Inelastic Collision

An inelastic collision is one in which the internal kinetic energy changes (it is not conserved).

Figure 8.8 shows an example of an inelastic collision. Two objects that have equal masses head toward one another at equal speeds and then stick together. Their total internal kinetic energy is initially \(\frac{1}{2}mv^2 + \frac{1}{2}mv^2 = mv^2 \). The two objects come to rest after sticking together, conserving
momentum. But the internal kinetic energy is zero after the collision. A collision in which the objects stick together is sometimes called a perfectly inelastic collision because it reduces internal kinetic energy more than does any other type of inelastic collision. In fact, such a collision reduces internal kinetic energy to the minimum it can have while still conserving momentum.

Perfectly Inelastic Collision

A collision in which the objects stick together is sometimes called “perfectly inelastic.”

![Figure 8.8](image)

Figure 8.8 An inelastic one-dimensional two-object collision. Momentum is conserved, but internal kinetic energy is not conserved. (a) Two objects of equal mass initially head directly toward one another at the same speed. (b) The objects stick together (a perfectly inelastic collision), and so their final velocity is zero. The internal kinetic energy of the system changes in any inelastic collision and is reduced to zero in this example.

Example 8.5 Calculating Velocity and Change in Kinetic Energy: Inelastic Collision of a Puck and a Goalie

(a) Find the recoil velocity of a 70.0-kg ice hockey goalie, originally at rest, who catches a 0.150-kg hockey puck slapped at him at a velocity of 35.0 m/s. (b) How much kinetic energy is lost during the collision? Assume friction between the ice and the puck-goalie system is negligible. (See Figure 8.9)

![Figure 8.9](image)

Figure 8.9 An ice hockey goalie catches a hockey puck and recoils backward. The initial kinetic energy of the puck is almost entirely converted to thermal energy and sound in this inelastic collision.

Strategy

Momentum is conserved because the net external force on the puck-goalie system is zero. We can thus use conservation of momentum to find the final velocity of the puck and goalie system. Note that the initial velocity of the goalie is zero and that the final velocity of the puck and goalie are the same. Once the final velocity is found, the kinetic energies can be calculated before and after the collision and compared as requested.

Solution for (a)

Momentum is conserved because the net external force on the puck-goalie system is zero.

Conservation of momentum is

\[
p_1 + p_2 = p'_1 + p'_2 \tag{8.45}
\]

or

\[
m_1 v_1 + m_2 v_2 = m_1 v'_1 + m_2 v'_2. \tag{8.46}
\]

Because the goalie is initially at rest, we know \(v_2 = 0 \). Because the goalie catches the puck, the final velocities are equal, or \(v'_1 = v'_2 = v' \).

Thus, the conservation of momentum equation simplifies to

\[
m_1 v_1 = (m_1 + m_2)v'. \tag{8.47}
\]

Solving for \(v' \) yields
\[v' = \frac{m_1}{m_1 + m_2} v_1. \]

(8.48)

Entering known values in this equation, we get

\[v' = \left(\frac{0.150 \text{ kg}}{70.0 \text{ kg} + 0.150 \text{ kg}} \right) (35.0 \text{ m/s}) = 7.48 \times 10^{-2} \text{ m/s}. \]

(8.49)

Discussion for (a)

This recoil velocity is small and in the same direction as the puck’s original velocity, as we might expect.

Solution for (b)

Before the collision, the internal kinetic energy \(KE_{\text{int}} \) of the system is that of the hockey puck, because the goalie is initially at rest. Therefore, \(KE_{\text{int}} \) is initially

\[KE_{\text{int}} = \frac{1}{2} m v^2 = \frac{1}{2} (0.150 \text{ kg})(35.0 \text{ m/s})^2 = 91.9 \text{ J}. \]

(8.50)

After the collision, the internal kinetic energy is

\[KE'_{\text{int}} = \frac{1}{2} (m + M) v'^2 = \frac{1}{2} (70.15 \text{ kg})(7.48 \times 10^{-2} \text{ m/s})^2 = 0.196 \text{ J}. \]

(8.51)

The change in internal kinetic energy is thus

\[KE'_{\text{int}} - KE_{\text{int}} = 0.196 \text{ J} - 91.9 \text{ J} = -91.7 \text{ J} \]

(8.52)

where the minus sign indicates that the energy was lost.

Discussion for (b)

Nearly all of the initial internal kinetic energy is lost in this perfectly inelastic collision. \(KE_{\text{int}} \) is mostly converted to thermal energy and sound.

During some collisions, the objects do not stick together and less of the internal kinetic energy is removed—such as happens in most automobile accidents. Alternatively, stored energy may be converted into internal kinetic energy during a collision. Figure 8.10 shows a one-dimensional example in which two carts on an air track collide, releasing potential energy from a compressed spring. Example 8.6 deals with data from such a collision.

Figure 8.10 An air track is nearly frictionless, so that momentum is conserved. Motion is one-dimensional. In this collision, examined in Example 8.6, the potential energy of a compressed spring is released during the collision and is converted to internal kinetic energy.

Collisions are particularly important in sports and the sporting and leisure industry utilizes elastic and inelastic collisions. Let us look briefly at tennis. Recall that in a collision, it is momentum and not force that is important. So, a heavier tennis racquet will have the advantage over a lighter one. This conclusion also holds true for other sports—a lightweight bat (such as a softball bat) cannot hit a hardball very far.
The location of the impact of the tennis ball on the racquet is also important, as is the part of the stroke during which the impact occurs. A smooth motion results in the maximizing of the velocity of the ball after impact and reduces sports injuries such as tennis elbow. A tennis player tries to hit the ball on the "sweet spot" on the racquet, where the vibration and impact are minimized and the ball is able to be given more velocity. Sports science and technologies also use physics concepts such as momentum and rotational motion and vibrations.

Take-Home Experiment—Bouncing of Tennis Ball
1. Find a racquet (a tennis, badminton, or other racquet will do). Place the racquet on the floor and stand on the handle. Drop a tennis ball on the strings from a measured height. Measure how high the ball bounces. Now ask a friend to hold the racquet firmly by the handle and drop a tennis ball from the same measured height above the racquet. Measure how high the ball bounces and observe what happens to your friend’s hand during the collision. Explain your observations and measurements.

2. The coefficient of restitution \((c) \) is a measure of the elasticity of a collision between a ball and an object, and is defined as the ratio of the speeds after and before the collision. A perfectly elastic collision has a \(c \) of 1. For a ball bouncing off the floor (or a racquet on the floor), \(c \) can be shown to be \(c = (h/H)^{1/2} \) where \(h \) is the height to which the ball bounces and \(H \) is the height from which the ball is dropped. Determine \(c \) for the cases in Part 1 and for the case of a tennis ball bouncing off a concrete or wooden floor (\(c = 0.85 \) for new tennis balls used on a tennis court).

Example 8.6 Calculating Final Velocity and Energy Release: Two Carts Collide

In the collision pictured in Figure 8.10, two carts collide inelastically. Cart 1 (denoted \(m_1 \)) carries a spring which is initially compressed. During the collision, the spring releases its potential energy and converts it to internal kinetic energy. The mass of cart 1 and the spring is 0.350 kg, and the cart and the spring together have an initial velocity of 2.00 m/s. Cart 2 (denoted \(m_2 \) in Figure 8.10) has a mass of 0.500 kg and an initial velocity of −0.500 m/s. After the collision, cart 1 is observed to recoil with a velocity of −4.00 m/s. (a) What is the final velocity of cart 2? (b) How much energy was released by the spring (assuming all of it was converted into internal kinetic energy)?

Strategy
We can use conservation of momentum to find the final velocity of cart 2, because \(F_{\text{net}} = 0 \) (the track is frictionless and the force of the spring is internal). Once this velocity is determined, we can compare the internal kinetic energy before and after the collision to see how much energy was released by the spring.

Solution for (a)
As before, the equation for conservation of momentum in a two-object system is
\[
m_1 v_1 + m_2 v_2 = m_1 v_1' + m_2 v_2'.
\]
(8.53)
The only unknown in this equation is \(v_2' \). Solving for \(v_2' \) and substituting known values into the previous equation yields
\[
v_2' = \frac{m_1 v_1 + m_2 v_2 - m_1 v_1'}{m_2}
\]
(8.54)
\[
= \frac{0.350 \text{ kg}(2.00 \text{ m/s}) + 0.500 \text{ kg}(-0.500 \text{ m/s})}{0.500 \text{ kg}} - \frac{0.350 \text{ kg}(-4.00 \text{ m/s})}{0.500 \text{ kg}}
\]
\[
= 3.70 \text{ m/s}.
\]
Solution for (b)
The internal kinetic energy before the collision is
\[
KE_{\text{int}} = \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2
\]
(8.55)
\[
= \frac{1}{2}(0.350 \text{ kg})(2.00 \text{ m/s})^2 + \frac{1}{2}(0.500 \text{ kg})(-0.500 \text{ m/s})^2
\]
\[
= 0.763 \text{ J}.
\]
After the collision, the internal kinetic energy is
\[
KE'_{\text{int}} = \frac{1}{2} m_1 v_1'^2 + \frac{1}{2} m_2 v_2'^2
\]
(8.56)
\[
= \frac{1}{2}(0.350 \text{ kg})(-4.00 \text{ m/s})^2 + \frac{1}{2}(0.500 \text{ kg})(3.70 \text{ m/s})^2
\]
\[
= 6.22 \text{ J}.
\]
The change in internal kinetic energy is thus
\[
KE'_{\text{int}} - KE_{\text{int}} = 6.22 \text{ J} - 0.763 \text{ J} = 5.46 \text{ J}.
\]
Discussion
The final velocity of cart 2 is large and positive, meaning that it is moving to the right after the collision. The internal kinetic energy in this collision increases by 5.46 J. That energy was released by the spring.

8.6 Collisions of Point Masses in Two Dimensions

In the previous two sections, we considered only one-dimensional collisions; during such collisions, the incoming and outgoing velocities are all along the same line. But what about collisions, such as those between billiard balls, in which objects scatter to the side? These are two-dimensional collisions, and we shall see that their study is an extension of the one-dimensional analysis already presented. The approach taken (similar to the approach in discussing two-dimensional kinematics and dynamics) is to choose a convenient coordinate system and resolve the motion into components along perpendicular axes. Resolving the motion yields a pair of one-dimensional problems to be solved simultaneously.

One complication arising in two-dimensional collisions is that the objects might rotate before or after their collision. For example, if two ice skaters hook arms as they pass by one another, they will spin in circles. We will not consider such rotation until later, and so for now we arrange things so that no rotation is possible. To avoid rotation, we consider only the scattering of point masses—that is, structureless particles that cannot rotate or spin.

We start by assuming that $\mathbf{F}_{\text{net}} = 0$, so that momentum \mathbf{p} is conserved. The simplest collision is one in which one of the particles is initially at rest. (See Figure 8.11.) The best choice for a coordinate system is one with an axis parallel to the velocity of the incoming particle, as shown in Figure 8.11. Because momentum is conserved, the components of momentum along the x- and y-axes (p_x and p_y) will also be conserved, but with the chosen coordinate system, p_y is initially zero and p_x is the momentum of the incoming particle. Both facts simplify the analysis. (Even with the simplifying assumptions of point masses, one particle initially at rest, and a convenient coordinate system, we still gain new insights into nature from the analysis of two-dimensional collisions.)

![Figure 8.11 A two-dimensional collision with the coordinate system chosen so that m_2 is initially at rest and v_1 is parallel to the x-axis. This coordinate system is sometimes called the laboratory coordinate system, because many scattering experiments have a target that is stationary in the laboratory, while particles are scattered from it to determine the particles that make-up the target and how they are bound together. The particles may not be observed directly, but their initial and final velocities are.](image)

Along the x-axis, the equation for conservation of momentum is

$$ p_{1x} + p_{2x} = p'_{1x} + p'_{2x} $$

(8.58)

Where the subscripts denote the particles and axes and the primes denote the situation after the collision. In terms of masses and velocities, this equation is

$$ m_1 v_{1x} + m_2 v_{2x} = m_1 v'_{1x} + m_2 v'_{2x}. $$

(8.59)

But because particle 2 is initially at rest, this equation becomes

$$ m_1 v_{1x} = m_1 v'_{1x} + m_2 v'_{2x}. $$

(8.60)

The components of the velocities along the x-axis have the form $v \cos \theta$. Because particle 1 initially moves along the x-axis, we find $v_{1x} = v_1$.

Conservation of momentum along the x-axis gives the following equation:

$$ m_1 v_1 = m_1 v'_{1x} \cos \theta_1 + m_2 v'_{2x} \cos \theta_2, $$

(8.61)

where θ_1 and θ_2 are as shown in Figure 8.11.

[Conservation of Momentum along the x-axis]

$$ m_1 v_1 = m_1 v'_{1x} \cos \theta_1 + m_2 v'_{2x} \cos \theta_2 $$

(8.62)
Along the \(y \)-axis, the equation for conservation of momentum is

\[
p_{1y} + p_{2y} = p'_{1y} + p'_{2y}
\]

or

\[
m_1 v_{1y} + m_2 v_{2y} = m_1 v'_{1y} + m_2 v'_{2y}.
\]

But \(v_{1y} \) is zero, because particle 1 initially moves along the \(x \)-axis. Because particle 2 is initially at rest, \(v_{2y} \) is also zero. The equation for conservation of momentum along the \(y \)-axis becomes

\[
0 = m_1 v'_{1y} + m_2 v'_{2y}.
\]

The components of the velocities along the \(y \)-axis have the form \(v \sin \theta \).

Thus, conservation of momentum along the \(y \)-axis gives the following equation:

\[
0 = m_1 v'_{1} \sin \theta_1 + m_2 v'_{2} \sin \theta_2.
\]

The equations of conservation of momentum along the \(x \)-axis and \(y \)-axis are very useful in analyzing two-dimensional collisions of particles, where one is originally stationary (a common laboratory situation). But two equations can only be used to find two unknowns, and so other data may be necessary when collision experiments are used to explore nature at the subatomic level.

Example 8.7 Determining the Final Velocity of an Unseen Object from the Scattering of Another Object

Suppose the following experiment is performed. A 0.250-kg object \((m_1) \) is slid on a frictionless surface into a dark room, where it strikes an initially stationary object with mass of 0.400 kg \((m_2) \). The 0.250-kg object emerges from the room at an angle of 45.0° with its incoming direction.

The speed of the 0.250-kg object is originally 2.00 m/s and is 1.50 m/s after the collision. Calculate the magnitude and direction of the velocity \((v'_{2} \text{ and } \theta_2) \) of the 0.400-kg object after the collision.

Strategy

Momentum is conserved because the surface is frictionless. The coordinate system shown in Figure 8.12 is one in which \(m_2 \) is originally at rest and the initial velocity is parallel to the \(x \)-axis, so that conservation of momentum along the \(x \)- and \(y \)-axes is applicable.

Everything is known in these equations except \(v'_{2} \text{ and } \theta_2 \), which are precisely the quantities we wish to find. We can find two unknowns because we have two independent equations: the equations describing the conservation of momentum in the \(x \)- and \(y \)-directions.

Solution

Solving \(m_1 v_1 = m_1 v'_{1} \cos \theta_1 + m_2 v'_{2} \cos \theta_2 \) for \(v'_{2} \cos \theta_2 \) and \(0 = m_1 v'_{1} \sin \theta_1 + m_2 v'_{2} \sin \theta_2 \) for \(v'_{2} \sin \theta_2 \) and taking the ratio yields an equation in which \(\theta_2 \) is the only unknown quantity. Applying the identity \(\tan \theta = \frac{\sin \theta}{\cos \theta} \), we obtain:

\[
\tan \theta_2 = \frac{v'_{1} \sin \theta_1}{v'_{1} \cos \theta_1 - v_{1}}.
\]

Entering known values into the previous equation gives

\[
\tan \theta_2 = \frac{(1.50 \text{ m/s})(0.7071)}{(1.50 \text{ m/s})(0.7071) - 2.00 \text{ m/s}} = -1.129.
\]

Thus,

\[
\theta_2 = \tan^{-1}(-1.129) = 311.5° \approx 312°.
\]

Angles are defined as positive in the counter clockwise direction, so this angle indicates that \(m_2 \) is scattered to the right in Figure 8.12, as expected (this angle is in the fourth quadrant). Either equation for the \(x \)- or \(y \)-axis can now be used to solve for \(v'_{2} \), but the latter equation is easiest because it has fewer terms.

\[
v'_{2} = -\frac{m_1}{m_2}v'_{1} \frac{\sin \theta_1}{\sin \theta_2}.
\]
Entering known values into this equation gives

\[
\nu_2' = -\left(\frac{0.250 \text{ kg}}{0.400 \text{ kg}}\right)(1.50 \text{ m/s})\left(\frac{-0.7071}{-0.7485}\right).
\]

Thus,

\[
\nu_2' = 0.886 \text{ m/s}.
\]

Discussion

It is instructive to calculate the internal kinetic energy of this two-object system before and after the collision. (This calculation is left as an end-of-chapter problem.) If you do this calculation, you will find that the internal kinetic energy is less after the collision, and so the collision is inelastic. This type of result makes a physicist want to explore the system further.

Figure 8.12 A collision taking place in a dark room is explored in Example 8.7. The incoming object \(m_1 \) is scattered by an initially stationary object. Only the stationary object’s mass \(m_2 \) is known. By measuring the angle and speed at which \(m_1 \) emerges from the room, it is possible to calculate the magnitude and direction of the initially stationary object’s velocity after the collision.

Elastic Collisions of Two Objects with Equal Mass

Some interesting situations arise when the two colliding objects have equal mass and the collision is elastic. This situation is nearly the case with colliding billiard balls, and precisely the case with some subatomic particle collisions. We can thus get a mental image of a collision of subatomic particles by thinking about billiards (or pool). (Refer to Figure 8.11 for masses and angles.) First, an elastic collision conserves internal kinetic energy. Again, let us assume object 2 (\(m_2 \)) is initially at rest. Then, the internal kinetic energy before and after the collision of two objects that have equal masses is

\[
\frac{1}{2}m v_1^2 = \frac{1}{2}mv_1' \nu_1^2 + \frac{1}{2}mv_2' \nu_2^2.
\]

Because the masses are equal, \(m_1 = m_2 = m \). Algebraic manipulation (left to the reader) of conservation of momentum in the \(x \)- and \(y \)-directions can show that

\[
\frac{1}{2}m v_1^2 = \frac{1}{2}mv_1' \nu_1^2 + \frac{1}{2}mv_2' \nu_2^2 + mv'v_2 \cos(\theta_1 - \theta_2).
\]

(Remember that \(\theta_2 \) is negative here.) The two preceding equations can both be true only if

\[
mv'v_2 \cos(\theta_1 - \theta_2) = 0.
\]

There are three ways that this term can be zero. They are

- \(v' = 0 \): head-on collision; incoming ball stops
- \(\nu_2 = 0 \): no collision; incoming ball continues unaffected
- \(\cos(\theta_1 - \theta_2) = 0 \): angle of separation \((\theta_1 - \theta_2)\) is \(90^\circ\) after the collision

All three of these ways are familiar occurrences in billiards and pool, although most of us try to avoid the second. If you play enough pool, you will notice that the angle between the balls is very close to \(90^\circ\) after the collision, although it will vary from this value if a great deal of spin is placed on
the ball. (Large spin carries in extra energy and a quantity called angular momentum, which must also be conserved.) The assumption that the scattering of billiard balls is elastic is reasonable based on the correctness of the three results it produces. This assumption also implies that, to a good approximation, momentum is conserved for the two-ball system in billiards and pool. The problems below explore these and other characteristics of two-dimensional collisions.

Connections to Nuclear and Particle Physics
Two-dimensional collision experiments have revealed much of what we know about subatomic particles, as we shall see in Medical Applications of Nuclear Physics (https://legacy.cnx.org/content/m42646/latest) and Particle Physics (https://legacy.cnx.org/content/m42667/latest). Ernest Rutherford, for example, discovered the nature of the atomic nucleus from such experiments.

Glossary
change in momentum: the difference between the final and initial momentum; the mass times the change in velocity
conservation of momentum principle: when the net external force is zero, the total momentum of the system is conserved or constant
elastic collision: a collision that also conserves internal kinetic energy
impulse: the average net external force times the time it acts; equal to the change in momentum
inelastic collision: a collision in which internal kinetic energy is not conserved
internal kinetic energy: the sum of the kinetic energies of the objects in a system
isolated system: a system in which the net external force is zero
linear momentum: the product of mass and velocity
perfectly inelastic collision: a collision in which the colliding objects stick together
point masses: structureless particles with no rotation or spin
quark: fundamental constituent of matter and an elementary particle
second law of motion: physical law that states that the net external force equals the change in momentum of a system divided by the time over which it changes

Section Summary

8.1 Linear Momentum and Force

- Linear momentum (momentum for brevity) is defined as the product of a system’s mass multiplied by its velocity.
- In symbols, linear momentum \(\mathbf{p} \) is defined to be
 \[
 \mathbf{p} = m\mathbf{v},
 \]
 where \(m \) is the mass of the system and \(\mathbf{v} \) is its velocity.
- The SI unit for momentum is \(\text{kg} \cdot \text{m/s} \).
- Newton’s second law of motion in terms of momentum states that the net external force equals the change in momentum of a system divided by the time over which it changes.
- In symbols, Newton’s second law of motion is defined to be
 \[
 F_{\text{net}} = \frac{\Delta \mathbf{p}}{\Delta t},
 \]
 \(F_{\text{net}} \) is the net external force, \(\Delta \mathbf{p} \) is the change in momentum, and \(\Delta t \) is the change time.

8.2 Impulse

- Impulse, or change in momentum, equals the average net external force multiplied by the time this force acts:
 \[
 \Delta \mathbf{p} = F_{\text{net}}\Delta t.
 \]
- Forces are usually not constant over a period of time.

8.3 Conservation of Momentum

- The conservation of momentum principle is written
 \[
 p_{\text{tot}} = \text{constant}
 \]
 or
 \[
 p_{\text{tot}} = p_{\text{tot}}' \quad \text{(isolated system)},
 \]
 \(p_{\text{tot}} \) is the initial total momentum and \(p_{\text{tot}}' \) is the total momentum some time later.
- An isolated system is defined to be one for which the net external force is zero \((F_{\text{net}} = 0) \).
8.4 Elastic Collisions in One Dimension

- An elastic collision is one that conserves internal kinetic energy.
- Conservation of kinetic energy and momentum together allow the final velocities to be calculated in terms of initial velocities and masses in one dimensional two-body collisions.

8.5 Inelastic Collisions in One Dimension

- An inelastic collision is one in which the internal kinetic energy changes (it is not conserved).
- A collision in which the objects stick together is sometimes called perfectly inelastic because it reduces internal kinetic energy more than does any other type of inelastic collision.
- Sports science and technologies also use physics concepts such as momentum and rotational motion and vibrations.

8.6 Collisions of Point Masses in Two Dimensions

- The approach to two-dimensional collisions is to choose a convenient coordinate system and break the motion into components along perpendicular axes. Choose a coordinate system with the \(x \)-axis parallel to the velocity of the incoming particle.
- Two-dimensional collisions of point masses where mass 2 is initially at rest conserve momentum along the initial direction of mass 1 (the \(x \)-axis), stated by \(m_1 v_x = m_1 v'_x + m_2 v'_y \) and along the direction perpendicular to the initial direction (the \(y \)-axis) stated by \(0 = m_1 v'_y + m_2 v'_2 \).
- The internal kinetic energy before and after the collision of two objects that have equal masses is
 \[
 \frac{1}{2} m v_1^2 = \frac{1}{2} m v'_1^2 + \frac{1}{2} m v'_2^2 + m v'_1 v'_2 \cos(\theta_1 - \theta_2)
 \]
- Point masses are structureless particles that cannot spin.

Conceptual Questions

8.1 Linear Momentum and Force

1. An object that has a small mass and an object that has a large mass have the same momentum. Which object has the largest kinetic energy?
2. An object that has a small mass and an object that has a large mass have the same kinetic energy. Which mass has the largest momentum?

3. Professional Application

 Football coaches advise players to block, hit, and tackle with their feet on the ground rather than by leaping through the air. Using the concepts of momentum, work, and energy, explain how a football player can be more effective with his feet on the ground.

4. How can a small force impart the same momentum to an object as a large force?

8.2 Impulse

5. Professional Application

 Explain in terms of impulse how padding reduces forces in a collision. State this in terms of a real example, such as the advantages of a carpeted vs. tile floor for a day care center.

6. While jumping on a trampoline, sometimes you land on your back and other times on your feet. In which case can you reach a greater height and why?

7. Professional Application

 Tennis racquets have “sweet spots.” If the ball hits a sweet spot then the player’s arm is not jarred as much as it would be otherwise. Explain why this is the case.

8.3 Conservation of Momentum

8. Professional Application

 If you dive into water, you reach greater depths than if you do a belly flop. Explain this difference in depth using the concept of conservation of energy. Explain this difference in depth using what you have learned in this chapter.

9. Under what circumstances is momentum conserved?

10. Can momentum be conserved for a system if there are external forces acting on the system? If so, under what conditions? If not, why not?

11. Momentum for a system can be conserved in one direction while not being conserved in another. What is the angle between the directions? Give an example.

12. Professional Application

 Explain in terms of momentum and Newton’s laws how a car’s air resistance is due in part to the fact that it pushes air in its direction of motion.

13. Can objects in a system have momentum while the momentum of the system is zero? Explain your answer.

14. Must the total energy of a system be conserved whenever its momentum is conserved? Explain why or why not.
8.4 Elastic Collisions in One Dimension
15. What is an elastic collision?

8.5 Inelastic Collisions in One Dimension
16. What is an inelastic collision? What is a perfectly inelastic collision?
17. Mixed-pair ice skaters performing in a show are standing motionless at arms length just before starting a routine. They reach out, clasp hands, and pull themselves together by only using their arms. Assuming there is no friction between the blades of their skates and the ice, what is their velocity after their bodies meet?
18. A small pickup truck that has a camper shell slowly coasts toward a red light with negligible friction. Two dogs in the back of the truck are moving and making various inelastic collisions with each other and the walls. What is the effect of the dogs on the motion of the center of mass of the system (truck plus entire load)? What is their effect on the motion of the truck?

8.6 Collisions of Point Masses in Two Dimensions
19. Figure 8.13 shows a cube at rest and a small object heading toward it. (a) Describe the directions (angle θ_1) at which the small object can emerge after colliding elastically with the cube. How does θ_1 depend on b, the so-called impact parameter? Ignore any effects that might be due to rotation after the collision, and assume that the cube is much more massive than the small object. (b) Answer the same questions if the small object instead collides with a massive sphere.

Figure 8.13 A small object approaches a collision with a much more massive cube, after which its velocity has the direction θ_1. The angles at which the small object can be scattered are determined by the shape of the object it strikes and the impact parameter b.
8.1 Linear Momentum and Force

1. (a) Calculate the momentum of a 2000-kg elephant charging a hunter at a speed of 7.50 m/s. (b) Compare the elephant’s momentum with the momentum of a 0.0400-kg tranquilizer dart fired at a speed of 600 m/s. (c) What is the momentum of the 90.0-kg hunter running at 7.40 m/s after missing the elephant?

2. (a) What is the mass of a large ship that has a momentum of 1.60×10^9 kg·m/s, when the ship is moving at a speed of 48.0 km/h? (b) Compare the ship’s momentum to the momentum of a 1100-kg artillery shell fired at a speed of 1200 m/s.

3. (a) At what speed would a 2.00×10^4-kg airplane have to fly to have a momentum of 1.60×10^9 kg·m/s (the same as the ship’s momentum in the problem above)? (b) What is the plane’s momentum when it is taking off at a speed of 60.0 m/s? (c) If the ship is an aircraft carrier that launches these airplanes with a catapult, discuss the implications of your answer to (b) as it relates to recoil effects of the catapult on the ship.

4. (a) What is the momentum of a garbage truck that is 1.20×10^4 kg and is moving at 10.0 m/s? (b) At what speed would an 8.00-kg trash can have the same momentum as the truck?

5. A runaway train car that has a mass of 15,000 kg travels at a speed of 5.4 m/s down a track. Compute the time required for a force of 1500 N to bring the car to rest.

6. The mass of Earth is 5.972×10^{24} kg and its orbital radius is an average of 1.496×10^{11} m. Calculate its linear momentum.

8.2 Impulse

7. A bullet is accelerated down the barrel of a gun by hot gases produced in the combustion of gun powder. What is the average force exerted on a 0.0300-kg bullet to accelerate it to a speed of 600 m/s in a time of 2.00 ms (milliseconds)?

8. Professional Application

A car moving at 10 m/s crashes into a tree and stops in 0.26 s. Calculate the force the seat belt exerts on a passenger in the car to bring him to a halt. The mass of the passenger is 70 kg.

9. A person slaps her leg with her hand, bringing her hand to rest in 2.50 milliseconds from an initial speed of 4.00 m/s. (a) What is the average force exerted on the leg, taking the effective mass of the hand and forearm to be 1.50 kg? (b) Would the force be any different if the woman clapped her hands together at the same speed and brought them to rest in the same time? Explain why or why not.

10. Professional Application

A professional boxer hits his opponent with a 1000-N horizontal blow that lasts for 0.150 s. (a) Calculate the impulse imparted by this blow. (b) What is the opponent’s final velocity, if his mass is 105 kg and he is motionless in midair when struck near his center of mass? (c) Calculate the recoil velocity of the opponent’s 10-kg head if hit in this manner, assuming the head does not initially transfer significant momentum to the boxer’s body. (d) Discuss the implications of your answers for parts (b) and (c).

11. Professional Application

Suppose a child drives a bumper car head on into the side rail, which exerts a force of 4000 N on the car for 0.200 s. (a) What impulse is imparted by this force? (b) Find the final velocity of the bumper car if its initial velocity was 2.80 m/s and the car plus driver have a mass of 200 kg. You may neglect friction between the car and floor.

12. Professional Application

One hazard of space travel is debris left by previous missions. There are several thousand objects orbiting Earth that are large enough to be detected by radar, but there are far greater numbers of very small objects, such as flakes of paint. Calculate the force exerted by a 0.100-mg chip of paint that strikes a spacecraft window at a relative speed of 4.00×10^{3} m/s, given the collision lasts 6.00×10^{-8} s.

13. Professional Application

A 75.0-kg person is riding in a car moving at 20.0 m/s when the car runs into a bridge abutment. (a) Calculate the average force on the person if he is stopped by a padded dashboard that compresses an average of 1.00 cm. (b) Calculate the average force on the person if he is stopped by an air bag that compresses an average of 15.0 cm.

14. Professional Application

Military rifles have a mechanism for reducing the recoil forces of the gun on the person firing it. An internal part recoils over a relatively large distance and is stopped by damping mechanisms in the gun. The larger distance reduces the average force needed to stop the internal part. (a) Calculate the recoil velocity of a 1.00-kg plunger that directly interacts with a 0.0200-kg bullet fired at 600 m/s from the gun. (b) If this part is stopped over a distance of 20.0 cm, what average force is exerted upon it by the gun? (c) Compare this to the force exerted on the gun if the bullet is accelerated to its velocity in 10.0 ms (milliseconds).

15. A cruise ship with a mass of 1.00×10^{7} kg strikes a pier at a speed of 0.750 m/s. It comes to rest 6.00 m later, damaging the ship, the pier, and the tugboat captain’s finances. Calculate the average force exerted on the pier using the concept of impulse. (Hint: First calculate the time it took to bring the ship to rest.)

16. Calculate the final speed of a 110-kg rugby player who is initially running at 8.00 m/s but collides head-on with a padded goalpost and experiences a backward force of 1.76×10^{4} N for 5.50×10^{-2} s.

17. Water from a fire hose is directed horizontally against a wall at a rate of 50.0 kg/s and a speed of 42.0 m/s. Calculate the magnitude of the force exerted on the wall, assuming the water’s horizontal momentum is reduced to zero.

18. A 0.450-kg hammer is moving horizontally at 7.00 m/s when it strikes a nail and comes to rest after driving the nail 1.00 cm into a board. (a) Calculate the duration of the impact. (b) What was the average force exerted on the nail?

19. Starting with the definitions of momentum and kinetic energy, derive an equation for the kinetic energy of a particle expressed as a function of its momentum.

20. A ball with an initial velocity of 10 m/s moves at an angle 60° above the +x-direction. The ball hits a vertical wall and bounces off so that it is moving 60° above the −x-direction with the same speed. What is the impulse delivered by the wall?

21. When serving a tennis ball, a player hits the ball when its velocity is zero (at the highest point of a vertical toss). The racquet exerts a force of 540 N on the ball for 5.00 ms, giving it a final velocity of 45.0 m/s. Using these data, find the mass of the ball.

22. A punter drops a ball from rest vertically 1 meter down onto his foot. The ball leaves the foot with a speed of 18 m/s at an angle 55° above the horizontal. What is the impulse delivered by the foot (magnitude and direction)?

8.3 Conservation of Momentum

23. Professional Application

Train cars are coupled together by being bumped into one another. Suppose two loaded train cars are moving toward one another, the first having a mass of 150,000 kg and a velocity of 0.300 m/s, and the second having a mass of 110,000 kg and a velocity of −0.120 m/s. (The minus indicates direction of motion.) What is their final velocity?

24. Suppose a clay model of a koala bear has a mass of 0.200 kg and slides on ice at a speed of 0.750 m/s. It runs into another clay model,
which is initially motionless and has a mass of 0.350 kg. Both being soft clay, they naturally stick together. What is their final velocity?

25. Professional Application
Consider the following question: A car moving at 10 m/s crashes into a tree and stops in 0.26 s. Calculate the force the seatbelt exerts on a passenger in the car to bring him to a halt. The mass of the passenger is 70 kg. Would the answer to this question be different if the car with the 70-kg passenger had collided with a car that has a mass equal to and is traveling in the opposite direction and at the same speed? Explain your answer.

26. What is the velocity of a 900-kg car initially moving at 30.0 m/s, just after it hits a 150-kg deer initially running at 12.0 m/s in the same direction? Assume the deer remains on the car.

27. A 1.80-kg falcon catches a 0.650-kg dove from behind in midair. What is their velocity after impact if the falcon’s velocity is initially 28.0 m/s and the dove’s velocity is 7.00 m/s in the same direction?

8.4 Elastic Collisions in One Dimension
28. Two identical objects (such as billiard balls) have a one-dimensional collision in which one is initially motionless. After the collision, the moving object is stationary and the other moves with the same speed as the other originally had. Show that both momentum and kinetic energy are conserved.

29. Professional Application
Two manned satellites approach one another at a relative speed of 0.250 m/s, intending to dock. The first has a mass of 4.00x10^3 kg, and the second a mass of 7.50x10^3 kg. (a) Calculate the final velocity (after docking) by using the frame of reference in which the first satellite was originally at rest. (b) What is the loss of kinetic energy in this inelastic collision? (c) Repeat both parts by using the frame of reference in which the second satellite was originally at rest. Explain why the change in velocity is different in the two frames, whereas the change in kinetic energy is the same in both.

30. A 70.0-kg ice hockey goalie, originally at rest, catches a 0.150-kg hockey puck slapped at him at a velocity of 35.0 m/s. Suppose the goalie and the ice puck have an elastic collision and the puck is reflected back in the direction from which it came. What would their final velocities be in this case?

8.5 Inelastic Collisions in One Dimension
31. A 0.240-kg billiard ball that is moving at 3.00 m/s strikes the bumper of a pool table and bounces straight back at 2.40 m/s (80% of its original speed). The collision lasts 0.0150 s. (a) Calculate the average force exerted on the ball by the bumper. (b) How much kinetic energy in joules is lost during the collision? (c) What percent of the original energy is left?

32. During an ice show, a 60.0-kg skater leaps into the air and is caught by an initially stationary 75.0-kg skater. (a) What is their final velocity assuming negligible friction and that the 60.0-kg skater’s original horizontal velocity is 4.00 m/s? (b) How much kinetic energy is lost?

33. Professional Application
Using mass and speed data from Example 8.1 and assuming that the football player catches the ball with his feet off the ground with both of them moving horizontally, calculate: (a) the final velocity if the ball and player are going in the same direction and (b) the loss of kinetic energy in this case. (c) Repeat parts (a) and (b) for the situation in which the ball and the player are going in opposite directions. Might the loss of kinetic energy be related to how much it hurts to catch the pass?

34. A battle ship that is 6.00x10^7 kg and is originally at rest fires a 1100-kg artillery shell horizontally with a velocity of 575 m/s. (a) If the shell is fired straight aft (toward the rear of the ship), there will be negligible friction opposing the ship’s recoil. Calculate its recoil velocity. (b) Calculate the increase in internal kinetic energy (that is, for the ship and the shell). This energy is less than the energy released by the gun powder—significant heat transfer occurs.

35. Professional Application
Two manned satellites approaching one another, at a relative speed of 0.250 m/s, intending to dock. The first has a mass of 4.00x10^3 kg, and the second a mass of 7.50x10^3 kg. (a) Calculate the final velocity (after docking) by using the frame of reference in which the first satellite was originally at rest. (b) What is the loss of kinetic energy in this inelastic collision? (c) Repeat both parts by using the frame of reference in which the second satellite was originally at rest. Explain why the change in velocity is different in the two frames, whereas the change in kinetic energy is the same in both.

36. Professional Application
A 30,000-kg freight car is coasting at 0.850 m/s with negligible friction under a hopper that dumps 110,000 kg of scrap metal into it. (a) What is the final velocity of the loaded freight car? (b) How much kinetic energy is lost?

37. Professional Application
Space probes may be separated from their launchers by exploding bolts. (They bolt away from one another.) Suppose a 4800-kg satellite uses this method to separate from the 1500-kg remains of its launcher, and that 5000 J of kinetic energy is supplied to the two parts. What are their subsequent velocities using the frame of reference in which they were at rest before separation?

38. A 0.0250-kg bullet is accelerated from rest to a speed of 550 m/s in a 3.00-kg rifle. The pain of the rifle’s kick is much worse if you hold the gun loosely a few centimeters from your shoulder rather than holding it tightly against your shoulder. (a) Calculate the recoil velocity of the rifle if it is held loosely away from the shoulder. (b) How much kinetic energy does the rifle gain? (c) What is the recoil velocity if the rifle is held tightly against the shoulder, making the effective mass 28.0 kg? (d) How much kinetic energy is transferred to the rifle-shoulder combination? The pain is related to the amount of kinetic energy, which is significantly less in this latter situation. (e) Calculate the momentum of a 110-kg football player running at 8.00 m/s. Compare the player’s momentum with the momentum of a hard-thrown 0.410-kg football that has a speed of 25.0 m/s. Discuss its relationship to this problem.

39. Professional Application
One of the waste products of a nuclear reactor is plutonium-239 (239Pu). This nucleus is radioactive and decays by splitting into a helium-4 nucleus and a uranium-235 nucleus (4He + 235U), the latter of which is also radioactive and will itself decay some time later. The energy emitted in the plutonium decay is 8.40x10^-13 J and is entirely converted to kinetic energy of the helium and uranium nuclei. The mass of the helium nucleus is 6.68x10^-27 kg, while that of the uranium is 3.92x10^-25 kg (note that the ratio of the masses is 4 to 235). (a) Calculate the velocities of the two nuclei, assuming the plutonium nucleus is originally at rest. (b) How much kinetic energy does each nucleus carry away? Note that the data given here are accurate to three digits only.

40. Professional Application
The Moon’s craters are remnants of meteorite collisions. Suppose a fairly large asteroid that has a mass of 5.00x10^12 kg (about a kilometer across) strikes the Moon at a speed of 15.0 km/s. (a) At what speed does the Moon recoil after the perfectly inelastic collision (the mass of the Moon is 7.36x10^22 kg)? (b) How much kinetic energy is lost in the collision? Such an event may have been observed by medieval English monks who reported observing a red glow and subsequent haze about the Moon. (c) In October 2009, NASA crashed a rocket into the Moon, and analyzed the plume produced by the impact. (Significant amounts of water were detected.) Answer part (a) and (b) for this real-life experiment. The mass of the rocket was 2000 kg and its speed upon impact was 9000 km/h. How does the plume produced alter these results?

41. Professional Application
Two football players collide head-on in midair while trying to catch a thrown football. The first player is 95.0 kg and has an initial velocity of
6.00 m/s, while the second player is 115 kg and has an initial velocity of
−3.50 m/s. What is their velocity just after impact if they cling together?

42. What is the speed of a garbage truck that is 1.20×10^4 kg and is
initially moving at 25.0 m/s just after it hits and adheres to a trash can
that is 80.0 kg and is initially at rest?

43. During a circus act, an elderly performer thrills the crowd by
lifting a 40-kg cannon ball shot at him. The cannon ball has a mass of 10.0
kg and the horizontal component of its velocity is 8.00 m/s when the
65.0-kg performer catches it. If the performer is on nearly frictionless
roller skates, what is his recoil velocity?

44. (a) During an ice skating performance, an initially motionless
80.0-kg clown throws a fake barbell away. The clown’s ice skates allow
her to recoil frictionlessly. If the clown recoils with a velocity of 0.500 m/s
and the barbell is thrown with a velocity of 10.0 m/s, what is the mass of
the barbell? (b) How much kinetic energy is gained by this maneuver?
(c) Where does the kinetic energy come from?

8.6 Collisions of Point Masses in Two Dimensions

45. Two identical pucks collide on an air hockey table. One puck was
originally at rest. (a) If the incoming puck has a speed of 6.00 m/s and
scatters to an angle of 30.0°, what is the velocity (magnitude and
direction) of the second puck? (You may use the result that
θ₁ − θ₂ = 90° for elastic collisions of objects that have identical
masses.) (b) Confirm that the collision is elastic.

46. Confirm that the results of the example Example 8.7 do conserve
momentum in both the x- and y-directions.

47. A 3000-kg cannon is mounted so that it can recoil only in the
horizontal direction. (a) Calculate its recoil velocity when it fires a
15.0-kg shell at 480 m/s at an angle of 20.0° above the horizontal. (b)
What is the kinetic energy of the cannon? This energy is dissipated as
heat transfer in shock absorbers that stop its recoil. (c) What happens to
the vertical component of momentum that is imparted to the cannon
when it is fired?

48. Professional Application
A 5.50-kg bowling ball moving at 9.00 m/s collides with a 0.850-kg
bowling pin, which is scattered at an angle of 85.0° to the initial
direction of the bowling ball and with a speed of 15.0 m/s. (a) Calculate
the final velocity (magnitude and direction) of the bowling ball. (b) Is the
collision elastic? (c) Linear kinetic energy is greater after the collision.
Discuss how spin on the ball might be converted to linear kinetic energy
in the collision.

49. Professional Application
Ernest Rutherford (the first New Zealander to be awarded the Nobel
Prize in Chemistry) demonstrated that nuclei were very small and dense
by scattering helium-4 nuclei (\(^4\)He) from gold-197 nuclei (\(^{197}\)Au).

The energy of the incoming helium nucleus was \(8.00\times10^{-13}\) J, and
the masses of the helium and gold nuclei were \(6.68\times10^{-27}\) kg and
\(3.29\times10^{-25}\) kg, respectively (note that their mass ratio is 4 to 197).
(a) If a helium nucleus scatters to an angle of 120° during an elastic
collision with a gold nucleus, calculate the helium nucleus’s final speed and
the final velocity (magnitude and direction) of the gold nucleus. (b)
What is the final kinetic energy of the helium nucleus?

50. Professional Application
Two cars collide at an icy intersection and stick together afterward. The
first car has a mass of 1200 kg and is approaching at 8.00 m/s due
south. The second car has a mass of 850 kg and is approaching at
17.0 m/s due west. (a) Calculate the final velocity (magnitude and
direction) of the cars. (b) How much kinetic energy is lost in the
collision? (This energy goes into deformation of the cars.) Note that
because both cars have an initial velocity, you cannot use the equations
for conservation of momentum along the x-axis and y-axis; instead,
you must look for other simplifying aspects.

51. Starting with equations \(m_1 v_1 = m_1 v'_1 \cos \theta_1 + m_2 v'_2 \cos \theta_2\)
and \(0 = m_1 v'_1 \sin \theta_1 + m_2 v'_2 \sin \theta_2\) for conservation of
momentum in the x- and y-directions and assuming that one object is
originally stationary, prove that for an elastic collision of two objects of
equal masses, \(\frac{1}{2} m_1 v_1^2 = \frac{1}{2} m_1 v'_1^2 + \frac{1}{2} m_2 v'_2^2 + m_1 v'_1 \cos (\theta_1 − \theta_2)\)
as discussed in the text.

52. Integrated Concepts
A 90.0-kg ice hockey player hits a 0.150-kg puck, giving the puck a
velocity of 45.0 m/s. If both are initially at rest and if the ice is
frictionless, how far does the player recoil in the time it takes the puck to
reach the goal 15.0 m away?
9 ELECTRIC CHARGE AND ELECTRIC FIELD

Chapter Outline

9.1. Static Electricity and Charge: Conservation of Charge
- Define electric charge, and describe how the two types of charge interact.
- Describe three common situations that generate static electricity.
- State the law of conservation of charge.

9.2. Conductors and Insulators
- Define conductor and insulator, explain the difference, and give examples of each.
- Describe three methods for charging an object.
- Explain what happens to an electric force as you move farther from the source.
- Define polarization.

9.3. Coulomb's Law
- State Coulomb's law in terms of how the electrostatic force changes with the distance between two objects.
- Calculate the electrostatic force between two charged point forces, such as electrons or protons.
- Compare the electrostatic force to the gravitational attraction for a proton and an electron; for a human and the Earth.

9.4. Electric Field: Concept of a Field Revisited
- Describe a force field and calculate the strength of an electric field due to a point charge.
- Calculate the force exerted on a test charge by an electric field.
- Explain the relationship between electrical force (F) on a test charge and electrical field strength (E).

9.5. Electric Field Lines: Multiple Charges
- Calculate the total force (magnitude and direction) exerted on a test charge from more than one charge.
- Describe an electric field diagram of a positive point charge; of a negative point charge with twice the magnitude of positive charge.
- Draw the electric field lines between two points of the same charge; between two points of opposite charge.

9.6. Applications of Electrostatics
- Name several real-world applications of the study of electrostatics.

Introduction to Electric Charge and Electric Field

The image of American politician and scientist Benjamin Franklin (1706–1790) flying a kite in a thunderstorm is familiar to every schoolchild. (See Figure 9.2.) In this experiment, Franklin demonstrated a connection between lightning and static electricity. Sparks were drawn from a key hung on a kite string during an electrical storm. These sparks were like those produced by static electricity, such as the spark that jumps from your finger to a metal doorknob after you walk across a wool carpet. What Franklin demonstrated in his dangerous experiment was a connection between phenomena on two different scales: one the grand power of an electrical storm, the other an effect of more human proportions. Connections like this one reveal the underlying unity of the laws of nature, an aspect we humans find particularly appealing.
Figure 9.2 When Benjamin Franklin demonstrated that lightning was related to static electricity, he made a connection that is now part of the evidence that all directly experienced forces except the gravitational force are manifestations of the electromagnetic force.

Much has been written about Franklin. His experiments were only part of the life of a man who was a scientist, inventor, revolutionary, statesman, and writer. Franklin’s experiments were not performed in isolation, nor were they the only ones to reveal connections.

For example, the Italian scientist Luigi Galvani (1737–1798) performed a series of experiments in which static electricity was used to stimulate contractions of leg muscles of dead frogs, an effect already known in humans subjected to static discharges. But Galvani also found that if he joined two metal wires (say copper and zinc) end to end and touched the other ends to muscles, he produced the same effect in frogs as static discharge. Alessandro Volta (1745–1827), partly inspired by Galvani’s work, experimented with various combinations of metals and developed the battery.

During the same era, other scientists made progress in discovering fundamental connections. The periodic table was developed as the systematic properties of the elements were discovered. This influenced the development and refinement of the concept of atoms as the basis of matter. Such submicroscopic descriptions of matter also help explain a great deal more.

Atomic and molecular interactions, such as the forces of friction, cohesion, and adhesion, are now known to be manifestations of the electromagnetic force. Static electricity is just one aspect of the electromagnetic force, which also includes moving electricity and magnetism.

All the macroscopic forces that we experience directly, such as the sensations of touch and the tension in a rope, are due to the electromagnetic force, one of the four fundamental forces in nature. The gravitational force, another fundamental force, is actually sensed through the electromagnetic interaction of molecules, such as between those in our feet and those on the top of a bathroom scale. (The other two fundamental forces, the strong nuclear force and the weak nuclear force, cannot be sensed on the human scale.)

This chapter begins the study of electromagnetic phenomena at a fundamental level. The next several chapters will cover static electricity, moving electricity, and magnetism—collectively known as electromagnetism. In this chapter, we begin with the study of electric phenomena due to charges that are at least temporarily stationary, called electrostatics, or static electricity.

9.1 Static Electricity and Charge: Conservation of Charge

Figure 9.3 Borneo amber was mined in Sabah, Malaysia, from shale-sandstone-mudstone veins. When a piece of amber is rubbed with a piece of silk, the amber gains more electrons, giving it a net negative charge. At the same time, the silk, having lost electrons, becomes positively charged. (credit: Sebakoamber, Wikimedia Commons)
What makes plastic wrap cling? Static electricity. Not only are applications of static electricity common these days, its existence has been known since ancient times. The first record of its effects dates to ancient Greeks who noted more than 500 years B.C. that polishing amber temporarily enabled it to attract bits of straw (see Figure 9.3). The very word electric derives from the Greek word for amber (elektron).

Many of the characteristics of static electricity can be explored by rubbing things together. Rubbing creates the spark you get from walking across a wool carpet, for example. Static cling generated in a clothes dryer and the attraction of straw to recently polished amber also result from rubbing. Similarly, lightning results from air movements under certain weather conditions. You can also rub a balloon on your hair, and the static electricity created can then make the balloon cling to a wall. We also have to be cautious of static electricity, especially in dry climates. When we pump gasoline, we are warned to discharge ourselves (after sliding across the seat) on a metal surface before grabbing the gas nozzle. Attendants in hospital operating rooms must wear booties with aluminum foil on the bottoms to avoid creating sparks which may ignite the oxygen being used.

Some of the most basic characteristics of static electricity include:

- The effects of static electricity are explained by a physical quantity not previously introduced, called electric charge.
- There are only two types of charge, one called positive and the other called negative.
- Like charges repel, whereas unlike charges attract.
- The force between charges decreases with distance.

How do we know there are two types of electric charge? When various materials are rubbed together in controlled ways, certain combinations of materials always produce one type of charge on one material and the opposite type on the other. By convention, we call one type of charge “positive”, and the other type “negative.” For example, when glass is rubbed with silk, the glass becomes positively charged and the silk negatively charged. Since the glass and silk have opposite charges, they attract one another like clothes that have rubbed together in a dryer. Two glass rods rubbed with silk in this manner will repel one another, since each rod has positive charge on it. Similarly, two silk cloths so rubbed will repel, since both cloths have negative charge. Figure 9.4 shows how these simple materials can be used to explore the nature of the force between charges.

![Figure 9.4](image)

(a) A glass rod becomes positively charged when rubbed with silk, while the silk becomes negatively charged. (b) Two similarly charged glass rods repel. (c) Two similarly charged silk cloths repel.

More sophisticated questions arise. Where do these charges come from? Can you create or destroy charge? Is there a smallest unit of charge? Exactly how does the force depend on the amount of charge and the distance between charges? Such questions obviously occurred to Benjamin Franklin and other early researchers, and they interest us even today.

Charge Carried by Electrons and Protons

Franklin wrote in his letters and books that he could see the effects of electric charge but did not understand what caused the phenomenon. Today we have the advantage of knowing that normal matter is made of atoms, and that atoms contain positive and negative charges, usually in equal amounts.

Figure 9.5 shows a simple model of an atom with negative electrons orbiting its positive nucleus. The nucleus is positive due to the presence of positively charged protons. Nearly all charge in nature is due to electrons and protons, which are two of the three building blocks of most matter. (The third is the neutron, which is neutral, carrying no charge.) Other charge-carrying particles are observed in cosmic rays and nuclear decay, and are created in particle accelerators. All but the electron and proton survive only a short time and are quite rare by comparison.

![Figure 9.5](image)

This simplified (and not to scale) view of an atom is called the planetary model of the atom. Negative electrons orbit a much heavier positive nucleus, as the planets orbit the much heavier sun. There the similarity ends, because forces in the atom are electromagnetic, whereas those in the planetary system are gravitational. Normal macroscopic amounts of matter contain immense numbers of atoms and molecules and, hence, even greater numbers of individual negative and positive charges.

The charges of electrons and protons are identical in magnitude but opposite in sign. Furthermore, all charged objects in nature are integral multiples of this basic quantity of charge, meaning that all charges are made of combinations of a basic unit of charge. Usually, charges are formed by combinations of electrons and protons. The magnitude of this basic charge is
\[|q_e| = 1.60 \times 10^{-19} \text{ C}. \]
\[(9.1) \]

The symbol \(q \) is commonly used for charge and the subscript \(e \) indicates the charge of a single electron (or proton).

The SI unit of charge is the coulomb (C). The number of protons needed to make a charge of 1.00 \(\text{C} \) is
\[1.00 \text{ C} \times \frac{1 \text{ proton}}{1.60 \times 10^{-19} \text{ C}} = 6.25 \times 10^{18} \text{ protons}. \]
\[(9.2) \]

Similarly, \(6.25 \times 10^{18} \) electrons have a combined charge of \(-1.00 \text{ coulomb}. \) Just as there is a smallest bit of an element (an atom), there is a smallest bit of charge. There is no directly observed charge smaller than \(|q_e| \) (see Things Great and Small: The Submicroscopic Origin of Charge), and all observed charges are integral multiples of \(|q_e| \).

Things Great and Small: The Submicroscopic Origin of Charge

With the exception of exotic, short-lived particles, all charge in nature is carried by electrons and protons. Electrons carry the charge we have named negative. Protons carry an equal-magnitude charge that we call positive. (See Figure 9.6.) Electron and proton charges are considered fundamental building blocks, since all other charges are integral multiples of those carried by electrons and protons. Electrons and protons are also two of the three fundamental building blocks of ordinary matter. The neutron is the third and has zero total charge.

Figure 9.6 shows a person touching a Van de Graaff generator and receiving excess positive charge. The expanded view of a hair shows the existence of both types of charges but an excess of positive. The repulsion of these positive like charges causes the strands of hair to repel other strands of hair and to stand up. The further blowup shows an artist’s conception of an electron and a proton perhaps found in an atom in a strand of hair.

Figure 9.6 When this person touches a Van de Graaff generator, she receives an excess of positive charge, causing her hair to stand on end. The charges in one hair are shown. An artist’s conception of an electron and a proton illustrate the particles carrying the negative and positive charges. We cannot really see these particles with visible light because they are so small (the electron seems to be an infinitesimal point), but we know a great deal about their measurable properties, such as the charges they carry.

The electron seems to have no substructure; in contrast, when the substructure of protons is explored by scattering extremely energetic electrons from them, it appears that there are point-like particles inside the proton. These sub-particles, named quarks, have never been directly observed, but they are believed to carry fractional charges as seen in Figure 9.7. Charges on electrons and protons and all other directly observable particles are unitary, but these quark substructures carry charges of either \(-\frac{1}{3}\) or \(+\frac{2}{3}\). There are continuing attempts to observe fractional charge directly and to learn of the properties of quarks, which are perhaps the ultimate substructure of matter.
Separation of Charge in Atoms

Charges in atoms and molecules can be separated—for example, by rubbing materials together. Some atoms and molecules have a greater affinity for electrons than others and will become negatively charged by close contact in rubbing, leaving the other material positively charged. (See Figure 9.8.) Positive charge can similarly be induced by rubbing. Methods other than rubbing can also separate charges. Batteries, for example, use combinations of substances that interact in such a way as to separate charges. Chemical interactions may transfer negative charge from one substance to the other, making one battery terminal negative and leaving the first one positive.

Figure 9.8 When materials are rubbed together, charges can be separated, particularly if one material has a greater affinity for electrons than another. (a) Both the amber and cloth are originally neutral, with equal positive and negative charges. Only a tiny fraction of the charges are involved, and only a few of them are shown here. (b) When rubbed together, some negative charge is transferred to the amber, leaving the cloth with a net positive charge. (c) When separated, the amber and cloth now have net charges, but the absolute value of the net positive and negative charges will be equal.

No charge is actually created or destroyed when charges are separated as we have been discussing. Rather, existing charges are moved about. In fact, in all situations the total amount of charge is always constant. This universally obeyed law of nature is called the law of conservation of charge.

Law of Conservation of Charge

Total charge is constant in any process.

In more exotic situations, such as in particle accelerators, mass, \(\Delta m \), can be created from energy in the amount \(\Delta m = \frac{E}{c^2} \). Sometimes, the created mass is charged, such as when an electron is created. Whenever a charged particle is created, another having an opposite charge is always created along with it, so that the total charge created is zero. Usually, the two particles are “matter-antimatter” counterparts. For example, an antielectron would usually be created at the same time as an electron. The antielectron has a positive charge (it is called a positron), and so the total charge created is zero. (See Figure 9.9.) All particles have antimatter counterparts with opposite signs. When matter and antimatter counterparts are brought together, they completely annihilate one another. By annihilate, we mean that the mass of the two particles is converted to energy \(E \), again obeying the relationship \(\Delta m = \frac{E}{c^2} \). Since the two particles have equal and opposite charge, the total charge is zero before and after the annihilation; thus, total charge is conserved.

Making Connections: Conservation Laws

Only a limited number of physical quantities are universally conserved. Charge is one—energy, momentum, and angular momentum are others. Because they are conserved, these physical quantities are used to explain more phenomena and form more connections than other, less basic quantities. We find that conserved quantities give us great insight into the rules followed by nature and hints to the organization of nature.
Discoveries of conservation laws have led to further discoveries, such as the weak nuclear force and the quark substructure of protons and other particles.

\[\Delta m = 2m_e = \frac{E}{c^2} \]

Figure 9.9 (a) When enough energy is present, it can be converted into matter. Here the matter created is an electron–antinelectron pair. (\(m_e \) is the electron's mass.) The total charge before and after this event is zero. (b) When matter and antimatter collide, they annihilate each other; the total charge is conserved at zero before and after the annihilation.

The law of conservation of charge is absolute—it has never been observed to be violated. Charge, then, is a special physical quantity, joining a very short list of other quantities in nature that are always conserved. Other conserved quantities include energy, momentum, and angular momentum.

PhET Explorations: Balloons and Static Electricity

Why does a balloon stick to your sweater? Rub a balloon on a sweater, then let go of the balloon and it flies over and sticks to the sweater. View the charges in the sweater, balloons, and the wall.

PhET Interactive Simulation

[Figure 9.10 Balloons and Static Electricity](http://legacy.cnx.org/content/m42300/1.5/balloons_en.jar)

9.2 Conductors and Insulators

Figure 9.11 This power adapter uses metal wires and connectors to conduct electricity from the wall socket to a laptop computer. The conducting wires allow electrons to move freely through the cables, which are shielded by rubber and plastic. These materials act as insulators that don’t allow electric charge to escape outward. (credit: Evan-Amos, Wikimedia Commons)

Some substances, such as metals and salty water, allow charges to move through them with relative ease. Some of the electrons in metals and similar conductors are not bound to individual atoms or sites in the material. These free electrons can move through the material much as air moves through loose sand. Any substance that has free electrons and allows charge to move relatively freely through it is called a **conductor**. The moving...
electrons may collide with fixed atoms and molecules, losing some energy, but they can move in a conductor. Superconductors allow the movement of charge without any loss of energy. Salty water and other similar conducting materials contain free ions that can move through them. An ion is an atom or molecule having a positive or negative (nonzero) total charge. In other words, the total number of electrons is not equal to the total number of protons.

Other substances, such as glass, do not allow charges to move through them. These are called insulators. Electrons and ions in insulators are bound in the structure and cannot move easily—as much as 10^{23} times more slowly than in conductors. Pure water and dry table salt are insulators, for example, whereas molten salt and salty water are conductors.

Figure 9.12 An electroscope is a favorite instrument in physics demonstrations and student laboratories. It is typically made with gold foil leaves hung from a (conducting) metal stem and is insulated from the room air in a glass-walled container. (a) A positively charged glass rod is brought near the tip of the electroscope, attracting electrons to the top and leaving a net positive charge on the leaves. Like charges in the light flexible gold leaves repel, separating them. (b) When the rod is touched against the ball, electrons are attracted and transferred, reducing the net charge on the glass rod but leaving the electroscope positively charged. (c) The excess charges are evenly distributed in the stem and leaves of the electroscope once the glass rod is removed.

Charging by Contact

Figure 9.12 shows an electroscope being charged by touching it with a positively charged glass rod. Because the glass rod is an insulator, it must actually touch the electroscope to transfer charge to or from it. (Note that the extra positive charges reside on the surface of the glass rod as a result of rubbing it with silk before starting the experiment.) Since only electrons move in metals, we see that they are attracted to the top of the electroscope. There, some are transferred to the positive rod by touch, leaving the electroscope with a net positive charge.

Electrostatic repulsion in the leaves of the charged electroscope separates them. The electrostatic force has a horizontal component that results in the leaves moving apart as well as a vertical component that is balanced by the gravitational force. Similarly, the electroscope can be negatively charged by contact with a negatively charged object.

Charging by Induction

It is not necessary to transfer excess charge directly to an object in order to charge it. **Figure 9.13** shows a method of **induction** wherein a charge is created in a nearby object, without direct contact. Here we see two neutral metal spheres in contact with one another but insulated from the rest of the world. A positively charged rod is brought near one of them, attracting negative charge to that side, leaving the other sphere positively charged.

This is an example of induced **polarization** of neutral objects. Polarization is the separation of charges in an object that remains neutral. If the spheres are now separated (before the rod is pulled away), each sphere will have a net charge. Note that the object closest to the charged rod receives an opposite charge when charged by induction. Note also that no charge is removed from the charged rod, so that this process can be repeated without depleting the supply of excess charge.

Another method of charging by induction is shown in **Figure 9.14**. The neutral metal sphere is polarized when a charged rod is brought near it. The sphere is then grounded, meaning that a conducting wire is run from the sphere to the ground. Since the earth is large and most ground is a good conductor, it can supply or accept excess charge easily. In this case, electrons are attracted to the sphere through a wire called the ground wire, because it supplies a conducting path to the ground. The ground connection is broken before the charged rod is removed, leaving the sphere with an excess charge opposite to that of the rod. Again, an opposite charge is achieved when charging by induction and the charged rod loses none of its excess charge.
Figure 9.13 Charging by induction. (a) Two uncharged or neutral metal spheres are in contact with each other but insulated from the rest of the world. (b) A positively charged glass rod is brought near the sphere on the left, attracting negative charge and leaving the other sphere positively charged. (c) The spheres are separated before the rod is removed, thus separating negative and positive charge. (d) The spheres retain net charges after the inducing rod is removed—without ever having been touched by a charged object.

Figure 9.14 Charging by induction, using a ground connection. (a) A positively charged rod is brought near a neutral metal sphere, polarizing it. (b) The sphere is grounded, allowing electrons to be attracted from the earth’s ample supply. (c) The ground connection is broken. (d) The positive rod is removed, leaving the sphere with an induced negative charge.
Neutral objects can be attracted to any charged object. The pieces of straw attracted to polished amber are neutral, for example. If you run a plastic comb through your hair, the charged comb can pick up neutral pieces of paper. Figure 9.15 shows how the polarization of atoms and molecules in neutral objects results in their attraction to a charged object.

When a charged rod is brought near a neutral substance, an insulator in this case, the distribution of charge in atoms and molecules is shifted slightly. Opposite charge is attracted nearer the external charged rod, while like charge is repelled. Since the electrostatic force decreases with distance, the repulsion of like charges is weaker than the attraction of unlike charges, and so there is a net attraction. Thus a positively charged glass rod attracts neutral pieces of paper, as will a negatively charged rubber rod. Some molecules, like water, are polar molecules. Polar molecules have a natural or inherent separation of charge, although they are neutral overall. Polar molecules are particularly affected by other charged objects and show greater polarization effects than molecules with naturally uniform charge distributions.

Check Your Understanding

Can you explain the attraction of water to the charged rod in the figure below?

Solution

Water molecules are polarized, giving them slightly positive and slightly negative sides. This makes water even more susceptible to a charged rod’s attraction. As the water flows downward, due to the force of gravity, the charged conductor exerts a net attraction to the opposite charges in the stream of water, pulling it closer.
9.3 Coulomb’s Law

Through the work of scientists in the late 18th century, the main features of the **electrostatic force**—the existence of two types of charge, the observation that like charges repel, unlike charges attract, and the decrease of force with distance—were eventually refined, and expressed as a mathematical formula. The mathematical formula for the electrostatic force is called **Coulomb’s law** after the French physicist Charles Coulomb (1736–1806), who performed experiments and first proposed a formula to calculate it.

Coulomb’s Law

\[
F = k \frac{|q_1 q_2|}{r^2} \tag{9.3}
\]

Coulomb’s law calculates the magnitude of the force \(F\) between two point charges, \(q_1\) and \(q_2\), separated by a distance \(r\). In SI units, the constant \(k\) is equal to

\[
k = 8.988 \times 10^9 \text{N} \cdot \text{m}^2 \text{C}^{-2} \approx 8.99 \times 10^9 \text{N} \cdot \text{m}^2 \text{C}^{-2} \tag{9.4}
\]

The electrostatic force is a vector quantity and is expressed in units of newtons. The force is understood to be along the line joining the two charges. (See Figure 9.19.)

Although the formula for Coulomb’s law is simple, it was no mean task to prove it. The experiments Coulomb did, with the primitive equipment then available, were difficult. Modern experiments have verified Coulomb’s law to great precision. For example, it has been shown that the force is inversely proportional to distance between two objects squared \((F \propto 1/r^2)\) to an accuracy of 1 part in \(10^{16}\). No exceptions have ever been found, even at the small distances within the atom.

![Diagram](image)

Figure 9.19 The magnitude of the electrostatic force \(F\) between point charges \(q_1\) and \(q_2\) separated by a distance \(r\) is given by Coulomb’s law. Note that Newton’s third law (every force exerted creates an equal and opposite force) applies as usual—the force on \(q_1\) is equal in magnitude and opposite in direction to the force it exerts on \(q_2\).

(a) Like charges. (b) Unlike charges.
Example 9.1 How Strong is the Coulomb Force Relative to the Gravitational Force?

Compare the electrostatic force between an electron and proton separated by 0.530×10⁻¹⁰ m with the gravitational force between them. This distance is their average separation in a hydrogen atom.

Strategy

To compare the two forces, we first compute the electrostatic force using Coulomb’s law, \(F = \frac{k|q_1 q_2|}{r^2} \). We then calculate the gravitational force using Newton’s universal law of gravitation. Finally, we take a ratio to see how the forces compare in magnitude.

Solution

Entering the given and known information about the charges and separation of the electron and proton into the expression of Coulomb’s law yields

\[
F = k\frac{|q_1 q_2|}{r^2} = \left(8.99\times10^9 \text{ N} \cdot \text{m}^2 / \text{C}^2\right) \times \frac{(1.60\times10^{-19} \text{ C})(1.60\times10^{-19} \text{ C})}{(0.530\times10^{-10} \text{ m})^2}
\]

Thus the Coulomb force is

\[
F = 8.19\times10^{-8} \text{ N}.
\]

The charges are opposite in sign, so this is an attractive force. This is a very large force for an electron—it would cause an acceleration of 8.99×10⁻²² m / s² (verification is left as an end-of-section problem). The gravitational force is given by Newton’s law of gravitation as:

\[
F_G = G\frac{mM}{r^2},
\]

where \(G = 6.67\times10^{-11} \text{ N} \cdot \text{m}^2 / \text{kg}^2 \). Here \(m \) and \(M \) represent the electron and proton masses, which can be found in the appendices.

Entering values for the knowns yields

\[
F_G = (6.67\times10^{-11} \text{ N} \cdot \text{m}^2 / \text{kg}^2) \times \frac{(9.11\times10^{-31} \text{ kg})(1.67\times10^{-27} \text{ kg})}{(0.530\times10^{-10} \text{ m})^2} = 3.61\times10^{-47} \text{ N}
\]

This is also an attractive force, although it is traditionally shown as positive since gravitational force is always attractive. The ratio of the magnitude of the electrostatic force to gravitational force in this case is, thus,

\[
\frac{F}{F_G} = 2.27\times10^{39}.
\]

Discussion

This is a remarkably large ratio! Note that this will be the ratio of electrostatic force to gravitational force for an electron and a proton at any distance (taking the ratio before entering numerical values shows that the distance cancels). This ratio gives some indication of just how much larger the Coulomb force is than the gravitational force between two of the most common particles in nature.

As the example implies, gravitational force is completely negligible on a small scale, where the interactions of individual charged particles are important. On a large scale, such as between the Earth and a person, the reverse is true. Most objects are nearly electrically neutral, and so attractive and repulsive Coulomb forces nearly cancel. Gravitational force on a large scale dominates interactions between large objects because it is always attractive, while Coulomb forces tend to cancel.

9.4 Electric Field: Concept of a Field Revisited

Contact forces, such as between a baseball and a bat, are explained on the small scale by the interaction of the charges in atoms and molecules in close proximity. They interact through forces that include the Coulomb force. Action at a distance is a force between objects that are not close enough for their atoms to “touch.” That is, they are separated by more than a few atomic diameters.

For example, a charged rubber comb attracts neutral bits of paper from a distance via the Coulomb force. It is very useful to think of an object being surrounded in space by a force field. The force field carries the force to another object (called a test object) some distance away.

Concept of a Field

A field is a way of conceptualizing and mapping the force that surrounds any object and acts on another object at a distance without apparent physical connection. For example, the gravitational field surrounding the Earth (and all other masses) represents the gravitational force that would be experienced if another mass were placed at a given point within the field.
In the same way, the Coulomb force field surrounding any charge extends throughout space. Using Coulomb’s law, \(F = k|q_1 q_2| / r^2 \), its magnitude is given by the equation \(F = k|q_1| / r \), for a point charge (a particle having a charge \(Q \)) acting on a test charge \(q \) at a distance \(r \) (see Figure 9.20). Both the magnitude and direction of the Coulomb force field depend on \(Q \) and the test charge \(q \).

![Figure 9.20](image)

The Coulomb force field due to a positive charge \(Q \) is shown acting on two different charges. Both charges are the same distance from \(Q \). (a) Since \(q_1 \) is positive, the force \(F_1 \) acting on it is repulsive. (b) The charge \(q_2 \) is negative and greater in magnitude than \(q_1 \), and so the force \(F_2 \) acting on it is attractive and stronger than \(F_1 \). The Coulomb force field is thus not unique at any point in space, because it depends on the test charges \(q_1 \) and \(q_2 \) as well as the charge \(Q \).

To simplify things, we would prefer to have a field that depends only on \(Q \) and not on the test charge \(q \). The electrostatic field is defined in such a manner that it represents only the charge creating it and is unique at every point in space. Specifically, the electric field \(E \) is defined to be the ratio of the Coulomb force to the test charge:

\[
E = \frac{F}{q},
\]

(9.11)

where \(F \) is the electrostatic force (or Coulomb force) exerted on a positive test charge \(q \). It is understood that \(E \) is in the same direction as \(F \). It is also assumed that \(q \) is so small that it does not alter the charge distribution creating the electric field. The units of electric field are newtons per coulomb (N/C). If the electric field is known, then the electrostatic force on any charge \(q \) is simply obtained by multiplying charge times electric field, or \(F = qE \). Consider the electric field due to a point charge \(Q \). According to Coulomb’s law, the force it exerts on a test charge \(q \) is

\[
F = k|q_1 q_2| / r^2.
\]

Thus the magnitude of the electric field, \(E \), for a point charge is

\[
E = \frac{|F|}{q} = k \left(\frac{|qQ|}{qr^2} \right) = k \frac{|Q|}{r^2}.
\]

(9.12)

Since the test charge cancels, we see that

\[
E = k \frac{|Q|}{r^2}.
\]

(9.13)

The electric field is thus seen to depend only on the charge \(Q \) and the distance \(r \); it is completely independent of the test charge \(q \).

Example 9.2 Calculating the Electric Field of a Point Charge

Calculate the strength and direction of the electric field \(E \) due to a point charge of 2.00 nC (nano-Coulombs) at a distance of 5.00 mm from the charge.

Strategy

We can find the electric field created by a point charge by using the equation \(E = kQ / r^2 \).

Solution

Here \(Q = 2.00 \times 10^{-9} \) C and \(r = 5.00 \times 10^{-3} \) m. Entering those values into the above equation gives

\[
E = k \frac{Q}{r^2}
\]

(9.14)

\[
= \left(8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2 \right) \times \left(2.00 \times 10^{-9} \text{ C} \right) \times \frac{1}{(5.00 \times 10^{-3} \text{ m})^2}
\]

\[
= 7.19 \times 10^5 \text{ N/C}.
\]
Discussion
This electric field strength is the same at any point 5.00 mm away from the charge Q that creates the field. It is positive, meaning that it has a direction pointing away from the charge Q.

Example 9.3 Calculating the Force Exerted on a Point Charge by an Electric Field

What force does the electric field found in the previous example exert on a point charge of $-0.250 \, \mu\text{C}$?

Strategy
Since we know the electric field strength and the charge in the field, the force on that charge can be calculated using the definition of electric field $E = \frac{F}{q}$ rearranged to $F = qE$.

Solution
The magnitude of the force on a charge $q = -0.250 \, \mu\text{C}$ exerted by a field of strength $E = 7.20 \times 10^5 \, \text{N/C}$ is thus,

$$F = -qE \quad (9.15)$$

$$= (0.250 \times 10^{-6} \, \text{C})(7.20 \times 10^5 \, \text{N/C})$$

$$= 0.180 \, \text{N}.$$

Because q is negative, the force is directed opposite to the direction of the field.

Discussion
The force is attractive, as expected for unlike charges. (The field was created by a positive charge and here acts on a negative charge.) The charges in this example are typical of common static electricity, and the modest attractive force obtained is similar to forces experienced in static cling and similar situations.

PhET Explorations: Electric Field of Dreams
Play ball! Add charges to the Field of Dreams and see how they react to the electric field. Turn on a background electric field and adjust the direction and magnitude.

PhET Interactive Simulation

Figure 9.21 Electric Field of Dreams (http://legacy.cnx.org/content/m42310/1.6/efield_en.jar)

9.5 Electric Field Lines: Multiple Charges

Drawings using lines to represent electric fields around charged objects are very useful in visualizing field strength and direction. Since the electric field has both magnitude and direction, it is a vector. Like all vectors, the electric field can be represented by an arrow that has length proportional to its magnitude and that points in the correct direction. (We have used arrows extensively to represent force vectors, for example.)

Figure 9.22 shows two pictorial representations of the same electric field created by a positive point charge Q. Figure 9.22 (b) shows the standard representation using continuous lines. Figure 9.22 (b) shows numerous individual arrows with each arrow representing the force on a test charge q.

Field lines are essentially a map of infinitesimal force vectors.

Figure 9.22 Two equivalent representations of the electric field due to a positive charge Q. (a) Arrows representing the electric field's magnitude and direction. (b) In the standard representation, the arrows are replaced by continuous field lines having the same direction at any point as the electric field. The closeness of the lines is directly related to the strength of the electric field. A test charge placed anywhere will feel a force in the direction of the field line; this force will have a strength proportional to the density of the lines (being greater near the charge, for example).
Note that the electric field is defined for a positive test charge \(q \), so that the field lines point away from a positive charge and toward a negative charge. (See Figure 9.23.) The electric field strength is exactly proportional to the number of field lines per unit area, since the magnitude of the electric field for a point charge is \(E = kQ / r^2 \) and area is proportional to \(r^2 \). This pictorial representation, in which field lines represent the direction and their closeness (that is, their areal density or the number of lines crossing a unit area) represents strength, is used for all fields: electrostatic, gravitational, magnetic, and others.

![Figure 9.23](image)

Figure 9.23 The electric field surrounding three different point charges. (a) A positive charge. (b) A negative charge of equal magnitude. (c) A larger negative charge.

In many situations, there are multiple charges. The total electric field created by multiple charges is the vector sum of the individual fields created by each charge. The following example shows how to add electric field vectors.

Example 9.4 Adding Electric Fields

Find the magnitude and direction of the total electric field due to the two point charges, \(q_1 \) and \(q_2 \), at the origin of the coordinate system as shown in Figure 9.24.

![Figure 9.24](image)

Figure 9.24 The electric fields \(E_1 \) and \(E_2 \) at the origin O add to \(E_{\text{tot}} \).

Strategy

Since the electric field is a vector (having magnitude and direction), we add electric fields with the same vector techniques used for other types of vectors. We first must find the electric field due to each charge at the point of interest, which is the origin of the coordinate system (O) in this instance. We pretend that there is a positive test charge, \(q \), at point O, which allows us to determine the direction of the fields \(E_1 \) and \(E_2 \).

Once those fields are found, the total field can be determined using vector addition.

Solution

The electric field strength at the origin due to \(q_1 \) is labeled \(E_1 \) and is calculated:

\[
E_1 = k\frac{q_1}{r_1^2} = \left(8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2\right) \frac{\left(5.00 \times 10^{-9} \text{ C}\right)}{(2.00 \times 10^{-2} \text{ m})^2} = 1.124 \times 10^5 \text{ N/C}
\]

Similarly, \(E_2 \) is

\[
E_2 = k\frac{q_2}{r_2^2} = \left(8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2\right) \frac{\left(10.0 \times 10^{-9} \text{ C}\right)}{(4.00 \times 10^{-2} \text{ m})^2} = 0.5619 \times 10^5 \text{ N/C}
\]

Four digits have been retained in this solution to illustrate that \(E_1 \) is exactly twice the magnitude of \(E_2 \). Now arrows are drawn to represent the magnitudes and directions of \(E_1 \) and \(E_2 \). (See Figure 9.24.) The direction of the electric field is that of the force on a positive charge so both
arrows point directly away from the positive charges that create them. The arrow for \(\mathbf{E}_1 \) is exactly twice the length of that for \(\mathbf{E}_2 \). The arrows form a right triangle in this case and can be added using the Pythagorean theorem. The magnitude of the total field \(E_{\text{tot}} \) is

\[
E_{\text{tot}} = (E_1^2 + E_2^2)^{1/2} \\
= \sqrt{(1.124 \times 10^5 \text{ N/C})^2 + (0.5619 \times 10^5 \text{ N/C})^2} \\
= 1.26 \times 10^5 \text{ N/C}.
\]

The direction is

\[
\theta = \tan^{-1}\left(\frac{E_1}{E_2}\right) \\
= \tan^{-1}\left(\frac{1.124 \times 10^5 \text{ N/C}}{0.5619 \times 10^5 \text{ N/C}}\right) \\
= 63.4^\circ,
\]

or 63.4° above the x-axis.

Discussion

In cases where the electric field vectors to be added are not perpendicular, vector components or graphical techniques can be used. The total electric field found in this example is the total electric field at only one point in space. To find the total electric field due to these two charges over an entire region, the same technique must be repeated for each point in the region. This impossibly lengthy task (there are an infinite number of points in space) can be avoided by calculating the total field at representative points and using some of the unifying features noted next.

Figure 9.25 shows how the electric field from two point charges can be drawn by finding the total field at representative points and drawing electric field lines consistent with those points. While the electric fields from multiple charges are more complex than those of single charges, some simple features are easily noticed.

For example, the field is weaker between like charges, as shown by the lines being farther apart in that region. (This is because the fields from each charge exert opposing forces on any charge placed between them.) (See **Figure 9.25** and **Figure 9.26(a)**.) Furthermore, at a great distance from two like charges, the field becomes identical to the field from a single, larger charge.

Figure 9.26(b) shows the electric field of two unlike charges. The field is stronger between the charges. In that region, the fields from each charge are in the same direction, and so their strengths add. The field of two unlike charges is weak at large distances, because the fields of the individual charges are in opposite directions and so their strengths subtract. At very large distances, the field of two unlike charges looks like that of a smaller single charge.

![Figure 9.25](image-url) Two positive point charges \(q_1 \) and \(q_2 \) produce the resultant electric field shown. The field is calculated at representative points and then smooth field lines drawn following the rules outlined in the text.
Figure 9.26 (a) Two negative charges produce the fields shown. It is very similar to the field produced by two positive charges, except that the directions are reversed. The field is clearly weaker between the charges. The individual forces on a test charge in that region are in opposite directions. (b) Two opposite charges produce the field shown, which is stronger in the region between the charges.

We use electric field lines to visualize and analyze electric fields (the lines are a pictorial tool, not a physical entity in themselves). The properties of electric field lines for any charge distribution can be summarized as follows:

1. Field lines must begin on positive charges and terminate on negative charges, or at infinity in the hypothetical case of isolated charges.
2. The number of field lines leaving a positive charge or entering a negative charge is proportional to the magnitude of the charge.
3. The strength of the field is proportional to the closeness of the field lines—more precisely, it is proportional to the number of lines per unit area perpendicular to the lines.
4. The direction of the electric field is tangent to the field line at any point in space.
5. Field lines can never cross.

The last property means that the field is unique at any point. The field line represents the direction of the field; so if they crossed, the field would have two directions at that location (an impossibility if the field is unique).

PhET Explorations: Charges and Fields

Move point charges around on the playing field and then view the electric field, voltages, equipotential lines, and more. It's colorful, it's dynamic, it's free.

PhET Interactive Simulation

Figure 9.27 Charges and Fields (http://legacy.cnx.org/content/m42312/1.7/charges-and-fields_en.jar)

9.6 Applications of Electrostatics

The study of electrostatics has proven useful in many areas. This module covers just a few of the many applications of electrostatics.

The Van de Graaff Generator

Van de Graaff generators (or Van de Graaffs) are not only spectacular devices used to demonstrate high voltage due to static electricity—they are also used for serious research. The first was built by Robert Van de Graaff in 1931 (based on original suggestions by Lord Kelvin) for use in nuclear physics research. Figure 9.28 shows a schematic of a large research version. Van de Graaffs utilize both smooth and pointed surfaces, and conductors and insulators to generate large static charges and, hence, large voltages.

A very large excess charge can be deposited on the sphere, because it moves quickly to the outer surface. Practical limits arise because the large electric fields polarize and eventually ionize surrounding materials, creating free charges that neutralize excess charge or allow it to escape. Nevertheless, voltages of 15 million volts are well within practical limits.
Figure 9.28 Schematic of Van de Graaff generator. A battery (A) supplies excess positive charge to a pointed conductor, the points of which spray the charge onto a moving insulating belt near the bottom. The pointed conductor (B) on top in the large sphere picks up the charge. (The induced electric field at the points is so large that it removes the charge from the belt.) This can be done because the charge does not remain inside the conducting sphere but moves to its outside surface. An ion source inside the sphere produces positive ions, which are accelerated away from the positive sphere to high velocities.

Take-Home Experiment: Electrostatics and Humidity
Rub a comb through your hair and use it to lift pieces of paper. It may help to tear the pieces of paper rather than cut them neatly. Repeat the exercise in your bathroom after you have had a long shower and the air in the bathroom is moist. Is it easier to get electrostatic effects in dry or moist air? Why would torn paper be more attractive to the comb than cut paper? Explain your observations.

Xerography
Most copy machines use an electrostatic process called xerography—a word coined from the Greek words xeros for dry and graphos for writing. The heart of the process is shown in simplified form in Figure 9.29.

A selenium-coated aluminum drum is sprayed with positive charge from points on a device called a corotron. Selenium is a substance with an interesting property—it is a photoconductor. That is, selenium is an insulator when in the dark and a conductor when exposed to light.

In the first stage of the xerography process, the conducting aluminum drum is grounded so that a negative charge is induced under the thin layer of uniformly positively charged selenium. In the second stage, the surface of the drum is exposed to the image of whatever is to be copied. Where the image is light, the selenium becomes conducting, and the positive charge is neutralized. In dark areas, the positive charge remains, and so the image has been transferred to the drum.

The third stage takes a dry black powder, called toner, and sprays it with a negative charge so that it will be attracted to the positive regions of the drum. Next, a blank piece of paper is given a greater positive charge than on the drum so that it will pull the toner from the drum. Finally, the paper and electrostatically held toner are passed through heated pressure rollers, which melt and permanently adhere the toner within the fibers of the paper.
Figure 9.29 Xerography is a dry copying process based on electrostatics. The major steps in the process are the charging of the photoconducting drum, transfer of an image creating a positive charge duplicate, attraction of toner to the charged parts of the drum, and transfer of toner to the paper. Not shown are heat treatment of the paper and cleansing of the drum for the next copy.

Laser Printers

Laser printers use the xerographic process to make high-quality images on paper, employing a laser to produce an image on the photoconducting drum as shown in Figure 9.30. In its most common application, the laser printer receives output from a computer, and it can achieve high-quality output because of the precision with which laser light can be controlled. Many laser printers do significant information processing, such as making sophisticated letters or fonts, and may contain a computer more powerful than the one giving them the raw data to be printed.

Figure 9.30 In a laser printer, a laser beam is scanned across a photoconducting drum, leaving a positive charge image. The other steps for charging the drum and transferring the image to paper are the same as in xerography. Laser light can be very precisely controlled, enabling laser printers to produce high-quality images.

Ink Jet Printers and Electrostatic Painting

The ink jet printer, commonly used to print computer-generated text and graphics, also employs electrostatics. A nozzle makes a fine spray of tiny ink droplets, which are then given an electrostatic charge. (See Figure 9.31.)

Once charged, the droplets can be directed, using pairs of charged plates, with great precision to form letters and images on paper. Ink jet printers can produce color images by using a black jet and three other jets with primary colors, usually cyan, magenta, and yellow, much as a color television produces color. (This is more difficult with xerography, requiring multiple drums and toners.)
Electrostatic painting employs electrostatic charge to spray paint onto odd-shaped surfaces. Mutual repulsion of like charges causes the paint to fly away from its source. Surface tension forms drops, which are then attracted by unlike charges to the surface to be painted. Electrostatic painting can reach those hard-to-get at places, applying an even coat in a controlled manner. If the object is a conductor, the electric field is perpendicular to the surface, tending to bring the drops in perpendicularly. Corners and points on conductors will receive extra paint. Felt can similarly be applied.

Smoke Precipitators and Electrostatic Air Cleaning

Another important application of electrostatics is found in air cleaners, both large and small. The electrostatic part of the process places excess (usually positive) charge on smoke, dust, pollen, and other particles in the air and then passes the air through an oppositely charged grid that attracts and retains the charged particles. (See Figure 9.32.)

Large electrostatic precipitators are used industrially to remove over 99% of the particles from stack gas emissions associated with the burning of coal and oil. Home precipitators, often in conjunction with the home heating and air conditioning system, are very effective in removing polluting particles, irritants, and allergens.

Figure 9.31 The nozzle of an ink-jet printer produces small ink droplets, which are sprayed with electrostatic charge. Various computer-driven devices are then used to direct the droplets to the correct positions on a page.

Figure 9.32 (a) Schematic of an electrostatic precipitator. Air is passed through grids of opposite charge. The first grid charges airborne particles, while the second attracts and collects them. (b) The dramatic effect of electrostatic precipitators is seen by the absence of smoke from this power plant. (credit: Cmglee, Wikimedia Commons)

Problem-Solving Strategies for Electrostatics

1. Examine the situation to determine if static electricity is involved. This may concern separated stationary charges, the forces among them, and the electric fields they create.
2. Identify the system of interest. This includes noting the number, locations, and types of charges involved.
3. Identify exactly what needs to be determined in the problem (identify the unknowns). A written list is useful. Determine whether the Coulomb force is to be considered directly—if so, it may be useful to draw a free-body diagram, using electric field lines.
4. Make a list of what is given or can be inferred from the problem as stated (identify the knowns). It is important to distinguish the Coulomb force \(\vec{F} \) from the electric field \(\vec{E} \), for example.
5. Solve the appropriate equation for the quantity to be determined (the unknown) or draw the field lines as requested.
6. Examine the answer to see if it is reasonable: Does it make sense? Are units correct and the numbers involved reasonable?

Integrated Concepts

The Integrated Concepts exercises for this module involve concepts such as electric charges, electric fields, and several other topics. Physics is most interesting when applied to general situations involving more than a narrow set of physical principles. The electric field exerts force on charges, for example, and hence the relevance of *Dynamics: Force and Newton’s Laws of Motion*. The following topics are involved in some or all of the problems labeled “Integrated Concepts”:

- **Kinematics**
- **Two-Dimensional Kinematics**
- **Dynamics: Force and Newton’s Laws of Motion**
- **Uniform Circular Motion and Gravitation**
- **Statics and Torque**
- **Fluid Statics**

The following worked example illustrates how this strategy is applied to an Integrated Concept problem:

Example 9.5 Acceleration of a Charged Drop of Gasoline

If steps are not taken to ground a gasoline pump, static electricity can be placed on gasoline when filling your car’s tank. Suppose a tiny drop of gasoline has a mass of 4.00×10^{-15} \text{ kg} and is given a positive charge of 3.20×10^{-19} \text{ C}. (a) Find the weight of the drop. (b) Calculate the electric force on the drop if there is an upward electric field of strength 3.00×10^5 \text{ N/C} due to other static electricity in the vicinity. (c) Calculate the drop’s acceleration.

Strategy

To solve an integrated concept problem, we must first identify the physical principles involved and identify the chapters in which they are found. Part (a) of this example asks for weight. This is a topic of dynamics and is defined in *Dynamics: Force and Newton’s Laws of Motion*. Part (b) deals with electric force on a charge, a topic of *Electric Charge and Electric Field*. Part (c) asks for acceleration, knowing forces and mass. These are part of Newton’s laws, also found in *Dynamics: Force and Newton’s Laws of Motion*.

The following solutions to each part of the example illustrate how the specific problem-solving strategies are applied. These involve identifying knowns and unknowns, checking to see if the answer is reasonable, and so on.

Solution for (a)

Weight is mass times the acceleration due to gravity, as first expressed in

\[w = mg. \] \hspace{1cm} (9.20)

Entering the given mass and the average acceleration due to gravity yields

\[w = (4.00 \times 10^{-15} \text{ kg})(9.80 \text{ m/s}^2) = 3.92 \times 10^{-14} \text{ N}. \] \hspace{1cm} (9.21)

Discussion for (a)

This is a small weight, consistent with the small mass of the drop.

Solution for (b)

The force an electric field exerts on a charge is given by rearranging the following equation:

\[F = qE. \] \hspace{1cm} (9.22)

Here we are given the charge (3.20×10^{-19} \text{ C} is twice the fundamental unit of charge) and the electric field strength, and so the electric force is found to be

\[F = (3.20 \times 10^{-19} \text{ C})(3.00 \times 10^5 \text{ N/C}) = 9.60 \times 10^{-14} \text{ N}. \] \hspace{1cm} (9.23)

Discussion for (b)

While this is a small force, it is greater than the weight of the drop.

Solution for (c)

The acceleration can be found using Newton’s second law, provided we can identify all of the external forces acting on the drop. We assume only the drop’s weight and the electric force are significant. Since the drop has a positive charge and the electric field is given to be upward, the electric force is upward. We thus have a one-dimensional (vertical direction) problem, and we can state Newton’s second law as

\[a = \frac{F_{\text{net}}}{m}. \] \hspace{1cm} (9.24)

where \(F_{\text{net}} = F - w \). Entering this and the known values into the expression for Newton’s second law yields
\[
a = \frac{F - w}{m} \\
= \frac{9.60 \times 10^{-14} \text{ N} - 3.92 \times 10^{-14} \text{ N}}{4.00 \times 10^{-15} \text{ kg}} \\
= 14.2 \text{ m/s}^2.
\]

Discussion for (c)

This is an upward acceleration great enough to carry the drop to places where you might not wish to have gasoline.

This worked example illustrates how to apply problem-solving strategies to situations that include topics in different chapters. The first step is to identify the physical principles involved in the problem. The second step is to solve for the unknown using familiar problem-solving strategies. These are found throughout the text, and many worked examples show how to use them for single topics. In this integrated concepts example, you can see how to apply them across several topics. You will find these techniques useful in applications of physics outside a physics course, such as in your profession, in other science disciplines, and in everyday life. The following problems will build your skills in the broad application of physical principles.

Unreasonable Results

The Unreasonable Results exercises for this module have results that are unreasonable because some premise is unreasonable or because certain of the premises are inconsistent with one another. Physical principles applied correctly then produce unreasonable results. The purpose of these problems is to give practice in assessing whether nature is being accurately described, and if it is not to trace the source of difficulty.

Problem-Solving Strategy

To determine if an answer is reasonable, and to determine the cause if it is not, do the following.

1. Solve the problem using strategies as outlined above. Use the format followed in the worked examples in the text to solve the problem as usual.
2. Check to see if the answer is reasonable. Is it too large or too small, or does it have the wrong sign, improper units, and so on?
3. If the answer is unreasonable, look for what specifically could cause the identified difficulty. Usually, the manner in which the answer is unreasonable is an indication of the difficulty. For example, an extremely large Coulomb force could be due to the assumption of an excessively large separated charge.

Glossary

- **conductor**: a material that allows electrons to move separately from their atomic orbits
- **Coulomb force**: another term for the electrostatic force
- **Coulomb’s law**: the mathematical equation calculating the electrostatic force vector between two charged particles
- **electric charge**: a physical property of an object that causes it to be attracted toward or repelled from another charged object; each charged object generates and is influenced by a force called an electromagnetic force
- **electric field**: a three-dimensional map of the electric force extended out into space from a point charge
- **electric field lines**: a series of lines drawn from a point charge representing the magnitude and direction of force exerted by that charge
- **electromagnetic force**: one of the four fundamental forces of nature; the electromagnetic force consists of static electricity, moving electricity and magnetism
- **electron**: a particle orbiting the nucleus of an atom and carrying the smallest unit of negative charge
- **electrostatic force**: the amount and direction of attraction or repulsion between two charged bodies
- **electrostatic precipitators**: filters that apply charges to particles in the air, then attract those charges to a filter, removing them from the airstream
- **electrostatic repulsion**: the phenomenon of two objects with like charges repelling each other
- **electrostatics**: the study of electric forces that are static or slow-moving
- **field**: a map of the amount and direction of a force acting on other objects, extending out into space
- **free electron**: an electron that is free to move away from its atomic orbit
- **grounded**: when a conductor is connected to the Earth, allowing charge to freely flow to and from Earth’s unlimited reservoir
- **grounded**: connected to the ground with a conductor, so that charge flows freely to and from the Earth to the grounded object
- **induction**: the process by which an electrically charged object brought near a neutral object creates a charge in that object
- **ink-jet printer**: small ink droplets sprayed with an electric charge are controlled by electrostatic plates to create images on paper
insulator: a material that holds electrons securely within their atomic orbits

laser printer: uses a laser to create a photoconductive image on a drum, which attracts dry ink particles that are then rolled onto a sheet of paper to print a high-quality copy of the image

law of conservation of charge: states that whenever a charge is created, an equal amount of charge with the opposite sign is created simultaneously

photoconductor: a substance that is an insulator until it is exposed to light, when it becomes a conductor

point charge: A charged particle, designated \(Q \), generating an electric field

polarization: slight shifting of positive and negative charges to opposite sides of an atom or molecule

proton: a particle in the nucleus of an atom and carrying a positive charge equal in magnitude and opposite in sign to the amount of negative charge carried by an electron

static electricity: a buildup of electric charge on the surface of an object

test charge: A particle (designated \(q \)) with either a positive or negative charge set down within an electric field generated by a point charge

Van de Graaff generator: a machine that produces a large amount of excess charge, used for experiments with high voltage

vector: a quantity with both magnitude and direction

vector addition: mathematical combination of two or more vectors, including their magnitudes, directions, and positions

xerography: a dry copying process based on electrostatics

Section Summary

9.1 Static Electricity and Charge: Conservation of Charge
- There are only two types of charge, which we call positive and negative.
- Like charges repel, unlike charges attract, and the force between charges decreases with the square of the distance.
- The vast majority of positive charge in nature is carried by protons, while the vast majority of negative charge is carried by electrons.
- The electric charge of one electron is equal in magnitude and opposite in sign to the charge of one proton.
- An ion is an atom or molecule that has nonzero total charge due to having unequal numbers of electrons and protons.
- The SI unit for charge is the coulomb (C), with protons and electrons having charges of opposite sign but equal magnitude; the magnitude of this basic charge is

\[
| q_e | = 1.60 \times 10^{-19} \text{ C}.
\]
- Whenever charge is created or destroyed, equal amounts of positive and negative are involved.
- Most often, existing charges are separated from neutral objects to obtain some net charge.
- Both positive and negative charges exist in neutral objects and can be separated by rubbing one object with another. For macroscopic objects, negatively charged means an excess of electrons and positively charged means a depletion of electrons.
- The law of conservation of charge ensures that whenever a charge is created, an equal charge of the opposite sign is created at the same time.

9.2 Conductors and Insulators
- Polarization is the separation of positive and negative charges in a neutral object.
- A conductor is a substance that allows charge to flow freely through its atomic structure.
- An insulator holds charge within its atomic structure.
- Objects with like charges repel each other, while those with unlike charges attract each other.
- A conducting object is said to be grounded if it is connected to the Earth through a conductor. Grounding allows transfer of charge to and from the earth’s large reservoir.
- Objects can be charged by contact with another charged object and obtain the same sign charge.
- If an object is temporarily grounded, it can be charged by induction, and obtains the opposite sign charge.
- Polarized objects have their positive and negative charges concentrated in different areas, giving them a non-symmetrical charge.
- Polar molecules have an inherent separation of charge.

9.3 Coulomb’s Law
- Frenchman Charles Coulomb was the first to publish the mathematical equation that describes the electrostatic force between two objects.
- Coulomb’s law gives the magnitude of the force between point charges, it is

\[
F = k \frac{|q_1 q_2|}{r^2},
\]
where \(q_1 \) and \(q_2 \) are two point charges separated by a distance \(r \), and \(k \approx 8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2 \).
- This Coulomb force is extremely basic, since most charges are due to point-like particles. It is responsible for all electrostatic effects and underlies all macroscopic forces.
- The Coulomb force is extraordinarily strong compared with the gravitational force, another basic force—but unlike gravitational force it can cancel, since it can be either attractive or repulsive.
• The electrostatic force between two subatomic particles is far greater than the gravitational force between the same two particles.

9.4 Electric Field: Concept of a Field Revisited

• The electrostatic force field surrounding a charged object extends out into space in all directions.
• The electrostatic force exerted by a point charge on a test charge at a distance r depends on the charge of both charges, as well as the distance between the two.
• The electric field \mathbf{E} is defined to be

\[\mathbf{E} = \frac{\mathbf{F}}{q}, \]

where \mathbf{F} is the Coulomb or electrostatic force exerted on a small positive test charge q. \mathbf{E} has units of N/C.
• The magnitude of the electric field E created by a point charge Q is

\[E = \frac{k|Q|}{r^2}, \]

where r is the distance from Q. The electric field \mathbf{E} is a vector and fields due to multiple charges add like vectors.

9.5 Electric Field Lines: Multiple Charges

• Drawings of electric field lines are useful visual tools. The properties of electric field lines for any charge distribution are that:
• Field lines must begin on positive charges and terminate on negative charges, or at infinity in the hypothetical case of isolated charges.
• The number of field lines leaving a positive charge or entering a negative charge is proportional to the magnitude of the charge.
• The strength of the field is proportional to the closeness of the field lines—more precisely, it is proportional to the number of lines per unit area perpendicular to the lines.
• The direction of the electric field is tangent to the field line at any point in space.
• Field lines can never cross.

9.6 Applications of Electrostatics

• Electrostatics is the study of electric fields in static equilibrium.
• In addition to research using equipment such as a Van de Graaff generator, many practical applications of electrostatics exist, including photocopiers, laser printers, ink-jet printers and electrostatic air filters.

Conceptual Questions

9.1 Static Electricity and Charge: Conservation of Charge

1. There are very large numbers of charged particles in most objects. Why, then, don't most objects exhibit static electricity?
2. Why do most objects tend to contain nearly equal numbers of positive and negative charges?

9.2 Conductors and Insulators

3. An eccentric inventor attempts to levitate by first placing a large negative charge on himself and then putting a large positive charge on the ceiling of his workshop. Instead, while attempting to place a large negative charge on himself, his clothes fly off. Explain.
4. If you have charged an electroscope by contact with a positively charged object, describe how you could use it to determine the charge of other objects. Specifically, what would the leaves of the electroscope do if other charged objects were brought near its knob?
5. When a glass rod is rubbed with silk, it becomes positive and the silk becomes negative—yet both attract dust. Does the dust have a third type of charge that is attracted to both positive and negative? Explain.
6. Why does a car always attract dust right after it is polished? (Note that car wax and car tires are insulators.)
7. Describe how a positively charged object can be used to give another object a negative charge. What is the name of this process?
8. What is grounding? What effect does it have on a charged conductor? On a charged insulator?

9.3 Coulomb's Law

9. **Figure 9.33** shows the charge distribution in a water molecule, which is called a polar molecule because it has an inherent separation of charge. Given water's polar character, explain what effect humidity has on removing excess charge from objects.
9.4 Electric Field: Concept of a Field Revisited

10. Using Figure 9.33, explain, in terms of Coulomb’s law, why a polar molecule (such as in Figure 9.33) is attracted by both positive and negative charges.

11. Given the polar character of water molecules, explain how ions in the air form nucleation centers for rain droplets.

9.5 Electric Field Lines: Multiple Charges

12. Why must the test charge q in the definition of the electric field be vanishingly small?

13. Are the direction and magnitude of the Coulomb force unique at a given point in space? What about the electric field?

Problems & Exercises

9.1 Static Electricity and Charge: Conservation of Charge

1. Common static electricity involves charges ranging from nanocoulombs to microcoulombs. (a) How many electrons are needed to form a charge of −2.00 nC? (b) How many electrons must be removed from a neutral object to leave a net charge of 0.500 μC?

2. If 1.80 × 10^20 electrons move through a pocket calculator during a full day’s operation, how many coulombs of charge moved through it?

3. To start a car engine, the car battery moves 3.75 × 10^21 electrons through the starter motor. How many coulombs of charge were moved?

4. A certain lightning bolt moves 40.0 C of charge. How many fundamental units of charge |q_e| is this?

9.2 Conductors and Insulators

5. Suppose a speck of dust in an electrostatic precipitator has 1.0000 × 10^12 protons in it and has a net charge of −5.00 nC (a very large charge for a small speck). How many electrons does it have?

6. An amoeba has 1.00 × 10^16 protons and a net charge of 0.300 pC. (a) How many fewer electrons are there than protons? (b) If you paired them up, what fraction of the protons would have no electrons?

7. A 50.0 g ball of copper has a net charge of 2.00 μC. What fraction of the copper’s electrons has been removed? (Each copper atom has 29 protons, and copper has an atomic mass of 63.5.)

8. What net charge would you place on a 100 g piece of sulfur if you put an extra electron on 1 in 10^12 of its atoms? (Sulfur has an atomic mass of 32.1.)

9. How many coulombs of positive charge are there in 4.00 kg of plutonium, given its atomic mass is 244 and that each plutonium atom has 94 protons?

9.3 Coulomb’s Law

10. What is the repulsive force between two pith balls that are 8.00 cm apart and have equal charges of −30.0 nC?

11. (a) How strong is the attractive force between a glass rod with a 0.700 μC charge and a silk cloth with a −0.600 μC charge, which are 12.0 cm apart, using the approximation that they act like point charges? (b) Discuss how the answer to this problem might be affected if the charges are distributed over some area and do not act like point charges.

12. Two point charges exert a 5.00 N force on each other. What will the force become if the distance between them is increased by a factor of three?

13. Two point charges are brought closer together, increasing the force between them by a factor of 25. By what factor was their separation decreased?

14. How far apart must two point charges of 75.0 nC (typical of static electricity) be to have a force of 1.00 N between them?

15. If two equal charges each of 1 C each are separated in air by a distance of 1 km, what is the magnitude of the force acting between them? You will see that even at a distance as large as 1 km, the repulsive force is substantial because 1 C is a very significant amount of charge.

16. A test charge of +2 μC is placed halfway between a charge of +6 μC and another of +4 μC separated by 10 cm. (a) What is the magnitude of the force on the test charge? (b) What is the direction of this force (away from or toward the +6 μC charge)?

17. Bare free charges do not remain stationary when close together. To illustrate this, calculate the acceleration of two isolated protons separated by 2.00 nm (a typical distance between gas atoms). Explicitly show how you follow the steps in the Problem-Solving Strategy for electrostatics.

18. (a) By what factor must you change the distance between two point charges to change the force between them by a factor of 10? (b) Explain how the distance can either increase or decrease by this factor and still cause a factor of 10 change in the force.

19. Suppose you have a total charge q_{tot} that you can split in any manner. Once split, the separation distance is fixed. How do you split the charge to achieve the greatest force?

20. (a) Common transparent tape becomes charged when pulled from a dispenser. If one piece is placed above another, the repulsive force can be great enough to support the top piece’s weight. Assuming equal point charges (only an approximation), calculate the magnitude of the charge if electrostatic force is great enough to support the weight of a 10.0 mg piece of tape held 1.00 cm above another. (b) Discuss whether the magnitude of this charge is consistent with what is typical of static electricity.

21. (a) Find the ratio of the electrostatic to gravitational force between two electrons. (b) What is this ratio for two protons? (c) Why is the ratio different for electrons and protons?

22. At what distance is the electrostatic force between two protons equal to the weight of one proton?

23. A certain five cent coin contains 5.00 g of nickel. What fraction of the nickel atoms’ electrons, removed and placed 1.00 m above it, would support the weight of this coin? The atomic mass of nickel is 58.7, and each nickel atom contains 28 electrons and 28 protons.

24. (a) Two point charges totaling 8.00 μC exert a repulsive force of 0.150 N on one another when separated by 0.500 m. What is the charge on each? (b) What is the charge on each if the force is attractive?

25. Point charges of 5.00 μC and −3.00 μC are placed 0.250 m apart. (a) Where can a third charge be placed so that the net force on it is zero? (b) What if both charges are positive?

26. Two point charges q_1 and q_2 are 3.00 m apart, and their total charge is 20 μC. (a) If the force of repulsion between them is 0.075N, what are magnitudes of the two charges? (b) If one charge attracts the other with a force of 0.525N, what are the magnitudes of the two charges? Note that you may need to solve a quadratic equation to reach your answer.

9.4 Electric Field: Concept of a Field Revisited

27. What is the magnitude and direction of an electric field that exerts a 2.00×10^{-5} N upward force on a −1.75 μC charge?

28. What is the magnitude and direction of the force exerted on a 3.50 μC charge by a 250 N/C electric field that points due east?

29. Calculate the magnitude of the electric field 2.00 m from a point charge of 5.00 mC (such as found on the terminal of a Van de Graaff). (a) What magnitude point charge creates a 10,000 N/C electric field at a distance of 0.250 m? (b) How large is the field at 10.0 m?

30. Calculate the initial (from rest) acceleration of a proton in a 5.00×10^6 N/C electric field (such as created by a research Van de Graaff). Explicitly show how you follow the steps in the Problem-Solving Strategy for electrostatics.

31. (a) Find the direction and magnitude of an electric field that exerts a 4.80×10^{-17} N westward force on an electron. (b) What magnitude and direction force does this field exert on a proton?

9.5 Electric Field Lines: Multiple Charges
33. (a) Sketch the electric field lines near a point charge \(+q \). (b) Do the same for a point charge \(-3.00q \).

34. Sketch the electric field lines a long distance from the charge distributions shown in Figure 9.26 (a) and (b)

35. Figure 9.35 shows the electric field lines near two charges \(q_1 \) and \(q_2 \). What is the ratio of their magnitudes? (b) Sketch the electric field lines a long distance from the charges shown in the figure.

Figure 9.35 The electric field near two charges.

36. Sketch the electric field lines in the vicinity of two opposite charges, where the negative charge is three times greater in magnitude than the positive. (See Figure 9.35 for a similar situation).

9.6 Applications of Electrostatics

37. (a) What is the electric field 5.00 m from the center of the terminal of a Van de Graaff with a 3.00 mC charge, noting that the field is equivalent to that of a point charge at the center of the terminal? (b) At this distance, what force does the field exert on a 2.00 \(\mu \)C charge on the Van de Graaff's belt?

38. (a) What is the direction and magnitude of an electric field that supports the weight of a free electron near the surface of Earth? (b) Discuss what the small value for this field implies regarding the relative strength of the gravitational and electrostatic forces.

39. A simple and common technique for accelerating electrons is shown in Figure 9.36, where there is a uniform electric field between two plates. Electrons are released, usually from a hot filament, near the negative plate, and there is a small hole in the positive plate that allows the electrons to continue moving. (a) Calculate the acceleration of the electron if the field strength is \(2.50 \times 10^4 \) N/C. (b) Explain why the electron will not be pulled back to the positive plate once it moves through the hole.

Figure 9.36 Parallel conducting plates with opposite charges on them create a relatively uniform electric field used to accelerate electrons to the right. Those that go through the hole can be used to make a TV or computer screen glow or to produce X-rays.

40. Earth has a net charge that produces an electric field of approximately 150 N/C downward at its surface. (a) What is the magnitude and sign of the excess charge, noting the electric field of a conducting sphere is equivalent to a point charge at its center? (b) What acceleration will the field produce on a free electron near Earth’s surface? (c) What mass object with a single extra electron will have its weight supported by this field?

41. Point charges of 25.0 \(\mu \)C and 45.0 \(\mu \)C are placed 0.500 m apart. (a) At what point along the line between them is the electric field zero? (b) What is the electric field halfway between them?

42. What can you say about two charges \(q_1 \) and \(q_2 \), if the electric field one-fourth of the way from \(q_1 \) to \(q_2 \) is zero?

43. Integrated Concepts

Calculate the angular velocity \(\omega \) of an electron orbiting a proton in the hydrogen atom, given the radius of the orbit is \(0.530 \times 10^{-10} \) m. You may assume that the proton is stationary and the centripetal force is supplied by Coulomb attraction.

44. Integrated Concepts

An electron has an initial velocity of \(5.00 \times 10^6 \) m/s in a uniform 2.00 \(\times 10^5 \) N/C strength electric field. The field accelerates the electron in the direction opposite to its initial velocity. (a) What is the direction of the electric field? (b) How far does the electron travel before coming to rest? (c) How long does it take the electron to come to rest? (d) What is the electron’s velocity when it returns to its starting point?

45. Integrated Concepts

The practical limit to an electric field in air is about \(3.00 \times 10^6 \) N/C. Above this strength, sparking takes place because air begins to ionize and charges flow, reducing the field. (a) Calculate the distance a free proton must travel in this field to reach \(3.00\% \) of the speed of light, starting from rest. (b) Is this practical in air, or must it occur in a vacuum?

46. Integrated Concepts
A 5.00 g charged insulating ball hangs on a 30.0 cm long string in a uniform horizontal electric field as shown in Figure 9.37. Given the charge on the ball is 1.00 μC, find the strength of the field.

Figure 9.37 A horizontal electric field causes the charged ball to hang at an angle of 8.00°.

47. Integrated Concepts

Figure 9.38 shows an electron passing between two charged metal plates that create an 100 N/C vertical electric field perpendicular to the electron’s original horizontal velocity. (These can be used to change the electron’s direction, such as in an oscilloscope.) The initial speed of the electron is 3.00x10^6 m/s, and the horizontal distance it travels in the uniform field is 4.00 cm. (a) What is its vertical deflection? (b) What is the vertical component of its final velocity? (c) At what angle does it exit? Neglect any edge effects.

Figure 9.38

48. Integrated Concepts

The classic Millikan oil drop experiment was the first to obtain an accurate measurement of the charge on an electron. In it, oil drops were suspended against the gravitational force by a vertical electric field. (See Figure 9.39.) Given the oil drop to be 1.00 μm in radius and have a density of 920 kg/m^3: (a) Find the weight of the drop. (b) If the drop has a single excess electron, find the electric field strength needed to balance its weight.

Figure 9.39

In the Millikan oil drop experiment, small drops can be suspended in an electric field by the force exerted on a single excess electron. Classically, this experiment was used to determine the electron charge \(q_e \) by measuring the electric field and mass of the drop.

49. Integrated Concepts

(a) In Figure 9.40, four equal charges \(q \) lie on the corners of a square. A fifth charge \(Q \) is on a mass \(m \) directly above the center of the square, at a height equal to the length \(d \) of one side of the square. Determine the magnitude of \(q \) in terms of \(Q \), \(m \), and \(d \), if the Coulomb force is to equal the weight of \(m \). (b) Is this equilibrium stable or unstable? Discuss.

Figure 9.40

50. Unreasonable Results

(a) Calculate the electric field strength near a 10.0 cm diameter conducting sphere that has 1.00 C of excess charge on it. (b) What is unreasonable about this result? (c) Which assumptions are responsible?

51. Unreasonable Results

(a) Two 0.500 g raindrops in a thunderhead are 1.00 cm apart when they each acquire 1.00 mC charges. Find their acceleration. (b) What is unreasonable about this result? (c) Which premise or assumption is responsible?

52. Unreasonable Results

A wrecking yard inventor wants to pick up cars by charging a 0.400 m diameter ball and inducing an equal and opposite charge on the car. If a car has a 1000 kg mass and the ball is to be able to lift it from a distance of 1.00 m: (a) What minimum charge must be used? (b) What is the electric field near the surface of the ball? (c) Why are these results unreasonable? (d) Which premise or assumption is responsible?

53. Construct Your Own Problem

Consider two insulating balls with evenly distributed equal and opposite charges on their surfaces, held with a certain distance between the centers of the balls. Construct a problem in which you calculate the electric field (magnitude and direction) due to the balls at various points along a line running through the centers of the balls and extending to infinity on either side. Choose interesting points and comment on the meaning of the field at those points. For example, at what points might the field be just that due to one ball and where does the field become negligibly small? Among the things to be considered are the magnitudes of the charges and the distance between the centers of the balls. Your instructor may wish for you to consider the electric field off axis or for a more complex array of charges, such as those in a water molecule.

54. Construct Your Own Problem

Consider identical spherical conducting space ships in deep space where gravitational fields from other bodies are negligible compared to the gravitational attraction between the ships. Construct a problem in which you place identical excess charges on the space ships to exactly counter their gravitational attraction. Calculate the amount of excess charge needed. Examine whether that charge depends on the distance
between the centers of the ships, the masses of the ships, or any other factors. Discuss whether this would be an easy, difficult, or even impossible thing to do in practice.
10 ELECTRIC POTENTIAL AND ELECTRIC FIELD

Figure 10.1 Automated external defibrillator unit (AED) (credit: U.S. Defense Department photo/Tech. Sgt. Suzanne M. Day)

Chapter Outline

- Define electric potential and electric potential energy.
- Describe the relationship between potential difference and electrical potential energy.
- Explain electron volt and its usage in submicroscopic process.
- Determine electric potential energy given potential difference and amount of charge.

10.2. Electric Potential in a Uniform Electric Field
- Describe the relationship between voltage and electric field.
- Derive an expression for the electric potential and electric field.
- Calculate electric field strength given distance and voltage.

10.3. Electrical Potential Due to a Point Charge
- Explain point charges and express the equation for electric potential of a point charge.
- Distinguish between electric potential and electric field.
- Determine the electric potential of a point charge given charge and distance.

Introduction to Electric Potential and Electric Energy

In Electric Charge and Electric Field, we just scratched the surface (or at least rubbed it) of electrical phenomena. Two of the most familiar aspects of electricity are its energy and voltage. We know, for example, that great amounts of electrical energy can be stored in batteries, are transmitted cross-country through power lines, and may jump from clouds to explode the sap of trees. In a similar manner, at molecular levels, ions cross cell membranes and transfer information. We also know about voltages associated with electricity. Batteries are typically a few volts, the outlets in your home produce 120 volts, and power lines can be as high as hundreds of thousands of volts. But energy and voltage are not the same thing. A motorcycle battery, for example, is small and would not be very successful in replacing the much larger car battery, yet each has the same voltage. In this chapter, we shall examine the relationship between voltage and electrical energy and begin to explore some of the many applications of electricity.

10.1 Electric Potential Energy: Potential Difference

When a free positive charge q is accelerated by an electric field, such as shown in Figure 10.2, it is given kinetic energy. The process is analogous to an object being accelerated by a gravitational field. It is as if the charge is going down an electrical hill where its electric potential energy is
converted to kinetic energy. Let us explore the work done on a charge \(q \) by the electric field in this process, so that we may develop a definition of electric potential energy.

![Diagram of electric potential energy](image)

Figure 10.2 A charge accelerated by an electric field is analogous to a mass going down a hill. In both cases potential energy is converted to another form. Work is done by a force, but since this force is conservative, we can write \(W = -\Delta PE \).

The electrostatic or Coulomb force is conservative, which means that the work done on \(q \) is independent of the path taken. This is exactly analogous to the gravitational force in the absence of dissipative forces such as friction. When a force is conservative, it is possible to define a potential energy associated with the force, and it is usually easier to deal with the potential energy (because it depends only on position) than to calculate the work directly.

We use the letters PE to denote electric potential energy, which has units of joules (J). The change in potential energy, \(\Delta PE \), is crucial, since the work done by a conservative force is the negative of the change in potential energy; that is, \(W = -\Delta PE \). For example, work \(W \) done to accelerate a positive charge from rest is positive and results from a loss in PE, or a negative \(\Delta PE \). There must be a minus sign in front of \(\Delta PE \) to make \(W \) positive. PE can be found at any point by taking one point as a reference and calculating the work needed to move a charge to the other point.

Potential Energy

\[
W = -\Delta PE. \quad \text{For example, work } W \text{ done to accelerate a positive charge from rest is positive and results from a loss in PE, or a negative } \Delta PE. \text{ There must be a minus sign in front of } \Delta PE \text{ to make } W \text{ positive. PE can be found at any point by taking one point as a reference and calculating the work needed to move a charge to the other point.}
\]

Gravitational potential energy and electric potential energy are quite analogous. Potential energy accounts for work done by a conservative force and gives added insight regarding energy and energy transformation without the necessity of dealing with the force directly. It is much more common, for example, to use the concept of voltage (related to electric potential energy) than to deal with the Coulomb force directly.

Calculating the work directly is generally difficult, since \(W = Fd \cos \theta \) and the direction and magnitude of \(F \) can be complex for multiple charges, for odd-shaped objects, and along arbitrary paths. But we do know that, since \(F = qE \), the work, and hence \(\Delta PE \), is proportional to the test charge \(q \). To have a physical quantity that is independent of test charge, we define **electric potential** \(V \) (or simply potential, since electric is understood) to be the potential energy per unit charge:

\[
V = \frac{PE}{q}. \quad (10.1)
\]

Electric Potential

This is the electric potential energy per unit charge.

\[
V = \frac{PE}{q} \quad (10.2)
\]

Since PE is proportional to \(q \), the dependence on \(q \) cancels. Thus \(V \) does not depend on \(q \). The change in potential energy \(\Delta PE \) is crucial, and so we are concerned with the difference in potential or potential difference \(\Delta V \) between two points, where

\[
\Delta V = V_B - V_A = \frac{\Delta PE}{q}. \quad (10.3)
\]

The **potential difference** between points A and B, \(V_B - V_A \), is thus defined to be the change in potential energy of a charge \(q \) moved from A to B, divided by the charge. Units of potential difference are joules per coulomb, given the name volt (V) after Alessandro Volta.

\[
1 \text{ V} = 1 \text{ J/C}. \quad (10.4)
\]
Potential Difference

The potential difference between points A and B, \(V_B - V_A \), is defined to be the change in potential energy of a charge \(q \) moved from A to B, divided by the charge. Units of potential difference are joules per coulomb, given the name volt (V) after Alessandro Volta.

\[
1 \text{ V} = 1 \frac{\text{J}}{\text{C}} \tag{10.5}
\]

The familiar term **voltage** is the common name for potential difference. Keep in mind that whenever a voltage is quoted, it is understood to be the potential difference between two points. For example, every battery has two terminals, and its voltage is the potential difference between them. More fundamentally, the point you choose to be zero volts is arbitrary. This is analogous to the fact that gravitational potential energy has an arbitrary zero, such as sea level or perhaps a lecture hall floor.

In summary, the relationship between potential difference (or voltage) and electrical potential energy is given by

\[
\Delta V = \frac{\Delta \text{PE}}{q} \quad \text{and} \quad \Delta \text{PE} = q \Delta V. \tag{10.6}
\]

Potential Difference and Electrical Potential Energy

The relationship between potential difference (or voltage) and electrical potential energy is given by

\[
\Delta V = \frac{\Delta \text{PE}}{q} \quad \text{and} \quad \Delta \text{PE} = q \Delta V. \tag{10.7}
\]

The second equation is equivalent to the first.

Voltage is not the same as energy. Voltage is the energy per unit charge. Thus a motorcycle battery and a car battery can both have the same voltage (more precisely, the same potential difference between battery terminals), yet one stores much more energy than the other since \(\Delta \text{PE} = q \Delta V \). The car battery can move more charge than the motorcycle battery, although both are 12 V batteries.

Example 10.1 Calculating Energy

Suppose you have a 12.0 V motorcycle battery that can move 5000 C of charge, and a 12.0 V car battery that can move 60,000 C of charge. How much energy does each deliver? (Assume that the numerical value of each charge is accurate to three significant figures.)

Strategy

To say we have a 12.0 V battery means that its terminals have a 12.0 V potential difference. When such a battery moves charge, it puts the charge through a potential difference of 12.0 V, and the charge is given a change in potential energy equal to \(\Delta \text{PE} = q \Delta V \).

So to find the energy output, we multiply the charge moved by the potential difference.

Solution

For the motorcycle battery, \(q = 5000 \text{ C} \) and \(\Delta V = 12.0 \text{ V} \). The total energy delivered by the motorcycle battery is

\[
\Delta \text{PE}_{\text{cycle}} = (5000 \text{ C})(12.0 \text{ V}) \tag{10.8}
\]

\[
= (5000 \text{ C})(12.0 \text{ J/C})
\]

\[
= 6.00 \times 10^4 \text{ J}.
\]

Similarly, for the car battery, \(q = 60,000 \text{ C} \) and

\[
\Delta \text{PE}_{\text{car}} = (60,000 \text{ C})(12.0 \text{ V}) \tag{10.9}
\]

\[
= 7.20 \times 10^5 \text{ J}.
\]

Discussion

While voltage and energy are related, they are not the same thing. The voltages of the batteries are identical, but the energy supplied by each is quite different. Note also that as a battery is discharged, some of its energy is used internally and its terminal voltage drops, such as when headlights dim because of a low car battery. The energy supplied by the battery is still calculated as in this example, but not all of the energy is available for external use.

Note that the energies calculated in the previous example are absolute values. The change in potential energy for the battery is negative, since it loses energy. These batteries, like many electrical systems, actually move negative charge—electrons in particular. The batteries repel electrons from their negative terminals (A) through whatever circuitry is involved and attract them to their positive terminals (B) as shown in Figure 10.3. The change in potential is \(\Delta V = V_B - V_A = +12 \text{ V} \) and the charge \(q \) is negative, so that \(\Delta \text{PE} = q \Delta V \) is negative, meaning the potential energy of the battery has decreased when \(q \) has moved from A to B.
Example 10.2 How Many Electrons Move through a Headlight Each Second?

When a 12.0 V car battery runs a single 30.0 W headlight, how many electrons pass through it each second?

Strategy
To find the number of electrons, we must first find the charge that moved in 1.00 s. The charge moved is related to voltage and energy through the equation $\Delta \text{PE} = q \Delta V$. A 30.0 W lamp uses 30.0 joules per second. Since the battery loses energy, we have $\Delta \text{PE} = -30.0 \text{ J}$ and, since the electrons are going from the negative terminal to the positive, we see that $\Delta V = +12.0 \text{ V}$.

Solution
To find the charge q moved, we solve the equation $\Delta \text{PE} = q \Delta V$:

$$q = \frac{\Delta \text{PE}}{\Delta V}.$$ \hspace{1cm} \text{(10.10)}

Entering the values for ΔPE and ΔV, we get

$$q = \frac{-30.0 \text{ J}}{+12.0 \text{ V}} = \frac{-30.0 \text{ J}}{+12.0 \text{ J/C}} = -2.50 \text{ C}.$$ \hspace{1cm} \text{(10.11)}

The number of electrons n_e is the total charge divided by the charge per electron. That is,

$$n_e = \frac{-2.50 \text{ C}}{-1.60 \times 10^{-19} \text{ C/e}^-} = 1.56 \times 10^{19} \text{ electrons.}.$$ \hspace{1cm} \text{(10.12)}

Discussion
This is a very large number. It is no wonder that we do not ordinarily observe individual electrons with so many being present in ordinary systems. In fact, electricity had been in use for many decades before it was determined that the moving charges in many circumstances were negative. Positive charge moving in the opposite direction of negative charge often produces identical effects; this makes it difficult to determine which is moving or whether both are moving.

The Electron Volt
The energy per electron is very small in macroscopic situations like that in the previous example—a tiny fraction of a joule. But on a submicroscopic scale, such energy per particle (electron, proton, or ion) can be of great importance. For example, even a tiny fraction of a joule can be great enough for these particles to destroy organic molecules and harm living tissue. The particle may do its damage by direct collision, or it may create harmful x-rays, which can also inflict damage. It is useful to have an energy unit related to submicroscopic effects. Figure 10.4 shows a situation related to the definition of such an energy unit. An electron is accelerated between two charged metal plates as it might be in an old-model television tube or oscilloscope. The electron is given kinetic energy that is later converted to another form—light in the television tube, for example. (Note that downhill for the electron is uphill for a positive charge.) Since energy is related to voltage by $\Delta \text{PE} = q \Delta V$, we can think of the joule as a coulomb-volt.
On the submicroscopic scale, it is more convenient to define an energy unit called the \textit{electron volt} (\textit{eV}), which is the energy given to a fundamental charge accelerated through a potential difference of 1 V. In equation form,

\[
1 \text{ eV} = \left(1.60 \times 10^{-19} \text{ C}\right)(1 \text{ V}) = \left(1.60 \times 10^{-19} \text{ C}\right)(1 \text{ J/C}) = 1.60 \times 10^{-19} \text{ J}. \tag{10.13}
\]

\textbf{Electron Volt}

On the submicroscopic scale, it is more convenient to define an energy unit called the electron volt (\textit{eV}), which is the energy given to a fundamental charge accelerated through a potential difference of 1 V. In equation form,

\[
1 \text{ eV} = \left(1.60 \times 10^{-19} \text{ C}\right)(1 \text{ V}) = \left(1.60 \times 10^{-19} \text{ C}\right)(1 \text{ J/C}) = 1.60 \times 10^{-19} \text{ J}. \tag{10.14}
\]

An electron accelerated through a potential difference of 1 V is given an energy of 1 eV. It follows that an electron accelerated through 50 V is given 50 eV. A potential difference of 100,000 V (100 kV) will give an electron an energy of 100,000 eV (100 keV), and so on. Similarly, an ion with a double positive charge accelerated through 100 V will be given 200 eV of energy. These simple relationships between accelerating voltage and particle charges make the electron volt a simple and convenient energy unit in such circumstances.

\textbf{Connections: Energy Units}

The electron volt (\textit{eV}) is the most common energy unit for submicroscopic processes. This will be particularly noticeable in the chapters on modern physics. Energy is so important to so many subjects that there is a tendency to define a special energy unit for each major topic. There are, for example, calories for food energy, kilowatt-hours for electrical energy, and therms for natural gas energy.

The electron volt is commonly employed in submicroscopic processes—chemical valence energies and molecular and nuclear binding energies are among the quantities often expressed in electron volts. For example, about 5 eV of energy is required to break up certain organic molecules. If a proton is accelerated from rest through a potential difference of 30 kV, it is given an energy of 30 keV (30,000 eV) and it can break up as many as 6000 of these molecules (30,000 eV ÷ 5 eV per molecule = 6000 molecules). Nuclear decay energies are on the order of 1 MeV (1,000,000 eV) per event and can, thus, produce significant biological damage.

\textbf{Conservation of Energy}

The total energy of a system is conserved if there is no net addition (or subtraction) of work or heat transfer. For conservative forces, such as the electrostatic force, conservation of energy states that mechanical energy is a constant.

\textbf{Mechanical energy} is the sum of the kinetic energy and potential energy of a system; that is,

\[KE + PE = \text{constant}. \]

A loss of \(PE \) of a charged particle becomes an increase in its \(KE \). Here \(PE \) is the electric potential energy. Conservation of energy is stated in equation form as

\[KE + PE = \text{constant} \tag{10.15} \]

or

\[KE_i + PE_i = KE_f + PE_f, \tag{10.16} \]
where i and f stand for initial and final conditions. As we have found many times before, considering energy can give us insights and facilitate problem solving.

Example 10.3 Electrical Potential Energy Converted to Kinetic Energy

Calculate the final speed of a free electron accelerated from rest through a potential difference of 100 V. (Assume that this numerical value is accurate to three significant figures.)

Strategy

We have a system with only conservative forces. Assuming the electron is accelerated in a vacuum, and neglecting the gravitational force (we will check on this assumption later), all of the electrical potential energy is converted into kinetic energy. We can identify the initial and final forms of energy to be $KE_i = 0$, $KE_f = \frac{1}{2}mv^2$, $PE_i = qV$, and $PE_f = 0$.

Solution

Conservation of energy states that

$$KE_i + PE_i = KE_f + PE_f. \quad (10.17)$$

Entering the forms identified above, we obtain

$$qV = \frac{mv^2}{2}. \quad (10.18)$$

We solve this for v:

$$v = \sqrt{\frac{2qV}{m}}. \quad (10.19)$$

Entering values for q, V, and m gives

$$v = \sqrt{\frac{2(-1.60 \times 10^{-19} \text{ C})(-100 \text{ J/C})}{9.11 \times 10^{-31} \text{ kg}}} = 5.93\times10^6 \text{ m/s}. \quad (10.20)$$

Discussion

Note that both the charge and the initial voltage are negative, as in Figure 10.4. From the discussions in Electric Charge and Electric Field, we know that electrostatic forces on small particles are generally very large compared with the gravitational force. The large final speed confirms that the gravitational force is indeed negligible here. The large speed also indicates how easy it is to accelerate electrons with small voltages because of their very small mass. Voltages much higher than the 100 V in this problem are typically used in electron guns. Those higher voltages produce electron speeds so great that relativistic effects must be taken into account. That is why a low voltage is considered (accurately) in this example.

10.2 Electric Potential in a Uniform Electric Field

In the previous section, we explored the relationship between voltage and energy. In this section, we will explore the relationship between voltage and electric field. For example, a uniform electric field \mathbf{E} is produced by placing a potential difference (or voltage) ΔV across two parallel metal plates, labeled A and B. (See Figure 10.5.) Examining this will tell us what voltage is needed to produce a certain electric field strength; it will also reveal a more fundamental relationship between electric potential and electric field. From a physicist’s point of view, either ΔV or \mathbf{E} can be used to describe any charge distribution. ΔV is most closely tied to energy, whereas \mathbf{E} is most closely related to force. ΔV is a scalar quantity and has no direction, while \mathbf{E} is a vector quantity, having both magnitude and direction. (Note that the magnitude of the electric field strength, a scalar quantity, is represented by E below.) The relationship between ΔV and \mathbf{E} is revealed by calculating the work done by the force in moving a charge from point A to point B. But, as noted in Electric Potential Energy: Potential Difference, this is complex for arbitrary charge distributions, requiring calculus. We therefore look at a uniform electric field as an interesting special case.
The work done by the electric field in Figure 10.5 to move a positive charge \(q \) from A, the positive plate, higher potential, to B, the negative plate, lower potential, is

\[
W = -\Delta PE = -q\Delta V. \tag{10.21}
\]

The potential difference between points A and B is

\[
-\Delta V = -(V_B - V_A) = V_A - V_B = V_{AB}. \tag{10.22}
\]

Entering this into the expression for work yields

\[
W = qV_{AB}. \tag{10.23}
\]

Work is \(W = Fd \cos \theta \); here \(\cos \theta = 1 \), since the path is parallel to the field, and so \(W = Fd \). Since \(F = qE \), we see that \(W = qEd \).

Substituting this expression for work into the previous equation gives

\[
qEd = qV_{AB}. \tag{10.24}
\]

The charge cancels, and so the voltage between points A and B is seen to be

\[
\begin{align*}
V_{AB} &= Ed, \\
E &= \frac{V_{AB}}{d} \quad \text{(uniform } E \text{- field only),}
\end{align*}
\tag{10.25}
\]

where \(d \) is the distance from A to B, or the distance between the plates in Figure 10.5. Note that the above equation implies the units for electric field are volts per meter. We already know the units for electric field are newtons per coulomb; thus the following relation among units is valid:

\[
1 \text{ N/C} = 1 \text{ V/m}. \tag{10.26}
\]

Voltage between Points A and B

\[
\begin{align*}
V_{AB} &= Ed, \\
E &= \frac{V_{AB}}{d} \quad \text{(uniform } E \text{- field only),}
\end{align*}
\tag{10.27}
\]

where \(d \) is the distance from A to B, or the distance between the plates.

Example 10.4 What Is the Highest Voltage Possible between Two Plates?

Dry air will support a maximum electric field strength of about \(3.0 \times 10^6 \text{ V/m} \). Above that value, the field creates enough ionization in the air to make the air a conductor. This allows a discharge or spark that reduces the field. What, then, is the maximum voltage between two parallel conducting plates separated by 2.5 cm of dry air?
Strategy
We are given the maximum electric field E between the plates and the distance d between them. The equation $V_{AB} = Ed$ can thus be used to calculate the maximum voltage.

Solution
The potential difference or voltage between the plates is

$$V_{AB} = Ed.$$ \hspace{1cm} (10.28)

Entering the given values for E and d gives

$$V_{AB} = (3.0 \times 10^6 \text{ V/m})(0.025 \text{ m}) = 7.5 \times 10^4 \text{ V}$$ \hspace{1cm} (10.29)

or

$$V_{AB} = 75 \text{ kV}.$$ \hspace{1cm} (10.30)

(The answer is quoted to only two digits, since the maximum field strength is approximate.)

Discussion
One of the implications of this result is that it takes about 75 kV to make a spark jump across a 2.5 cm (1 in.) gap, or 150 kV for a 5 cm spark. This limits the voltages that can exist between conductors, perhaps on a power transmission line. A smaller voltage will cause a spark if there are points on the surface, since points create greater fields than smooth surfaces. Humid air breaks down at a lower field strength, meaning that a smaller voltage will make a spark jump through humid air. The largest voltages can be built up, say with static electricity, on dry days.

Figure 10.6 A spark chamber is used to trace the paths of high-energy particles. Ionization created by the particles as they pass through the gas between the plates allows a spark to jump. The sparks are perpendicular to the plates, following electric field lines between them. The potential difference between adjacent plates is not high enough to cause sparks without the ionization produced by particles from accelerator experiments (or cosmic rays). (credit: Daderot, Wikimedia Commons)

Example 10.5 Field and Force inside an Electron Gun

(a) An electron gun has parallel plates separated by 4.00 cm and gives electrons 25.0 keV of energy. What is the electric field strength between the plates? (b) What force would this field exert on a piece of plastic with a 0.500μC charge that gets between the plates?

Strategy
Since the voltage and plate separation are given, the electric field strength can be calculated directly from the expression $E = \frac{V_{AB}}{d}$. Once the electric field strength is known, the force on a charge is found using $F = qE$. Since the electric field is in only one direction, we can write this equation in terms of the magnitudes, $F = qE$.

Solution for (a)
The expression for the magnitude of the electric field between two uniform metal plates is

$$E = \frac{V_{AB}}{d}.$$ \hspace{1cm} (10.31)

Since the electron is a single charge and is given 25.0 keV of energy, the potential difference must be 25.0 kV. Entering this value for V_{AB} and the plate separation of 0.0400 m, we obtain
\[E = \frac{25.0 \text{kV}}{0.0400 \text{ m}} = 6.25 \times 10^5 \text{ V/m}. \]

Solution for (b)

The magnitude of the force on a charge in an electric field is obtained from the equation

\[F = qE. \]

Substituting known values gives

\[F = (0.500 \times 10^{-6} \text{ C})(6.25 \times 10^5 \text{ V/m}) = 0.313 \text{ N}. \]

Discussion

Note that the units are newtons, since \(V \text{ m} = 1 \text{ N/C} \). The force on the charge is the same no matter where the charge is located between the plates. This is because the electric field is uniform between the plates.

In more general situations, regardless of whether the electric field is uniform, it points in the direction of decreasing potential, because the force on a positive charge is in the direction of \(\mathbf{E} \) and also in the direction of lower potential \(V \). Furthermore, the magnitude of \(\mathbf{E} \) equals the rate of decrease of \(V \) with distance. The faster \(V \) decreases over distance, the greater the electric field. In equation form, the general relationship between voltage and electric field is

\[E = -\frac{\Delta V}{\Delta s}, \]

where \(\Delta s \) is the distance over which the change in potential, \(\Delta V \), takes place. The minus sign tells us that \(\mathbf{E} \) points in the direction of decreasing potential. The electric field is said to be the **gradient** (as in grade or slope) of the electric potential.

Relationship between Voltage and Electric Field

In equation form, the general relationship between voltage and electric field is

\[E = -\frac{\Delta V}{\Delta s}, \]

where \(\Delta s \) is the distance over which the change in potential, \(\Delta V \), takes place. The minus sign tells us that \(\mathbf{E} \) points in the direction of decreasing potential. The electric field is said to be the **gradient** (as in grade or slope) of the electric potential.

For continually changing potentials, \(\Delta V \) and \(\Delta s \) become infinitesimals and differential calculus must be employed to determine the electric field.

10.3 Electrical Potential Due to a Point Charge

Point charges, such as electrons, are among the fundamental building blocks of matter. Furthermore, spherical charge distributions (like on a metal sphere) create external electric fields exactly like a point charge. The electric potential due to a point charge is, thus, a case we need to consider.

Using calculus to find the work needed to move a test charge \(q \) from a large distance away to a distance of \(r \) from a point charge \(Q \), and noting the connection between work and potential \((W = -q\Delta V) \), it can be shown that the **electric potential** \(V \) of a point charge is

\[V = \frac{kQ}{r} \text{ (Point Charge)}, \]

where \(k \) is a constant equal to \(9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2 \).

Electric Potential \(V \) of a Point Charge

The electric potential \(V \) of a point charge is given by

\[V = \frac{kQ}{r} \text{ (Point Charge)}. \]

The potential at infinity is chosen to be zero. Thus \(V \) for a point charge decreases with distance, whereas \(\mathbf{E} \) for a point charge decreases with distance squared:

\[E = \frac{F}{q} = \frac{kQ}{r^2}. \]

Recall that the electric potential \(V \) is a scalar and has no direction, whereas the electric field \(\mathbf{E} \) is a vector. To find the voltage due to a combination of point charges, you add the individual voltages as numbers. To find the total electric field, you must add the individual fields as vectors, taking magnitude and direction into account. This is consistent with the fact that \(V \) is closely associated with energy, a scalar, whereas \(\mathbf{E} \) is closely associated with force, a vector.
Example 10.6 What Voltage Is Produced by a Small Charge on a Metal Sphere?

Charges in static electricity are typically in the nanocoulomb (nC) to microcoulomb (μC) range. What is the voltage 5.00 cm away from the center of a 1-cm diameter metal sphere that has a \(-3.00\) nC static charge?

Strategy

As we have discussed in *Electric Charge and Electric Field*, charge on a metal sphere spreads out uniformly and produces a field like that of a point charge located at its center. Thus we can find the voltage using the equation \(V = \frac{kQ}{r}\).

Solution

Entering known values into the expression for the potential of a point charge, we obtain

\[
V = k \frac{Q}{r} = \left(8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2\right) \frac{\left(-3.00 \times 10^{-9}\right) \text{ C}}{5.00 \times 10^{-2} \text{ m}} = -539 \text{ V}.
\]

Discussion

The negative value for voltage means a positive charge would be attracted from a larger distance, since the potential is lower (more negative) than at larger distances. Conversely, a negative charge would be repelled, as expected.

Example 10.7 What Is the Excess Charge on a Van de Graaff Generator

A demonstration Van de Graaff generator has a 25.0 cm diameter metal sphere that produces a voltage of 100 kV near its surface. (See Figure 10.7.) What excess charge resides on the sphere? (Assume that each numerical value here is shown with three significant figures.)

![Image](image.png)

Figure 10.7 The voltage of this demonstration Van de Graaff generator is measured between the charged sphere and ground. Earth’s potential is taken to be zero as a reference. The potential of the charged conducting sphere is the same as that of an equal point charge at its center.

Strategy

The potential on the surface will be the same as that of a point charge at the center of the sphere, 12.5 cm away. (The radius of the sphere is 12.5 cm.) We can thus determine the excess charge using the equation

\[
V = \frac{kQ}{r}.
\]

Solution

Solving for \(Q\) and entering known values gives

\[
Q = \frac{rV}{k} = \frac{(0.125 \text{ m})(100 \times 10^3 \text{ V})}{8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2} = 1.39 \times 10^{-6} \text{ C} = 1.39 \mu\text{C}.
\]
This is a relatively small charge, but it produces a rather large voltage. We have another indication here that it is difficult to store isolated charges.

The voltages in both of these examples could be measured with a meter that compares the measured potential with ground potential. Ground potential is often taken to be zero (instead of taking the potential at infinity to be zero). It is the potential difference between two points that is of importance, and very often there is a tacit assumption that some reference point, such as Earth or a very distant point, is at zero potential. As noted in Electric Potential Energy: Potential Difference, this is analogous to taking sea level as \(h = 0 \) when considering gravitational potential energy, \(\text{PE}_g = mgh \).

Glossary

electric potential: potential energy per unit charge

electron volt: the energy given to a fundamental charge accelerated through a potential difference of one volt

mechanical energy: sum of the kinetic energy and potential energy of a system; this sum is a constant

potential difference (or voltage): change in potential energy of a charge moved from one point to another, divided by the charge; units of potential difference are joules per coulomb, known as volt

scalar: physical quantity with magnitude but no direction

vector: physical quantity with both magnitude and direction

Section Summary

10.1 Electric Potential Energy: Potential Difference

- Electric potential is potential energy per unit charge.
- The potential difference between points A and B, \(V_B - V_A \), defined to be the change in potential energy of a charge \(q \) moved from A to B, is equal to the change in potential energy divided by the charge, Potential difference is commonly called voltage, represented by the symbol \(\Delta V \).

\[
\Delta V = \frac{\Delta \text{PE}}{q} \quad \text{and} \quad \Delta \text{PE} = q \Delta V.
\]

- An electron volt is the energy given to a fundamental charge accelerated through a potential difference of 1 V. In equation form,

\[
1 \text{ eV} = \left(1.60 \times 10^{-19} \text{ C}\right) \left(1 \text{ V}\right) = \left(1.60 \times 10^{-19} \text{ C}\right) \left(1 \text{ J/C}\right) = 1.60 \times 10^{-19} \text{ J}.
\]

- Mechanical energy is the sum of the kinetic energy and potential energy of a system, that is, \(KE + PE \). This sum is a constant.

10.2 Electric Potential in a Uniform Electric Field

- The voltage between points A and B is

\[
V_{AB} = Ed,
\]

where \(d \) is the distance from A to B, or the distance between the plates.

- In equation form, the general relationship between voltage and electric field is

\[
E = \frac{V_{AB}}{d}
\]

(uniform \(E \) - field only),

where \(\Delta s \) is the distance over which the change in potential, \(\Delta V \), takes place. The minus sign tells us that \(E \) points in the direction of decreasing potential.) The electric field is said to be the gradient (as in grade or slope) of the electric potential.

10.3 Electrical Potential Due to a Point Charge

- Electric potential of a point charge is \(V = kQ/r \).

- Electric potential is a scalar, and electric field is a vector. Addition of voltages as numbers gives the voltage due to a combination of point charges, whereas addition of individual fields as vectors gives the total electric field.

Conceptual Questions

10.1 Electric Potential Energy: Potential Difference

1. Voltage is the common word for potential difference. Which term is more descriptive, voltage or potential difference?

2. If the voltage between two points is zero, can a test charge be moved between them with zero net work being done? Can this necessarily be done without exerting a force? Explain.

3. What is the relationship between voltage and energy? More precisely, what is the relationship between potential difference and electric potential energy?
4. Voltages are always measured between two points. Why?
5. How are units of volts and electron volts related? How do they differ?

10.2 Electric Potential in a Uniform Electric Field

6. Discuss how potential difference and electric field strength are related. Give an example.
7. What is the strength of the electric field in a region where the electric potential is constant?
8. Will a negative charge, initially at rest, move toward higher or lower potential? Explain why.

10.3 Electrical Potential Due to a Point Charge

9. In what region of space is the potential due to a uniformly charged sphere the same as that of a point charge? In what region does it differ from that of a point charge?
10. Can the potential of a non-uniformly charged sphere be the same as that of a point charge? Explain.
Problems & Exercises

10.1 Electric Potential Energy: Potential Difference

1. Find the ratio of speeds of an electron and a negative hydrogen ion (one having an extra electron) accelerated through the same voltage, assuming non-relativistic final speeds. Take the mass of the hydrogen ion to be 1.67×10^{-27} kg.

2. An evacuated tube uses an accelerating voltage of 40 kV to accelerate electrons to hit a copper plate and produce x-rays. Non-relativistically, what would be the maximum speed of these electrons?

3. A bare helium nucleus has two positive charges and a mass of 6.64×10^{-27} kg. (a) Calculate its kinetic energy in joules at 2.00% of the speed of light. (b) What is this in electron volts? (c) What voltage would be needed to obtain this energy?

4. Integrated Concepts

 Singly charged gas ions are accelerated from rest through a voltage of 13.0 V. At what temperature will the average kinetic energy of gas molecules be the same as that given these ions?

5. Integrated Concepts

 The temperature near the center of the Sun is thought to be 15 million degrees Celsius (1.5×10^{7} °C). Through what voltage must a singly charged ion be accelerated to have the same energy as the average kinetic energy of ions at this temperature?

6. Integrated Concepts

 (a) What is the average power output of a heart defibrillator that dissipates 400 J of energy in 10.0 ms? (b) Considering the high-power output, why doesn’t the defibrillator produce serious burns?

7. Integrated Concepts

 A lightning bolt strikes a tree, moving 20.0 C of charge through a potential difference of 1.00×10^{2} MV. (a) What energy was dissipated? (b) What mass of water could be raised from 15°C to the boiling point and then boiled by this energy? (c) Discuss the damage that could be caused to the tree by the expansion of the boiling steam.

8. Integrated Concepts

 A 12.0 V battery-operated bottle warmer heats 50.0 g of glass, 2.50×10^{2} g of baby formula, and 2.00×10^{2} g of aluminum from 20.0°C to 90.0°C. (a) How much charge is moved by the battery? (b) How many electrons per second flow if it takes 5.00 min to warm the formula? (Hint: Assume that the specific heat of baby formula is about the same as the specific heat of water.)

9. Integrated Concepts

 A battery-operated car utilizes a 12.0 V system. Find the charge the batteries must be able to move in order to accelerate the 750 kg car from rest to 25.0 m/s, make it climb a 2.00×10^{2} m high hill, and then cause it to travel at a constant 25.0 m/s by exerting a 5.00×10^{2} N force for an hour.

10. Integrated Concepts

 Fusion probability is greatly enhanced when appropriate nuclei are brought close together, but mutual Coulomb repulsion must be overcome. This can be done using the kinetic energy of high-temperature gas ions or by accelerating the nuclei toward one another. (a) Calculate the potential energy of two singly charged nuclei separated by 1.00×10^{-12} m by finding the voltage of one at that distance and multiplying by the charge of the other. (b) At what temperature will atoms of a gas have an average kinetic energy equal to this needed electrical potential energy?

11. Unreasonable Results

 (a) Find the voltage near a 10.0 cm diameter metal sphere that has 8.00×10^{2} C of excess positive charge on it. (b) What is unreasonable about this result? (c) Which assumptions are responsible?

12. Construct Your Own Problem

Consider a battery used to supply energy to a cellular phone. Construct a problem in which you determine the energy that must be supplied by the battery, and then calculate the amount of charge it must be able to move in order to supply this energy. Among the things to be considered are the energy needs and battery voltage. You may need to look ahead to interpret manufacturer’s battery ratings in ampere-hours as energy in joules.

10.2 Electric Potential in a Uniform Electric Field

13. Show that units of V/m and N/C for electric field strength are indeed equivalent.

14. What is the strength of the electric field between two parallel conducting plates separated by 1.00 cm and having a potential difference (voltage) between them of 1.50×10^{4} V?

15. The electric field strength between two parallel conducting plates separated by 4.00 cm is 7.50×10^{4} V/m. (a) What is the potential difference between the plates? (b) The plate with the lowest potential is taken to be at zero volts. What is the potential 1.00 cm from that plate (and 3.00 cm from the other)?

16. How far apart are two conducting plates that have an electric field strength of 4.50×10^{3} V/m between them, if their potential difference is 15.0 kV?

17. (a) Will the electric field strength between two parallel conducting plates exceed the breakdown strength for air (3.0×10^{6} V/m) if the plates are separated by 2.00 mm and a potential difference of 5.0×10^{3} V is applied? (b) How close together can the plates be with this applied voltage?

18. The voltage across a membrane forming a cell wall is 80.0 mV and the membrane is 9.00 nm thick. What is the electric field strength? (The value is surprisingly large, but correct. Membranes are discussed in Capacitors and Dielectrics and Nerve Conduction—Electrocardiograms. You may assume a uniform electric field.

19. Membrane walls of living cells have surprisingly large electric fields across them due to separation of ions. (Membranes are discussed in some detail in Nerve Conduction—Electrocardiograms.) What is the voltage across an 8.00 nm—thick membrane if the electric field strength across it is 5.50 MV/m? You may assume a uniform electric field.

20. Two parallel conducting plates are separated by 10.0 cm, and one of them is taken to be at zero volts. (a) What is the electric field strength between them, if the potential 8.00 cm from the zero volt plate (and 2.00 cm from the other) is 450 V? (b) What is the voltage between the plates?

21. Find the maximum potential difference between two parallel conducting plates separated by 0.500 cm of air, given the maximum sustainable electric field strength in air to be 3.0×10^{6} V/m.

22. A doubly charged ion is accelerated to an energy of 32.0 keV by the electric field between two parallel conducting plates separated by 2.00 cm. What is the electric field strength between the plates?

23. An electron is to be accelerated in a uniform electric field having a strength of 2.00×10^{5} V/m. (a) What energy in keV is given to the electron if it is accelerated through 0.400 m? (b) Over what distance would it have to be accelerated to increase its energy by 50.0 GeV?

10.3 Electrical Potential Due to a Point Charge
24. A 0.500 cm diameter plastic sphere, used in a static electricity demonstration, has a uniformly distributed 40.0 pC charge on its surface. What is the potential near its surface?

25. What is the potential \(0.530 \times 10^{-10}\) m from a proton (the average distance between the proton and electron in a hydrogen atom)?

26. (a) A sphere has a surface uniformly charged with 1.00 C. At what distance from its center is the potential 5.00 MV? (b) What does your answer imply about the practical aspect of isolating such a large charge?

27. How far from a 1.00 \(\mu\)C point charge will the potential be 100 V?

At what distance will it be \(2.00 \times 10^2\) V?

28. What are the sign and magnitude of a point charge that produces a potential of \(-2.00\) V at a distance of 1.00 mm?

29. If the potential due to a point charge is \(5.00 \times 10^2\) V at a distance of 15.0 m, what are the sign and magnitude of the charge?

30. In nuclear fission, a nucleus splits roughly in half. (a) What is the potential \(2.00 \times 10^{-14}\) m from a fragment that has 46 protons in it? (b) What is the potential energy in MeV of a similarly charged fragment at this distance?

31. A research Van de Graaff generator has a 2.00-m-diameter metal sphere with a charge of 5.00 mC on it. (a) What is the potential near its surface? (b) At what distance from its center is the potential 1.00 MV? (c) An oxygen atom with three missing electrons is released near the Van de Graaff generator. What is its energy in MeV at this distance?

32. An electrostatic paint sprayer has a 0.200-m-diameter metal sphere at a potential of 25.0 kV that repels paint droplets onto a grounded object. (a) What charge is on the sphere? (b) What charge must a 0.100-mg drop of paint have to arrive at the object with a speed of 10.0 m/s?

33. In one of the classic nuclear physics experiments at the beginning of the 20th century, an alpha particle was accelerated toward a gold nucleus, and its path was substantially deflected by the Coulomb interaction. If the energy of the doubly charged alpha nucleus was 5.00 MeV, how close to the gold nucleus (79 protons) could it come before being deflected?

34. (a) What is the potential between two points situated 10 cm and 20 cm from a 3.0 \(\mu\)C point charge? (b) To what location should the point at 20 cm be moved to increase this potential difference by a factor of two?

35. Unreasonable Results

(a) What is the final speed of an electron accelerated from rest through a voltage of 25.0 MV by a negatively charged Van de Graaff terminal?

(b) What is unreasonable about this result?

(c) Which assumptions are responsible?
11 ELECTRIC CURRENT, RESISTANCE, AND OHM’S LAW

Chapter Outline

11.1. Current
- Define electric current, ampere, and drift velocity
- Describe the direction of charge flow in conventional current.
- Use drift velocity to calculate current and vice versa.

11.2. Ohm’s Law: Resistance and Simple Circuits
- Explain the origin of Ohm’s law.
- Calculate voltages, currents, or resistances with Ohm’s law.
- Explain what an ohmic material is.
- Describe a simple circuit.

11.3. Resistance and Resistivity
- Explain the concept of resistivity.
- Use resistivity to calculate the resistance of specified configurations of material.
- Use the thermal coefficient of resistivity to calculate the change of resistance with temperature.

11.4. Electric Power and Energy
- Calculate the power dissipated by a resistor and power supplied by a power supply.
- Calculate the cost of electricity under various circumstances.

Introduction to Electric Current, Resistance, and Ohm’s Law

The flicker of numbers on a handheld calculator, nerve impulses carrying signals of vision to the brain, an ultrasound device sending a signal to a computer screen, the brain sending a message for a baby to twitch its toes, an electric train pulling its load over a mountain pass, a hydroelectric plant sending energy to metropolitan and rural users—these and many other examples of electricity involve electric current, the movement of charge. Humankind has indeed harnessed electricity, the basis of technology, to improve our quality of life. Whereas the previous two chapters concentrated on static electricity and the fundamental force underlying its behavior, the next few chapters will be devoted to electric and magnetic phenomena involving current. In addition to exploring applications of electricity, we shall gain new insights into nature—in particular, the fact that all magnetism results from electric current.
11.1 Current

Electric Current

Electric current is defined to be the rate at which charge flows. A large current, such as that used to start a truck engine, moves a large amount of charge in a small time, whereas a small current, such as that used to operate a hand-held calculator, moves a small amount of charge over a long period of time. In equation form, electric current \(I \) is defined to be

\[
I = \frac{\Delta Q}{\Delta t},
\]

where \(\Delta Q \) is the amount of charge passing through a given area in time \(\Delta t \). (As in previous chapters, initial time is often taken to be zero, in which case \(\Delta t = t \).) (See Figure 11.2.) The SI unit for current is the ampere \((A) \), named for the French physicist André-Marie Ampère (1775–1836). Since \(I = \frac{\Delta Q}{\Delta t} \), we see that an ampere is one coulomb per second:

\[
1 \text{ A} = 1 \text{ C/s}
\]

Not only are fuses and circuit breakers rated in amperes (or amps), so are many electrical appliances.

![Figure 11.2](image)

Figure 11.2 The rate of flow of charge is current. An ampere is the flow of one coulomb through an area in one second.

Example 11.1 Calculating Currents: Current in a Truck Battery and a Handheld Calculator

(a) What is the current involved when a truck battery sets in motion 720 C of charge in 4.00 s while starting an engine? (b) How long does it take 1.00 C of charge to flow through a hand-held calculator if a 0.300-mA current is flowing?

Strategy

We can use the definition of current in the equation \(I = \frac{\Delta Q}{\Delta t} \) to find the current in part (a), since charge and time are given. In part (b), we rearrange the definition of current and use the given values of charge and current to find the time required.

Solution for (a)

Entering the given values for charge and time into the definition of current gives

\[
I = \frac{\Delta Q}{\Delta t} = \frac{720 \text{ C}}{4.00 \text{ s}} = 180 \text{ C/s}
\]

\[
= 180 \text{ A}
\]

Discussion for (a)

This large value for current illustrates the fact that a large charge is moved in a small amount of time. The currents in these “starter motors” are fairly large because large frictional forces need to be overcome when setting something in motion.

Solution for (b)

Solving the relationship \(I = \frac{\Delta Q}{\Delta t} \) for time \(\Delta t \), and entering the known values for charge and current gives

\[
\Delta t = \frac{\Delta Q}{I} = \frac{1.00 \text{ C}}{0.300\times10^{-3} \text{ C/s}}
\]

\[
= 3.33\times10^3 \text{ s}
\]

Discussion for (b)

This time is slightly less than an hour. The small current used by the hand-held calculator takes a much longer time to move a smaller charge than the large current of the truck starter. So why can we operate our calculators only seconds after turning them on? It’s because calculators require very little energy. Such small current and energy demands allow hand-held calculators to operate from solar cells or to get many hours of use out of small batteries. Remember, calculators do not have moving parts in the same way that a truck engine has with cylinders and pistons, so the technology requires smaller currents.

Figure 11.3 shows a simple circuit and the standard schematic representation of a battery, conducting path, and load (a resistor). Schematics are very useful in visualizing the main features of a circuit. A single schematic can represent a wide variety of situations. The schematic in Figure 11.3 (b), for example, can represent anything from a truck battery connected to a headlight lighting the street in front of the truck to a small battery...
connected to a penlight lighting a keyhole in a door. Such schematics are useful because the analysis is the same for a wide variety of situations. We need to understand a few schematics to apply the concepts and analysis to many more situations.

Figure 11.3 (a) A simple electric circuit. A closed path for current to flow through is supplied by conducting wires connecting a load to the terminals of a battery. (b) In this schematic, the battery is represented by the two parallel red lines, conducting wires are shown as straight lines, and the zigzag represents the load. The schematic represents a wide variety of similar circuits.

Note that the direction of current flow in Figure 11.3 is from positive to negative. The direction of conventional current is the direction that positive charge would flow. Depending on the situation, positive charges, negative charges, or both may move. In metal wires, for example, current is carried by electrons—that is, negative charges move. In ionic solutions, such as salt water, both positive and negative charges move. This is also true in nerve cells. A Van de Graaff generator used for nuclear research can produce a current of pure positive charges, such as protons. Figure 11.4 illustrates the movement of charged particles that compose a current. The fact that conventional current is taken to be in the direction that positive charge would flow can be traced back to American politician and scientist Benjamin Franklin in the 1700s. He named the type of charge associated with electrons negative, long before they were known to carry current in so many situations. Franklin, in fact, was totally unaware of the small-scale structure of electricity.

It is important to realize that there is an electric field in conductors responsible for producing the current, as illustrated in Figure 11.4. Unlike static electricity, where a conductor in equilibrium cannot have an electric field in it, conductors carrying a current have an electric field and are not in static equilibrium. An electric field is needed to supply energy to move the charges.

Making Connections: Take-Home Investigation—Electric Current Illustration

Find a straw and little peas that can move freely in the straw. Place the straw flat on a table and fill the straw with peas. When you pop one pea in at one end, a different pea should pop out the other end. This demonstration is an analogy for an electric current. Identify what compares to the electrons and what compares to the supply of energy. What other analogies can you find for an electric current?

Note that the flow of peas is based on the peas physically bumping into each other; electrons flow due to mutually repulsive electrostatic forces.
Figure 11.4 Current I is the rate at which charge moves through an area A, such as the cross-section of a wire. Conventional current is defined to move in the direction of the electric field. (a) Positive charges move in the direction of the electric field and the same direction as conventional current. (b) Negative charges move in the direction opposite to the electric field. Conventional current is in the direction opposite to the movement of negative charge. The flow of electrons is sometimes referred to as electronic flow.

Example 11.2 Calculating the Number of Electrons that Move through a Calculator

If the 0.300-mA current through the calculator mentioned in the Example 11.1 example is carried by electrons, how many electrons per second pass through it?

Strategy

The current calculated in the previous example was defined for the flow of positive charge. For electrons, the magnitude is the same, but the sign is opposite, $I_{\text{electrons}} = -0.300 \times 10^{-3}$ C/s. Since each electron (e^-) has a charge of -1.60×10^{-19} C, we can convert the current in coulombs per second to electrons per second.

Solution

Starting with the definition of current, we have

$$I_{\text{electrons}} = \frac{\Delta Q_{\text{electrons}}}{\Delta t} = \frac{-0.300 \times 10^{-3}}{s} \text{ C}.$$ \hspace{1cm} (11.5)

We divide this by the charge per electron, so that

$$\frac{e^-}{s} = \frac{-0.300 \times 10^{-3}}{s} \times \frac{1}{-1.60 \times 10^{-19}} \text{ C}.$$ \hspace{1cm} (11.6)

Discussion

There are so many charged particles moving, even in small currents, that individual charges are not noticed, just as individual water molecules are not noticed in water flow. Even more amazing is that they do not always keep moving forward like soldiers in a parade. Rather they are like a crowd of people with movement in different directions but a general trend to move forward. There are lots of collisions with atoms in the metal wire and, of course, with other electrons.

Drift Velocity

Electrical signals are known to move very rapidly. Telephone conversations carried by currents in wires cover large distances without noticeable delays. Lights come on as soon as a switch is flicked. Most electrical signals carried by currents travel at speeds on the order of 10^4 m/s, a significant fraction of the speed of light. Interestingly, the individual charges that make up the current move much more slowly on average, typically drifting at speeds on the order of 10^{-4} m/s. How do we reconcile these two speeds, and what does it tell us about standard conductors?

The high speed of electrical signals results from the fact that the force between charges acts rapidly at a distance. Thus, when a free charge is forced into a wire, as in Figure 11.5, the incoming charge pushes other charges ahead of it, which in turn push on charges farther down the line. The density of charge in a system cannot easily be increased, and so the signal is passed on rapidly. The resulting electrical shock wave moves through the system at nearly the speed of light. To be precise, this rapidly moving signal or shock wave is a rapidly propagating change in electric field.
Figure 11.5 When charged particles are forced into this volume of a conductor, an equal number are quickly forced to leave. The repulsion between like charges makes it difficult to increase the number of charges in a volume. Thus, as one charge enters, another leaves almost immediately, carrying the signal rapidly forward.

Good conductors have large numbers of free charges in them. In metals, the free charges are free electrons. Figure 11.6 shows how free electrons move through an ordinary conductor. The distance that an individual electron can move between collisions with atoms or other electrons is quite small. The electron paths thus appear nearly random, like the motion of atoms in the gas. But there is an electric field in the conductor that causes the electrons to drift in the direction shown (opposite to the field, since they are negative). The drift velocity v_d is the average velocity of the free charges. Drift velocity is quite small, since there are so many free charges. If we have an estimate of the density of free electrons in a conductor, we can calculate the drift velocity for a given current. The larger the density, the lower the velocity required for a given current.

![Drift Velocity Diagram](image)

Figure 11.6 Free electrons moving in a conductor make many collisions with other electrons and atoms. The path of one electron is shown. The average velocity of the free charges is called the drift velocity, v_d, and it is in the direction opposite to the electric field for electrons. The collisions normally transfer energy to the conductor, requiring a constant supply of energy to maintain a steady current.

Conduction of Electricity and Heat

Good electrical conductors are often good heat conductors, too. This is because large numbers of free electrons can carry electrical current and can transport thermal energy.

The free-electron collisions transfer energy to the atoms of the conductor. The electric field does work in moving the electrons through a distance, but that work does not increase the kinetic energy (nor speed, therefore) of the electrons. The work is transferred to the conductor’s atoms, possibly increasing temperature. Thus a continuous power input is required to keep a current flowing. An exception, of course, is found in superconductors, for reasons we shall explore in a later chapter. Superconductors can have a steady current without a continual supply of energy—a great energy savings. In contrast, the supply of energy can be useful, such as in a lightbulb filament. The supply of energy is necessary to increase the temperature of the tungsten filament, so that the filament glows.

Making Connections: Take-Home Investigation—Filament Observations

Find a light bulb with a filament. Look carefully at the filament and describe its structure. To what points is the filament connected?

We can obtain an expression for the relationship between current and drift velocity by considering the number of free charges in a segment of wire, as illustrated in Figure 11.7. The number of free charges per unit volume is given the symbol n and depends on the material. The shaded segment has a volume Ax, so that the number of free charges in it is nAx. The charge ΔQ in this segment is thus $qnAx$, where q is the amount of charge on each carrier. (Recall that for electrons, $q = -1.60\times 10^{-19}$ C.) Current is charge moved per unit time; thus, if all the original charges move out of this segment in time Δt, the current is

$$I = \frac{\Delta Q}{\Delta t} = \frac{qnAx}{\Delta t}.$$ \hfill (11.7)

Note that $x/\Delta t$ is the magnitude of the drift velocity, v_d, since the charges move an average distance x in a time Δt. Rearranging terms gives

$$I = nqAv_d,$$ \hfill (11.8)

where I is the current through a wire of cross-sectional area A made of a material with a free charge density n. The carriers of the current each have charge q and move with a drift velocity of magnitude v_d.

Note that simple drift velocity is not the entire story. The speed of an electron is much greater than its drift velocity. In addition, not all of the electrons in a conductor can move freely, and those that do might move somewhat faster or slower than the drift velocity. So what do we mean by free electrons? Atoms in a metallic conductor are packed in the form of a lattice structure. Some electrons are far enough away from the atomic nuclei that they do not experience the attraction of the nuclei as much as the inner electrons do. These are the free electrons. They are not bound to a single atom but can instead move freely among the atoms in a “sea” of electrons. These free electrons respond by accelerating when an electric field is applied. Of course as they move they collide with the atoms in the lattice and other electrons, generating thermal energy, and the conductor gets warmer. In an insulator, the organization of the atoms and the structure do not allow for such free electrons.

Example 11.3 Calculating Drift Velocity in a Common Wire

Calculate the drift velocity of electrons in a 12-gauge copper wire (which has a diameter of 2.053 mm) carrying a 20.0-A current, given that there is one free electron per copper atom. (Household wiring often contains 12-gauge copper wire, and the maximum current allowed in such wire is usually 20 A.) The density of copper is 8.80×10^3 kg/m3.

Strategy

We can calculate the drift velocity using the equation $I = nqA\nu_d$. The current $I = 20.0$ A is given, and $q = -1.60 \times 10^{-19}$ C is the charge of an electron. We can calculate the area of a cross-section of the wire using the formula $A = \pi r^2$, where r is one-half the given diameter, 2.053 mm. We are given the density of copper, 8.80×10^3 kg/m3, and the periodic table shows that the atomic mass of copper is 63.54 g/mol. We can use these two quantities along with Avogadro’s number, 6.02×10^{23} atoms/mol, to determine n, the number of free electrons per cubic meter.

Solution

First, calculate the density of free electrons in copper. There is one free electron per copper atom. Therefore, is the same as the number of copper atoms per m3. We can now find n as follows:

$$n = \frac{1 \text{ e}^- \cdot 6.02 \times 10^{23} \text{ atoms/mol} \cdot \frac{1 \text{ mol}}{63.54 \text{ g}} \cdot \frac{1000 \text{ g}}{1 \text{ kg}} \cdot \frac{8.80 \times 10^3 \text{ kg}}{1 \text{ m}^3}}$$

$$= 8.342 \times 10^{28} \text{ e}^-/\text{m}^3.$$

The cross-sectional area of the wire is

$$A = \pi r^2$$

$$= \pi \left(\frac{2.053 \times 10^{-3} \text{ m}}{2}\right)^2$$

$$= 3.310 \times 10^{-6} \text{ m}^2.$$

Rearranging $I = nqA\nu_d$ to isolate drift velocity gives

$$\nu_d = \frac{I}{nqA}$$

$$= \frac{20.0 \text{ A}}{(8.342 \times 10^{28}/\text{m}^3)(-1.60 \times 10^{-19} \text{ C})(3.310 \times 10^{-6} \text{ m}^2)}$$

$$= -4.53 \times 10^{-4} \text{ m/s}.$$

Discussion

The minus sign indicates that the negative charges are moving in the direction opposite to conventional current. The small value for drift velocity (on the order of 10^{-4} m/s) confirms that the signal moves on the order of 10^{12} times faster (about 10^8 m/s) than the charges that carry it.
11.2 Ohm’s Law: Resistance and Simple Circuits

What drives current? We can think of various devices—such as batteries, generators, wall outlets, and so on—which are necessary to maintain a current. All such devices create a potential difference and are loosely referred to as voltage sources. When a voltage source is connected to a conductor, it applies a potential difference V that creates an electric field. The electric field in turn exerts force on charges, causing current.

Ohm’s Law

The current that flows through most substances is directly proportional to the voltage V applied to it. The German physicist Georg Simon Ohm (1787–1854) was the first to demonstrate experimentally that the current in a metal wire is directly proportional to the voltage applied:

$$I \propto V.$$ \hfill (11.12)

This important relationship is known as Ohm’s law. It can be viewed as a cause-and-effect relationship, with voltage the cause and current the effect. This is an empirical law like that for friction—an experimentally observed phenomenon. Such a linear relationship doesn’t always occur.

Resistance and Simple Circuits

If voltage drives current, what impedes it? The electric property that impedes current (crudely similar to friction and air resistance) is called resistance R. Collisions of moving charges with atoms and molecules in a substance transfer energy to the substance and limit current. Resistance is defined as inversely proportional to current, or

$$I \propto \frac{1}{R}.$$ \hfill (11.13)

Thus, for example, current is cut in half if resistance doubles. Combining the relationships of current to voltage and current to resistance gives

$$I = \frac{V}{R}.$$ \hfill (11.14)

This relationship is also called Ohm’s law. Ohm’s law in this form really defines resistance for certain materials. Ohm’s law (like Hooke’s law) is not universally valid. The many substances for which Ohm’s law holds are called ohmic. These include good conductors like copper and aluminum, and some poor conductors under certain circumstances. Ohmic materials have a resistance R that is independent of voltage V and current I. An object that has simple resistance is called a resistor, even if its resistance is small. The unit for resistance is an ohm and is given the symbol Ω (upper case Greek omega). Rearranging $I = \frac{V}{R}$ gives $R = \frac{V}{I}$, and so the units of resistance are 1 ohm = 1 volt per amperes:

$$1 \Omega = \frac{1}{A}.$$ \hfill (11.15)

Figure 11.8 shows the schematic for a simple circuit. A simple circuit has a single voltage source and a single resistor. The wires connecting the voltage source to the resistor can be assumed to have negligible resistance, or their resistance can be included in R.

![Simple Circuit Schematic](image)

Figure 11.8 A simple electric circuit in which a closed path for current to flow is supplied by conductors (usually metal wires) connecting a load to the terminals of a battery, represented by the red parallel lines. The zigzag symbol represents the single resistor and includes any resistance in the connections to the voltage source.

Example 11.4 Calculating Resistance: An Automobile Headlight

What is the resistance of an automobile headlight through which 2.50 A flows when 12.0 V is applied to it?

Strategy

We can rearrange Ohm’s law as stated by $I = \frac{V}{R}$ and use it to find the resistance.

Solution

Rearranging $I = \frac{V}{R}$ and substituting known values gives

$$R = \frac{V}{I} = \frac{12.0 \text{ V}}{2.50 \text{ A}} = 4.80 \Omega.$$ \hfill (11.16)

Discussion

This is a relatively small resistance, but it is larger than the cold resistance of the headlight. As we shall see in Resistance and Resistivity, resistance usually increases with temperature, and so the bulb has a lower resistance when it is first switched on and will draw considerably more current during its brief warm-up period.
Resistances range over many orders of magnitude. Some ceramic insulators, such as those used to support power lines, have resistances of $10^{12} \ \Omega$ or more. A dry person may have a hand-to-foot resistance of $10^5 \ \Omega$, whereas the resistance of the human heart is about $10^3 \ \Omega$. A meter-long piece of large-diameter copper wire may have a resistance of $10^{-5} \ \Omega$, and superconductors have no resistance at all (they are non-ohmic). Resistance is related to the shape of an object and the material of which it is composed, as will be seen in Resistance and Resistivity.

Additional insight is gained by solving $I = V/R$ for V, yielding

$$V = IR. \tag{11.17}$$

This expression for V can be interpreted as the voltage drop across a resistor produced by the flow of current I. The phrase IR drop is often used for this voltage. For instance, the headlight in Example 11.4 has an IR drop of 12.0 V. If voltage is measured at various points in a circuit, it will be seen to increase at the voltage source and decrease at the resistor. Voltage is similar to fluid pressure. The voltage source is like a pump, creating a pressure difference, causing current—the flow of charge. The resistor is like a pipe that reduces pressure and limits flow because of its resistance. Conservation of energy has important consequences here. The voltage source supplies energy (causing an electric field and a current), and the resistor converts it to another form (such as thermal energy). In a simple circuit (one with a single simple resistor), the voltage supplied by the source equals the voltage drop across the resistor, since $\text{PE} = q\Delta V$, and the same q flows through each. Thus the energy supplied by the voltage source and the energy converted by the resistor are equal. (See Figure 11.9.)

![Figure 11.9](image_url)

Figure 11.9 The voltage drop across a resistor in a simple circuit equals the voltage output of the battery.

Making Connections: Conservation of Energy

In a simple electrical circuit, the sole resistor converts energy supplied by the source into another form. Conservation of energy is evidenced here by the fact that all of the energy supplied by the source is converted to another form by the resistor alone. We will find that conservation of energy has other important applications in circuits and is a powerful tool in circuit analysis.

PhET Explorations: Ohm's Law

See how the equation form of Ohm's law relates to a simple circuit. Adjust the voltage and resistance, and see the current change according to Ohm's law. The sizes of the symbols in the equation change to match the circuit diagram.

![PhET Interactive Simulation](image_url)

Figure 11.10 Ohm's Law (http://legacy.cnx.org/content/m42344/1.4/ohms-law_en.jar)

11.3 Resistance and Resistivity

Material and Shape Dependence of Resistance

The resistance of an object depends on its shape and the material of which it is composed. The cylindrical resistor in Figure 11.11 is easy to analyze, and, by so doing, we can gain insight into the resistance of more complicated shapes. As you might expect, the cylinder’s electric resistance R is directly proportional to its length L, similar to the resistance of a pipe to fluid flow. The longer the cylinder, the more collisions charges will make with its atoms. The greater the diameter of the cylinder, the more current it can carry (again similar to the flow of fluid through a pipe). In fact, R is inversely proportional to the cylinder’s cross-sectional area A.

This content is available for free at https://legacy.cnx.org/content/col11588/1.13
Figure 11.11 A uniform cylinder of length L and cross-sectional area A. Its resistance to the flow of current is similar to the resistance posed by a pipe to fluid flow. The longer the cylinder, the greater its resistance. The larger its cross-sectional area A, the smaller its resistance.

For a given shape, the resistance depends on the material of which the object is composed. Different materials offer different resistance to the flow of charge. We define the **resistivity** ρ of a substance so that the **resistance** R of an object is directly proportional to ρ. Resistivity ρ is an *intrinsic* property of a material, independent of its shape or size. The resistance R of a uniform cylinder of length L, of cross-sectional area A, and made of a material with resistivity ρ, is

$$ R = \rho \frac{L}{A}. $$ (11.18)

Table 11.1 gives representative values of ρ. The materials listed in the table are separated into categories of conductors, semiconductors, and insulators, based on broad groupings of resistivities. Conductors have the smallest resistivities, and insulators have the largest; semiconductors have intermediate resistivities. Conductors have varying but large free charge densities, whereas most charges in insulators are bound to atoms and are not free to move. Semiconductors are intermediate, having far fewer free charges than conductors, but having properties that make the number of free charges depend strongly on the type and amount of impurities in the semiconductor. These unique properties of semiconductors are put to use in modern electronics, as will be explored in later chapters.
Table 11.1 Resistivities \(\rho \) of Various materials at 20°C

<table>
<thead>
<tr>
<th>Material</th>
<th>Resistivity (\rho) ((\Omega \cdot m))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductors</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td>1.59(\times 10^{-8})</td>
</tr>
<tr>
<td>Copper</td>
<td>1.72(\times 10^{-8})</td>
</tr>
<tr>
<td>Gold</td>
<td>2.44(\times 10^{-8})</td>
</tr>
<tr>
<td>Aluminum</td>
<td>2.65(\times 10^{-8})</td>
</tr>
<tr>
<td>Tungsten</td>
<td>5.6(\times 10^{-8})</td>
</tr>
<tr>
<td>Iron</td>
<td>9.71(\times 10^{-8})</td>
</tr>
<tr>
<td>Platinum</td>
<td>10.6(\times 10^{-8})</td>
</tr>
<tr>
<td>Steel</td>
<td>20(\times 10^{-8})</td>
</tr>
<tr>
<td>Lead</td>
<td>22(\times 10^{-8})</td>
</tr>
<tr>
<td>Manganin (Cu, Mn, Ni alloy)</td>
<td>44(\times 10^{-8})</td>
</tr>
<tr>
<td>Constantan (Cu, Ni alloy)</td>
<td>49(\times 10^{-8})</td>
</tr>
<tr>
<td>Mercury</td>
<td>96(\times 10^{-8})</td>
</tr>
<tr>
<td>Nichrome (Ni, Fe, Cr alloy)</td>
<td>100(\times 10^{-8})</td>
</tr>
<tr>
<td>Semiconductors[1]</td>
<td></td>
</tr>
<tr>
<td>Carbon (pure)</td>
<td>3.5(\times 10^{5})</td>
</tr>
<tr>
<td>Carbon</td>
<td>((3.5 - 60)\times 10^{5})</td>
</tr>
<tr>
<td>Germanium (pure)</td>
<td>600(\times 10^{-3})</td>
</tr>
<tr>
<td>Germanium</td>
<td>((1 - 600)\times 10^{-3})</td>
</tr>
<tr>
<td>Silicon (pure)</td>
<td>2300</td>
</tr>
<tr>
<td>Silicon</td>
<td>0.1 – 2300</td>
</tr>
<tr>
<td>Insulators</td>
<td></td>
</tr>
<tr>
<td>Amber</td>
<td>5(\times 10^{14})</td>
</tr>
<tr>
<td>Glass</td>
<td>(10^{9} - 10^{14})</td>
</tr>
<tr>
<td>Lucite</td>
<td>(\geq 10^{13})</td>
</tr>
<tr>
<td>Mica</td>
<td>(10^{11} - 10^{15})</td>
</tr>
<tr>
<td>Quartz (fused)</td>
<td>75(\times 10^{16})</td>
</tr>
<tr>
<td>Rubber (hard)</td>
<td>(10^{13} - 10^{16})</td>
</tr>
<tr>
<td>Sulfur</td>
<td>(10^{15})</td>
</tr>
<tr>
<td>Teflon</td>
<td>(\geq 10^{13})</td>
</tr>
<tr>
<td>Wood</td>
<td>(10^{8} - 10^{11})</td>
</tr>
</tbody>
</table>

1. Values depend strongly on amounts and types of impurities
Example 11.5 Calculating Resistor Diameter: A Headlight Filament

A car headlight filament is made of tungsten and has a cold resistance of 0.350 Ω. If the filament is a cylinder 4.00 cm long (it may be coiled to save space), what is its diameter?

Strategy

We can rearrange the equation \(R = \frac{\rho L}{A} \) to find the cross-sectional area \(A \) of the filament from the given information. Then its diameter can be found by assuming it has a circular cross-section.

Solution

The cross-sectional area, found by rearranging the expression for the resistance of a cylinder given in \(R = \frac{\rho L}{A} \), is

\[
A = \frac{\rho L}{R}.
\]

(11.19)

Substituting the given values, and taking \(\rho \) from Table 11.1, yields

\[
A = \frac{(5.6 \times 10^{-8} \text{ Ω} \cdot \text{m})(4.00 \times 10^{-2} \text{ m})}{0.350 \text{ Ω}} = 6.40 \times 10^{-9} \text{ m}^2.
\]

(11.20)

The area of a circle is related to its diameter \(D \) by

\[
A = \frac{\pi D^2}{4}.
\]

(11.21)

Solving for the diameter \(D \), and substituting the value found for \(A \), gives

\[
D = 2\left(\frac{A}{\pi}\right)^{\frac{1}{2}} = 2\left(\frac{6.40 \times 10^{-9} \text{ m}^2}{3.14}\right)^{\frac{1}{2}} = 9.0 \times 10^{-5} \text{ m}.
\]

(11.22)

Discussion

The diameter is just under a tenth of a millimeter. It is quoted to only two digits, because \(\rho \) is known to only two digits.

Temperature Variation of Resistance

The resistivity of all materials depends on temperature. Some even become superconductors (zero resistivity) at very low temperatures. (See Figure 11.12.) Conversely, the resistivity of conductors increases with increasing temperature. Since the atoms vibrate more rapidly and over larger distances at higher temperatures, the electrons moving through a metal make more collisions, effectively making the resistivity higher. Over relatively small temperature changes (about 100ºC or less), resistivity \(\rho \) varies with temperature change \(\Delta T \) as expressed in the following equation

\[
\rho = \rho_0 (1 + \alpha \Delta T),
\]

(11.23)

where \(\rho_0 \) is the original resistivity and \(\alpha \) is the temperature coefficient of resistivity. (See the values of \(\alpha \) in Table 11.2 below.) For larger temperature changes, \(\alpha \) may vary or a nonlinear equation may be needed to find \(\rho \). Note that \(\alpha \) is positive for metals, meaning their resistivity increases with temperature. Some alloys have been developed specifically to have a small temperature dependence. Manganin (which is made of copper, manganese and nickel), for example, has \(\alpha \) close to zero (to three digits on the scale in Table 11.2), and so its resistivity varies only slightly with temperature. This is useful for making a temperature-independent resistance standard, for example.
Figure 11.12 The resistance of a sample of mercury is zero at very low temperatures—it is a superconductor up to about 4.2 K. Above that critical temperature, its resistance makes a sudden jump and then increases nearly linearly with temperature.

<table>
<thead>
<tr>
<th>Material</th>
<th>Coefficient α (1°C)$^{[2]}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductors</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td>3.8×10^{-3}</td>
</tr>
<tr>
<td>Copper</td>
<td>3.9×10^{-3}</td>
</tr>
<tr>
<td>Gold</td>
<td>3.4×10^{-3}</td>
</tr>
<tr>
<td>Aluminum</td>
<td>3.9×10^{-3}</td>
</tr>
<tr>
<td>Tungsten</td>
<td>4.5×10^{-3}</td>
</tr>
<tr>
<td>Iron</td>
<td>5.0×10^{-3}</td>
</tr>
<tr>
<td>Platinum</td>
<td>3.93×10^{-3}</td>
</tr>
<tr>
<td>Lead</td>
<td>3.9×10^{-3}</td>
</tr>
<tr>
<td>Manganin (Cu, Mn, Ni alloy)</td>
<td>0.000×10^{-3}</td>
</tr>
<tr>
<td>Constantan (Cu, Ni alloy)</td>
<td>0.002×10^{-3}</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.89×10^{-3}</td>
</tr>
<tr>
<td>Nichrome (Ni, Fe, Cr alloy)</td>
<td>0.4×10^{-3}</td>
</tr>
<tr>
<td>Semiconductors</td>
<td></td>
</tr>
<tr>
<td>Carbon (pure)</td>
<td>-0.5×10^{-3}</td>
</tr>
<tr>
<td>Germanium (pure)</td>
<td>-50×10^{-3}</td>
</tr>
<tr>
<td>Silicon (pure)</td>
<td>-70×10^{-3}</td>
</tr>
</tbody>
</table>

Note also that α is negative for the semiconductors listed in Table 11.2, meaning that their resistivity decreases with increasing temperature. They become better conductors at higher temperature, because increased thermal agitation increases the number of free charges available to carry current. This property of decreasing ρ with temperature is also related to the type and amount of impurities present in the semiconductors.

The resistance of an object also depends on temperature, since R_0 is directly proportional to ρ. For a cylinder we know $R = \rho L / A$, and so, if L and A do not change greatly with temperature, R will have the same temperature dependence as ρ. (Examination of the coefficients of linear expansion shows them to be about two orders of magnitude less than typical temperature coefficients of resistivity, and so the effect of temperature on L and A is about two orders of magnitude less than on ρ.) Thus,

$$R = R_0(1 + \alpha \Delta T)$$ \hspace{1cm} (11.24)

2. Values at 20°C.

This content is available for free at https://legacy.cnx.org/content/col11588/1.13
is the temperature dependence of the resistance of an object, where R_0 is the original resistance and R is the resistance after a temperature change ΔT. Numerous thermometers are based on the effect of temperature on resistance. (See Figure 11.13.) One of the most common is the thermistor, a semiconductor crystal with a strong temperature dependence, the resistance of which is measured to obtain its temperature. The device is small, so that it quickly comes into thermal equilibrium with the part of a person it touches.

![Figure 11.13](image)

Figure 11.13 These familiar thermometers are based on the automated measurement of a thermistor’s temperature-dependent resistance. (credit: Biol, Wikimedia Commons)

Example 11.6 Calculating Resistance: Hot-Filament Resistance

Although caution must be used in applying $\rho = \rho_0(1 + \alpha \Delta T)$ and $R = R_0(1 + \alpha \Delta T)$ for temperature changes greater than 100°C, for tungsten the equations work reasonably well for very large temperature changes. What, then, is the resistance of the tungsten filament in the previous example if its temperature is increased from room temperature (20°C) to a typical operating temperature of 2850°C?

Strategy

This is a straightforward application of $R = R_0(1 + \alpha \Delta T)$, since the original resistance of the filament was given to be $R_0 = 0.350 \ \Omega$, and the temperature change is $\Delta T = 2830^\circ C$.

Solution

The hot resistance R is obtained by entering known values into the above equation:

$$
R = R_0(1 + \alpha \Delta T) \\
= (0.350 \ \Omega)[1 + (4.5 \times 10^{-3} / ^\circ C)(2830^\circ C)] \\
= 4.8 \ \Omega.
$$

Discussion

This value is consistent with the headlight resistance example in *Ohm's Law: Resistance and Simple Circuits*.

PhET Explorations: Resistance in a Wire

Learn about the physics of resistance in a wire. Change its resistivity, length, and area to see how they affect the wire's resistance. The sizes of the symbols in the equation change along with the diagram of a wire.

![PhET Interactive Simulation](image)

Figure 11.14 Resistance in a Wire (http://legacy.cnx.org/content/m42346/1.7/resistance-in-a-wire_en.jar)

11.4 Electric Power and Energy

Power in Electric Circuits

Power is associated by many people with electricity. Knowing that power is the rate of energy use or energy conversion, what is the expression for **electric power**? Power transmission lines might come to mind. We also think of lightbulbs in terms of their power ratings in watts. Let us compare a 25-W bulb with a 60-W bulb. (See Figure 11.15(a).) Since both operate on the same voltage, the 60-W bulb must draw more current to have a greater power rating. Thus the 60-W bulb's resistance must be lower than that of a 25-W bulb. If we increase voltage, we also increase power. For example, when a 25-W bulb that is designed to operate on 120 V is connected to 240 V, it Briefly glows very brightly and then burns out. Precisely how are voltage, current, and resistance related to electric power?
Electric energy depends on both the voltage involved and the charge moved. This is expressed most simply as \(PE = qV \), where \(q \) is the charge moved and \(V \) is the voltage (or more precisely, the potential difference the charge moves through). Power is the rate at which energy is moved, and so electric power is

\[
P = \frac{PE}{t} = \frac{qV}{t}.
\]

(11.26)

Recognizing that current is \(I = q/t \) (note that \(\Delta t = t \) here), the expression for power becomes

\[
P = IV.
\]

(11.27)

Electric power \((P) \) is simply the product of current times voltage. Power has familiar units of watts. Since the SI unit for potential energy \((PE) \) is the joule, power has units of joules per second, or watts. Thus, \(1 \text{ A} \cdot \text{V} = 1 \text{ W} \). For example, cars often have one or more auxiliary power outlets with which you can charge a cell phone or other electronic devices. These outlets may be rated at 20 A, so that the circuit can deliver a maximum power \(P = IV = (20 \text{ A})(12 \text{ V}) = 240 \text{ W} \). In some applications, electric power may be expressed as volt-amperes or even kilovolt-amperes \((1 \text{ kA} \cdot \text{V} = 1 \text{ kW}) \).

To see the relationship of power to resistance, we combine Ohm’s law with \(P = IV \). Substituting \(I = V/R \) gives \(P = (V/R)V = V^2/R \). Similarly, substituting \(V = IR \) gives \(P = I(IR) = I^2R \). Three expressions for electric power are listed together here for convenience:

\[
P = IV
\]

(11.28)

\[
P = \frac{V^2}{R}
\]

(11.29)

\[
P = I^2R.
\]

(11.30)

Note that the first equation is always valid, whereas the other two can be used only for resistors. In a simple circuit, with one voltage source and a single resistor, the power supplied by the voltage source and that dissipated by the resistor are identical. (In more complicated circuits, \(P \) can be the power dissipated by a single device and not the total power in the circuit.)

Different insights can be gained from the three different expressions for electric power. For example, \(P = V^2/R \) implies that the lower the resistance connected to a given voltage source, the greater the power delivered. Furthermore, since voltage is squared in \(P = V^2/R \), the effect of applying a higher voltage is perhaps greater than expected. Thus, when the voltage is doubled to a 25-W bulb, its power nearly quadruples to about 100 W, burning it out. If the bulb’s resistance remained constant, its power would be exactly 100 W, but at the higher temperature its resistance is higher, too.

Example 11.7 Calculating Power Dissipation and Current: Hot and Cold Power

(a) Consider the examples given in *Ohm’s Law: Resistance and Simple Circuits* and *Resistance and Resistivity*. Then find the power dissipated by the car headlight in these examples, both when it is hot and when it is cold. (b) What current does it draw when cold?

Strategy for (a)
For the hot headlight, we know voltage and current, so we can use \(P = IV \) to find the power. For the cold headlight, we know the voltage and resistance, so we can use \(P = V^2 / R \) to find the power.

Solution for (a)

Entering the known values of current and voltage for the hot headlight, we obtain

\[
P = IV = (2.50 \text{ A})(12.0 \text{ V}) = 30.0 \text{ W}.
\]

(11.31)

The cold resistance was 0.350 \(\Omega \), and so the power it uses when first switched on is

\[
P = \frac{V^2}{R} = \frac{(12.0 \text{ V})^2}{0.350 \text{ \Omega}} = 411 \text{ W}.
\]

(11.32)

Discussion for (a)

The 30 W dissipated by the hot headlight is typical. But the 411 W when cold is surprisingly higher. The initial power quickly decreases as the bulb’s temperature increases and its resistance increases.

Strategy and Solution for (b)

The current when the bulb is cold can be found several different ways. We rearrange one of the power equations, \(P = I^2 R \), and enter known values, obtaining

\[
I = \sqrt{\frac{P}{R}} = \sqrt{\frac{411 \text{ W}}{0.350 \Omega}} = 34.3 \text{ A}.
\]

(11.33)

Discussion for (b)

The cold current is remarkably higher than the steady-state value of 2.50 A, but the current will quickly decline to that value as the bulb’s temperature increases. Most fuses and circuit breakers (used to limit the current in a circuit) are designed to tolerate very high currents briefly as a device comes on. In some cases, such as with electric motors, the current remains high for several seconds, necessitating special “slow blow” fuses.

The Cost of Electricity

The more electric appliances you use and the longer they are left on, the higher your electric bill. This familiar fact is based on the relationship between energy and power. You pay for the energy used. Since \(E = P t \), we see that

\[
E = P t
\]

is the energy used by a device using power \(P \) for a time interval \(t \). For example, the more lightbulbs burning, the greater \(P \) used; the longer they are on, the greater \(t \) is. The energy unit on electric bills is the kilowatt-hour (\(\text{kW} \cdot \text{h} \)), consistent with the relationship \(E = P t \). It is easy to estimate the cost of operating electric appliances if you have some idea of their power consumption rate in watts or kilowatts, the time they are on in hours, and the cost per kilowatt-hour for your electric utility. Kilowatt-hours, like all other specialized energy units such as food calories, can be converted to joules. You can prove to yourself that \(1 \text{ kW} \cdot \text{h} = 3.6 \times 10^6 \text{ J} \).

The electrical energy (\(E \)) used can be reduced either by reducing the time of use or by reducing the power consumption of that appliance or fixture. This will not only reduce the cost, but it will also result in a reduced impact on the environment. Improvements to lighting are some of the fastest ways to reduce the electrical energy used in a home or business. About 20% of a home's use of energy goes to lighting, while the number for commercial establishments is closer to 40%. Fluorescent lights are about four times more efficient than incandescent lights—this is true for both the long tubes and the compact fluorescent lights (CFL). (See Figure 11.15(b).) Thus, a 60-W incandescent bulb can be replaced by a 15-W CFL, which has the same brightness and color. CFLs have a bent tube inside a globe or a spiral-shaped tube, all connected to a standard screw-in base that fits standard incandescent light sockets. (Original problems with color, flicker, shape, and high initial investment for CFLs have been addressed in recent years.) The heat transfer from these CFLs is less, and they last up to 10 times longer. The significance of an investment in such bulbs is addressed in the next example. New white LED lights (which are clusters of small LED bulbs) are even more efficient (twice that of CFLs) and last 5 times longer than CFLs. However, their cost is still high.

Making Connections: Energy, Power, and Time

The relationship \(E = P t \) is one that you will find useful in many different contexts. The energy your body uses in exercise is related to the power level and duration of your activity, for example. The amount of heating by a power source is related to the power level and time it is applied. Even the radiation dose of an X-ray image is related to the power and time of exposure.

Example 11.8 Calculating the Cost Effectiveness of Compact Fluorescent Lights (CFL)

If the cost of electricity in your area is 12 cents per kWh, what is the total cost (capital plus operation) of using a 60-W incandescent bulb for 1000 hours (the lifetime of that bulb) if the bulb cost 25 cents? (b) If we replace this bulb with a compact fluorescent light that provides the same light output, but at one-quarter the wattage, and which costs $1.50 but lasts 10 times longer (10,000 hours), what will that total cost be?

Strategy

To find the operating cost, we first find the energy used in kilowatt-hours and then multiply by the cost per kilowatt-hour.
Solution for (a)
The energy used in kilowatt-hours is found by entering the power and time into the expression for energy:

$$E = Pt = (60 \text{ W})(1000 \text{ h}) = 60,000 \text{ W} \cdot \text{h.} \quad (11.35)$$

In kilowatt-hours, this is

$$E = 60.0 \text{ kW} \cdot \text{h.} \quad (11.36)$$

Now the electricity cost is

$$\text{cost} = (60.0 \text{ kW} \cdot \text{h})(0.12/\text{kW} \cdot \text{h}) = $7.20. \quad (11.37)$$

The total cost will be $7.20 for 1000 hours (about one-half year at 5 hours per day).

Solution for (b)
Since the CFL uses only 15 W and not 60 W, the electricity cost will be $7.20/4 = $1.80. The CFL will last 10 times longer than the incandescent, so that the investment cost will be 1/10 of the bulb cost for that time period of use, or 0.1($1.50) = $0.15. Therefore, the total cost will be $1.95 for 1000 hours.

Discussion
Therefore, it is much cheaper to use the CFLs, even though the initial investment is higher. The increased cost of labor that a business must include for replacing the incandescent bulbs more often has not been figured in here.

Making Connections: Take-Home Experiment—Electrical Energy Use Inventory
1) Make a list of the power ratings on a range of appliances in your home or room. Explain why something like a toaster has a higher rating than a digital clock. Estimate the energy consumed by these appliances in an average day (by estimating their time of use). Some appliances might only state the operating current. If the household voltage is 120 V, then use $P = IV$. 2) Check out the total wattage used in the rest rooms of your school’s floor or building. (You might need to assume the long fluorescent lights in use are rated at 32 W.) Suppose that the building was closed all weekend and that these lights were left on from 6 p.m. Friday until 8 a.m. Monday. What would this oversight cost? How about for an entire year of weekends?

Glossary

- **ampere**: (amp) the SI unit for current; $1 \text{ A} = 1 \text{ C/s}$
- **drift velocity**: the average velocity at which free charges flow in response to an electric field
- **electric current**: the rate at which charge flows, $I = \Delta Q/\Delta t$
- **electric power**: the rate at which electrical energy is supplied by a source or dissipated by a device; it is the product of current times voltage
- **ohm**: the unit of resistance, given by $1 \Omega = 1 \text{ V/A}$
- **ohmic**: a type of a material for which Ohm’s law is valid
- **Ohm’s law**: an empirical relation stating that the current I is proportional to the potential difference V, i.e., it is often written as $I = V/R$, where R is the resistance
- **resistance**: the electric property that impedes current; for ohmic materials, it is the ratio of voltage to current, $R = V/I$
- **resistivity**: an intrinsic property of a material, independent of its shape or size, directly proportional to the resistance, denoted by ρ
- **simple circuit**: a circuit with a single voltage source and a single resistor
- **temperature coefficient of resistivity**: an empirical quantity, denoted by α, which describes the change in resistance or resistivity of a material with temperature

Section Summary

11.1 Current
- Electric current I is the rate at which charge flows, given by

$$I = \frac{\Delta Q}{\Delta t}.$$

where ΔQ is the amount of charge passing through an area in time Δt.
- The direction of conventional current is taken as the direction in which positive charge moves.
- The SI unit for current is the ampere (A), where $1 \text{ A} = 1 \text{ C/s}$.
- Current is the flow of free charges, such as electrons and ions.
- Drift velocity v_d is the average speed at which these charges move.
• Current \(I \) is proportional to drift velocity \(v_d \), as expressed in the relationship \(I = n q A v_d \). Here, \(I \) is the current through a wire of cross-sectional area \(A \). The wire’s material has a free-charge density \(n \), and each carrier has charge \(q \) and a drift velocity \(v_d \).

• Electrical signals travel at speeds about \(10^{12} \) times greater than the drift velocity of free electrons.

11.2 Ohm’s Law: Resistance and Simple Circuits

A simple circuit is one in which there is a single voltage source and a single resistance.

One statement of Ohm’s law gives the relationship between current \(I \), voltage \(V \), and resistance \(R \) in a simple circuit to be \(I = \frac{V}{R} \).

Resistance has units of ohms (\(\Omega \)), related to volts and amperes by \(1 \text{ } \Omega = 1 \text{ V/A} \).

There is a voltage or \(IR \) drop across a resistor, caused by the current flowing through it, given by \(V = IR \).

11.3 Resistance and Resistivity

The resistance \(R \) of a cylinder of length \(L \) and cross-sectional area \(A \) is \(R = \frac{\rho L}{A} \), where \(\rho \) is the resistivity of the material.

Values of \(\rho \) in Table 11.1 show that materials fall into three groups—conductors, semiconductors, and insulators.

Temperature affects resistivity; for relatively small temperature changes \(\Delta T \), resistivity is \(\rho = \rho_0 (1 + \alpha \Delta T) \), where \(\rho_0 \) is the original resistivity and \(\alpha \) is the temperature coefficient of resistivity.

Table 11.2 gives values for \(\alpha \), the temperature coefficient of resistivity.

The resistance \(R \) of an object also varies with temperature: \(R = R_0 (1 + \alpha \Delta T) \), where \(R_0 \) is the original resistance, and \(R \) is the resistance after the temperature change.

11.4 Electric Power and Energy

Electric power \(P \) is the rate (in watts) that energy is supplied by a source or dissipated by a device.

Three expressions for electrical power are

\[P = IV, \]

\[P = \frac{V^2}{R}, \]

and

The energy used by a device with a power \(P \) over a time \(t \) is \(E = Pt \).

Conceptual Questions

11.1 Current

1. Can a wire carry a current and still be neutral—that is, have a total charge of zero? Explain.

2. Car batteries are rated in ampere-hours (A \(\cdot \) h). To what physical quantity do ampere-hours correspond (voltage, charge, . . .), and what relationship do ampere-hours have to energy content?

3. If two different wires having identical cross-sectional areas carry the same current, will the drift velocity be higher or lower in the better conductor? Explain in terms of the equation \(v_d = \frac{I}{n q A} \), by considering how the density of charge carriers \(n \) relates to whether or not a material is a good conductor.

4. Why are two conducting paths from a voltage source to an electrical device needed to operate the device?

5. In cars, one battery terminal is connected to the metal body. How does this allow a single wire to supply current to electrical devices rather than two wires?

6. Why isn’t a bird sitting on a high-voltage power line electrocuted? Contrast this with the situation in which a large bird hits two wires simultaneously with its wings.

11.2 Ohm’s Law: Resistance and Simple Circuits

7. The \(IR \) drop across a resistor means that there is a change in potential or voltage across the resistor. Is there any change in current as it passes through a resistor? Explain.

8. How is the \(IR \) drop in a resistor similar to the pressure drop in a fluid flowing through a pipe?

11.3 Resistance and Resistivity

9. In which of the three semiconducting materials listed in Table 11.1 do impurities supply free charges? (Hint: Examine the range of resistivity for each and determine whether the pure semiconductor has the higher or lower conductivity.)

10. Does the resistance of an object depend on the path current takes through it? Consider, for example, a rectangular bar—is its resistance the same along its length as across its width? (See Figure 11.16.)
Figure 11.16 Does current taking two different paths through the same object encounter different resistance?

11. If aluminum and copper wires of the same length have the same resistance, which has the larger diameter? Why?

12. Explain why $R = R_0(1 + \alpha \Delta T)$ for the temperature variation of the resistance R of an object is not as accurate as $\rho = \rho_0(1 + \alpha \Delta T)$, which gives the temperature variation of resistivity ρ.

11.4 Electric Power and Energy

13. Why do incandescent lightbulbs grow dim late in their lives, particularly just before their filaments break?

14. The power dissipated in a resistor is given by $P = V^2 / R$, which means power decreases if resistance increases. Yet this power is also given by $P = I^2 R$, which means power increases if resistance increases. Explain why there is no contradiction here.
11.1 Current

1. What is the current in milliamperes produced by the solar cells of a pocket calculator through which 4.00 C of charge passes in 4.00 h? What is the average current?

2. A total of 600 C of charge passes through a flashlight in 0.500 h. What is the current?

3. What is the current when a typical static charge of 0.250 μC moves from your finger to a metal doorknob in 1.00 μs?

4. Find the current when 2.00 nC jumps between your comb and hair over a 0.500 - μs time interval.

5. A large lightning bolt had a 20,000-A current and moved 30.0 C of charge. What was its duration?

6. The 200-A current through a spark plug moves 0.300 mC of charge. How long does the spark last?

7. (a) A defibrillator sends a 6.00-A current through the chest of a patient by applying a 10,000-V potential as in the figure below. What is the resistance of the path? (b) The defibrillator paddles make contact with the patient through a conducting gel that greatly reduces the path resistance. Discuss the difficulties that would ensue if a larger voltage were used to produce the same current through the patient, but with the path having perhaps 50 times the resistance. (Hint: The current must be about the same, so a higher voltage would imply greater power. Use this equation for power: \(P = I^2R \).)

8. During open-heart surgery, a defibrillator can be used to bring a patient out of cardiac arrest. The resistance of the path is 500 Ω and a 10.0-mA current is needed. What voltage should be applied?

9. (a) A defibrillator passes 12.0 A of current through the torso of a person for 0.0100 s. How much charge moves? (b) How many electrons pass through the wires connected to the patient? (See figure two problems earlier.)

10. A clock battery wears out after moving 10,000 C of charge through the clock at a rate of 0.500 mA. (a) How long did the clock run? (b) How many electrons per second flowed?

11. The batteries of a submerged non-nuclear submarine supply 1000 A at full speed ahead. How long does it take to move Avogadro's number (6.02×10^{23}) of electrons at this rate?

12. Electron guns are used in X-ray tubes. The electrons are accelerated through a relatively large voltage and directed onto a metal target, producing X-rays. (a) How many electrons per second strike the target if the current is 0.500 mA? (b) What charge strikes the target in 0.750 s?

13. A large cyclotron directs a beam of He^{++} nuclei onto a target with a beam current of 0.250 mA. (a) How many He^{++} nuclei per second is this? (b) How long does it take for 1.00 C to strike the target? (c) How long before 1.00 mol of He^{++} nuclei strike the target?

14. Repeat the above example on Example 11.3, but for a wire made of silver and given there is one free electron per silver atom.

15. Using the results of the above example on Example 11.3, find the drift velocity in a copper wire of twice the diameter and carrying 20.0 A.

16. A 14-gauge copper wire has a diameter of 1.628 mm. What magnitude current flows when the drift velocity is 1.00 mm/s? (See above example on Example 11.3 for useful information.)

17. SPEAR, a storage ring about 72.0 m in diameter at the Stanford Linear Accelerator (closed in 2009), has a 20.0-A circulating beam of electrons that are moving at nearly the speed of light. (See Figure 11.18.) How many electrons are in the beam?

18. What current flows through the bulb of a 3.00-V flashlight when its hot resistance is 3.60 Ω?

19. Calculate the effective resistance of a pocket calculator that has a 1.35-V battery and through which 0.200 mA flows.

20. What is the effective resistance of a car’s starter motor when 150 A flows through it as the car battery applies 11.0 V to the motor?

21. How many volts are supplied to operate an indicator light on a DVD player that has a resistance of 140 Ω., given that 25.0 mA passes through it?

22. (a) Find the voltage drop in an extension cord having a 0.0600-Ω resistance and through which 5.00 A is flowing. (b) A cheaper cord utilizes thinner wire and has a resistance of 0.300 Ω. What is the voltage drop in it when 5.00 A flows? (c) Why is the voltage to whatever appliance is being used reduced by this amount? What is the effect on the appliance?

23. A power transmission line is hung from metal towers with glass insulators having a resistance of 1.00×10^9 Ω. What current flows through the insulator if the voltage is 200 kV? (Some high-voltage lines are DC.)

11.2 Ohm’s Law: Resistance and Simple Circuits

24. What is the resistance of a 20.0-m-long piece of 12-gauge copper wire having a 2.053-mm diameter?

25. The diameter of 0-gauge copper wire is 8.252 mm. Find the resistance of a 1.00-km length of such wire used for power transmission.

26. If the 0.100-mm diameter tungsten filament in a light bulb is to have a resistance of 0.200 Ω at 20.0°C, how long should it be?

27. Find the ratio of the diameter of aluminum to copper wire, if they have the same resistance per unit length (as they might in household wiring).
28. What current flows through a 2.54-cm-diameter rod of pure silicon that is 20.0 cm long, when 1.00 \times 10^3 \text{ V} is applied to it? (Such a rod may be used to make nuclear-particle detectors, for example.)

29. (a) To what temperature must you raise a copper wire, originally at 20.0°C, to double its resistance, neglecting any changes in dimensions? (b) Does this happen in household wiring under ordinary circumstances?

30. A resistor made of Nichrome wire is used in an application where its resistance cannot change more than 1.00% from its value at 20.0°C. Over what temperature range can it be used?

31. Of what material is a resistor made if its resistance is 40.0% greater at 100°C than at 20.0°C?

32. An electronic device designed to operate at any temperature in the range from −10.0°C to 55.0°C contains pure carbon resistors. By what factor does their resistance increase over this range?

33. (a) Of what material is a wire made, if it is 25.0 m long with a 0.100 mm diameter and has a resistance of 77.7 \text{ } \Omega \text{ at } 20.0°C? (b) What is its resistance at 150°C?

34. Assuming a constant temperature coefficient of resistivity, what is the maximum percent decrease in the resistance of a constantan wire starting at 20.0°C?

35. A wire is drawn through a die, stretching it to four times its original length. By what factor does its resistance increase?

36. A copper wire has a resistance of 0.500 \text{ } \Omega \text{ at } 20.0°C, and an iron wire has a resistance of 0.525 \text{ } \Omega \text{ at the same temperature. At what temperature are their resistances equal?}

37. (a) Digital medical thermometers determine temperature by measuring the resistance of a semiconductor device called a thermistor (which has \(\alpha = -0.0600/\text{°C} \) when it is at the same temperature as the patient. What is a patient’s temperature if the thermistor’s resistance at that temperature is 82.0% of its value at 37.0°C (normal body temperature)? (b) The negative value for \(\alpha \) may not be maintained for very low temperatures. Discuss why and whether this is the case here. (Hint: Resistance can’t become negative.)

38. Integrated Concepts
 (a) Redo Exercise 11.25 taking into account the thermal expansion of the tungsten filament. You may assume a thermal expansion coefficient of 12 \times 10^{-6}/\text{°C}. (b) By what percentage does your answer differ from that in the example?

39. Unreasonable Results
 (a) To what temperature must you raise a resistor made of constantan to double its resistance, assuming a constant temperature coefficient of resistivity? (b) To cut it in half? (c) What is unreasonable about these results? (d) Which assumptions are unreasonable, or which premises are inconsistent?

11.4 Electric Power and Energy

40. What is the power of a 1.00 \times 10^2 \text{ MV lightning bolt having a current of } 2.00 \times 10^4 \text{ A}?

41. What power is supplied to the starter motor of a large truck that draws 250 A of current from a 24.0-V battery hookup?

42. A charge of 4.00 C of charge passes through a pocket calculator’s solar cells in 4.00 h. What is the power output, given the calculator’s voltage output is 3.00 V? (See Figure 11.19.)

Figure 11.19 The strip of solar cells just above the keys of this calculator convert light to electricity to supply its energy needs. (credit: Evan-Amos, Wikimedia Commons)

43. How many watts does a flashlight that has 6.00 \times 10^2 \text{ C pass through it in 0.500 h use if its voltage is 3.00 V?}

44. Find the power dissipated in each of these extension cords: (a) an extension cord having a 0.0600 - \text{Ω resistance and through which 5.00 A is flowing; (b) a cheaper cord utilizing thinner wire and with a resistance of 0.300 \text{ Ω.}}

45. Verify that the units of a volt-ampere are watts, as implied by the equation \(P = IV \).

46. Show that the units \(1\text{ V}^2/\text{Ω} = 1\text{ W} \), as implied by the equation \(P = V^2/R \).

47. Show that the units \(1\text{ A}^2 \cdot \text{Ω} = 1\text{ W} \), as implied by the equation \(P = I^2R \).

48. Verify the energy unit equivalence that \(1\text{ kW} \cdot \text{h} = 3.60\times10^6 \text{ J} \).

49. Electrons in an X-ray tube are accelerated through 1.00\times10^2 \text{ kV and directed toward a target to produce X-rays. Calculate the power of the electron beam in this tube if it has a current of 15.0 mA.}

50. An electric water heater consumes 5.00 kW for 2.00 h per day. What is the cost of running it for one year if electricity costs 12.0 cents/kW · h? See Figure 11.20.

Figure 11.20 On-demand electric hot water heater. Heat is supplied to water only when needed. (credit: aviddavid, Flickr)

51. With a 1200-W toaster, how much electrical energy is needed to make a slice of toast (cooking time = 1 minute)? At 9.0 cents/kW · h, how much does this cost?

52. What would be the maximum cost of a CFL such that the total cost (investment plus operating) would be the same for both CFL and incandescent 60-W bulbs? Assume the cost of the incandescent bulb is 25 cents and that electricity costs 10 cents/kWh. Calculate the cost for 1000 hours, as in the cost effectiveness of CFL example.

53. Some makes of older cars have 6.00-V electrical systems. (a) What is the hot resistance of a 30.0-W headlight in such a car? (b) What current flows through it?
54. Alkaline batteries have the advantage of putting out constant voltage until very nearly the end of their life. How long will an alkaline battery rated at 1.00 A ⋅ h and 1.58 V keep a 1.00-W flashlight bulb burning?

55. A cautery, used to stop bleeding in surgery, puts out 2.00 mA at 15.0 kV. (a) What is its power output? (b) What is the resistance of the path?

56. The average television is said to be on 6 hours per day. Estimate the yearly cost of electricity to operate 100 million TVs, assuming their power consumption averages 150 W and the cost of electricity averages 12.0 cents/kWh.

57. An old lightbulb draws only 50.0 W, rather than its original 60.0 W, due to evaporative thinning of its filament. By what factor is its diameter reduced, assuming uniform thinning along its length? Neglect any effects caused by temperature differences.

58. 00-gauge copper wire has a diameter of 9.266 mm. Calculate the power loss in a kilometer of such wire when it carries 1.00 × 10^2 A.

59. Integrated Concepts
Cold vaporizers pass a current through water, evaporating it with only a small increase in temperature. One such home device is rated at 3.50 A and utilizes 120 V AC with 95.0% efficiency. (a) What is the vaporization rate in grams per minute? (b) How much water must you put into the vaporizer for 8.00 h of overnight operation? (See Figure 11.21.)

60. Integrated Concepts
(a) What energy is dissipated by a lightning bolt having a 20,000-A current, a voltage of 1.00 × 10^3 MV, and a length of 1.00 ms? (b) What mass of tree sap could be raised from 18.0°C to its boiling point and then evaporated by this energy, assuming sap has the same thermal characteristics as water?

61. Integrated Concepts
What current must be produced by a 12.0-V battery-operated bottle warmer in order to heat 75.0 g of glass, 250 g of baby formula, and 3.00 × 10^3 g of aluminum from 20.0°C to 90.0°C in 5.00 min?

62. Integrated Concepts
How much time is needed for a surgical cautery to raise the temperature of 1.00 g of tissue from 37.0°C to 100°C and then boil away 0.500 g of water, if it puts out 2.00 mA at 15.6 kV? Ignore heat transfer to the surroundings.

63. Integrated Concepts
Hydroelectric generators (see Figure 11.22) at Hoover Dam produce a maximum current of 8.00 × 10^3 A at 250 kV. (a) What is the power output? (b) The water that powers the generators enters and leaves the system at low speed (thus its kinetic energy does not change) but loses 160 m in altitude. How many cubic meters per second are needed, assuming 85.0% efficiency?

Figure 11.22 Hydroelectric generators at the Hoover dam. (credit: Jon Sullivan)

64. Integrated Concepts
(a) Assuming 95.0% efficiency for the conversion of electrical power by the motor, what current must the 12.0-V batteries of a 750-kg electric car be able to supply: (a) To accelerate from rest to 25.0 m/s in 1.00 min? (b) To climb a 2.00 × 10^2-m-high hill in 2.00 min at a constant 25.0-m/s speed while exerting 5.00 × 10^7 N of force to overcome air resistance and friction? (c) To travel at a constant 25.0-m/s speed, exerting a 5.00 × 10^7 N force to overcome air resistance and friction? See Figure 11.23.

Figure 11.23 This REVAI, an electric car, gets recharged on a street in London. (credit: Frank Heibert)

65. Integrated Concepts
A light-rail commuter train draws 630 A of 650-V DC electricity when accelerating. (a) What is its power consumption rate in kilowatts? (b) How long does it take to reach 20.0 m/s starting from rest if its loaded mass is 5.30 × 10^4 kg, assuming 95.0% efficiency and constant power? (c) Find its average acceleration. (d) Discuss how the acceleration you found for the light-rail train compares to what might be typical for an automobile.

66. Integrated Concepts
(a) An aluminum power transmission line has a resistance of 0.0580 Ω/km. What is its mass per kilometer? (b) What is the mass per kilometer of a copper line having the same resistance? A lower resistance would shorten the heating time. Discuss the practical limits to speeding the heating by lowering the resistance.

67. Integrated Concepts
(a) An immersion heater utilizing 120 V can raise the temperature of a 1.00 × 10^2-g aluminum cup containing 350 g of water from 20.0°C to 95.0°C in 2.00 min. Find its resistance, assuming it is constant during the process. (b) A lower resistance would shorten the heating time.
Discuss the practical limits to speeding the heating by lowering the resistance.

68. Integrated Concepts

(a) What is the cost of heating a hot tub containing 1500 kg of water from 10.0°C to 40.0°C, assuming 75.0% efficiency to account for heat transfer to the surroundings? The cost of electricity is 9 cents/kW ⋅ h. (b) What current was used by the 220-V AC electric heater, if it took 4.00 h?

69. Unreasonable Results

(a) What current is needed to transmit \(1.00 \times 10^2\) MW of power at 480 V? (b) What power is dissipated by the transmission lines if they have a \(1.00 - \Omega\) resistance? (c) What is unreasonable about this result? (d) Which assumptions are unreasonable, or which premises are inconsistent?

70. Unreasonable Results

(a) What current is needed to transmit \(1.00 \times 10^2\) MW of power at 10.0 kV? (b) Find the resistance of 1.00 km of wire that would cause a 0.0100% power loss. (c) What is the diameter of a 1.00-km-long copper wire having this resistance? (d) What is unreasonable about these results? (e) Which assumptions are unreasonable, or which premises are inconsistent?

71. Construct Your Own Problem

Consider an electric immersion heater used to heat a cup of water to make tea. Construct a problem in which you calculate the needed resistance of the heater so that it increases the temperature of the water and cup in a reasonable amount of time. Also calculate the cost of electrical energy used in your process. Among the things to be considered are the voltage used, the masses and heat capacities involved, heat losses, and the time over which the heating takes place. Your instructor may wish for you to consider a thermal safety switch (perhaps bimetallic) that will halt the process before damaging temperatures are reached in the immersion unit.
12. Resistors in Series and Parallel
- Draw a circuit with resistors in parallel and in series.
- Calculate the voltage drop of a current across a resistor using Ohm's law.
- Contrast the way total resistance is calculated for resistors in series and in parallel.
- Explain why total resistance of a parallel circuit is less than the smallest resistance of any of the resistors in that circuit.
- Calculate total resistance of a circuit that contains a mixture of resistors connected in series and in parallel.

12.2. Examples: Battery Terminal Voltage, Animals as Detectors & Solar Cells
- Compare and contrast the voltage and the electromagnetic force of an electric power source.
- Describe what happens to the terminal voltage, current, and power delivered to a load as internal resistance of the voltage source increases (due to aging of batteries, for example).
- Explain why it is beneficial to use more than one voltage source connected in parallel.

12.3. DC Voltmeters and Ammeters
- Explain why a voltmeter must be connected in parallel with the circuit.
- Draw a diagram showing an ammeter correctly connected in a circuit.
- Describe how a galvanometer can be used as either a voltmeter or an ammeter.
- Find the resistance that must be placed in series with a galvanometer to allow it to be used as a voltmeter with a given reading.
- Explain why measuring the voltage or current in a circuit can never be exact.

Introduction to Circuits and DC Instruments
Electric circuits are commonplace. Some are simple, such as those in flashlights. Others, such as those used in supercomputers, are extremely complex.

This collection of modules takes the topic of electric circuits a step beyond simple circuits. When the circuit is purely resistive, everything in this module applies to both DC and AC. Matters become more complex when capacitance is involved. We do consider what happens when capacitors are connected to DC voltage sources, but the interaction of capacitors and other nonresistive devices with AC is left for a later chapter. Finally, a number of important DC instruments, such as meters that measure voltage and current, are covered in this chapter.
12.1 Resistors in Series and Parallel

Most circuits have more than one component, called a resistor that limits the flow of charge in the circuit. A measure of this limit on charge flow is called resistance. The simplest combinations of resistors are the series and parallel connections illustrated in Figure 12.2. The total resistance of a combination of resistors depends on both their individual values and how they are connected.

![Figure 12.2](image)

Figure 12.2 (a) A series connection of resistors. (b) A parallel connection of resistors.

Resistors in Series

When are resistors in series? Resistors are in series whenever the flow of charge, called the current, must flow through devices sequentially. For example, if current flows through a person holding a screwdriver and into the Earth, then R_1 in Figure 12.2(a) could be the resistance of the screwdriver’s shaft, R_2 the resistance of its handle, R_3 the person’s body resistance, and R_4 the resistance of her shoes.

Figure 12.3 shows resistors in series connected to a voltage source. It seems reasonable that the total resistance is the sum of the individual resistances, considering that the current has to pass through each resistor in sequence. (This fact would be an advantage to a person wishing to avoid an electrical shock, who could reduce the current by wearing high-resistance rubber-soled shoes. It could be a disadvantage if one of the resistances were a faulty high-resistance cord to an appliance that would reduce the operating current.)

![Figure 12.3](image)

Figure 12.3 Three resistors connected in series to a battery (left) and the equivalent single or series resistance (right).

To verify that resistances in series do indeed add, let us consider the loss of electrical power, called a voltage drop, in each resistor in Figure 12.3. According to Ohm’s law, the voltage drop, V, across a resistor when a current flows through it is calculated using the equation $V = IR$, where I equals the current in amperes (A) and R is the resistance in ohms (Ω). Another way to think of this is that V is the voltage necessary to make a current I flow through a resistance R.

So the voltage drop across R_1 is $V_1 = IR_1$, that across R_2 is $V_2 = IR_2$, and that across R_3 is $V_3 = IR_3$. The sum of these voltages equals the voltage output of the source; that is,

$$V = V_1 + V_2 + V_3.$$ \[12.1\]

This equation is based on the conservation of energy and conservation of charge. Electrical potential energy can be described by the equation $PE = qV$, where q is the electric charge and V is the voltage. Thus the energy supplied by the source is qV, while that dissipated by the resistors is

$$qV_1 + qV_2 + qV_3.$$ \[12.2\]

Connections: Conservation Laws

The derivations of the expressions for series and parallel resistance are based on the laws of conservation of energy and conservation of charge, which state that total charge and total energy are constant in any process. These two laws are directly involved in all electrical phenomena and will be invoked repeatedly to explain both specific effects and the general behavior of electricity.

These energies must be equal, because there is no other source and no other destination for energy in the circuit. Thus, $qV = qV_1 + qV_2 + qV_3$. The charge q cancels, yielding $V = V_1 + V_2 + V_3$, as stated. (Note that the same amount of charge passes through the battery and each resistor in a given amount of time, since there is no capacitance to store charge, there is no place for charge to leak, and charge is conserved.)
Now substituting the values for the individual voltages gives
\[V = IR_1 + IR_2 + IR_3 = I(R_1 + R_2 + R_3). \]
(12.3)

Note that for the equivalent single series resistance \(R_s \), we have
\[V = IR_s. \]
(12.4)

This implies that the total or equivalent series resistance \(R_s \) of three resistors is \(R_s = R_1 + R_2 + R_3 \).

This logic is valid in general for any number of resistors in series; thus, the total resistance \(R_s \) of a series connection is
\[R_s = R_1 + R_2 + R_3 + ..., \]
(12.5)

as proposed. Since all of the current must pass through each resistor, it experiences the resistance of each, and resistances in series simply add up.

Example 12.1 Calculating Resistance, Current, Voltage Drop, and Power Dissipation: Analysis of a Series Circuit

Suppose the voltage output of the battery in Figure 12.3 is 12.0 V, and the resistances are \(R_1 = 1.00 \, \Omega \), \(R_2 = 6.00 \, \Omega \), and \(R_3 = 13.0 \, \Omega \). (a) What is the total resistance? (b) Find the current. (c) Calculate the voltage drop in each resistor, and show these add to equal the voltage output of the source. (d) Calculate the power dissipated by each resistor. (e) Find the power output of the source, and show that it equals the total power dissipated by the resistors.

Strategy and Solution for (a)

The total resistance is simply the sum of the individual resistances, as given by this equation:
\[R_s = R_1 + R_2 + R_3 \]
(12.6)

\[= 1.00 \, \Omega + 6.00 \, \Omega + 13.0 \, \Omega \]
\[= 20.0 \, \Omega. \]

Strategy and Solution for (b)

The current is found using Ohm’s law, \(V = IR \). Entering the value of the applied voltage and the total resistance yields the current for the circuit:
\[I = \frac{V}{R_s} = \frac{12.0 \, V}{20.0 \, \Omega} = 0.600 \, A. \]
(12.7)

Strategy and Solution for (c)

The voltage—or \(IR \) drop—in a resistor is given by Ohm’s law. Entering the current and the value of the first resistance yields
\[V_1 = IR_1 = (0.600 \, A)(1.00 \, \Omega) = 0.600 \, V. \]
(12.8)

Similarly,
\[V_2 = IR_2 = (0.600 \, A)(6.00 \, \Omega) = 3.60 \, V \]
(12.9)

and
\[V_3 = IR_3 = (0.600 \, A)(13.0 \, \Omega) = 7.80 \, V. \]
(12.10)

Discussion for (c)

The three \(IR \) drops add to 12.0 V, as predicted:
\[V_1 + V_2 + V_3 = (0.600 + 3.60 + 7.80) \, V = 12.0 \, V. \]
(12.11)

Strategy and Solution for (d)

The easiest way to calculate power in watts (W) dissipated by a resistor in a DC circuit is to use **Joule’s law**, \(P = IV \), where \(P \) is electric power. In this case, each resistor has the same full current flowing through it. By substituting Ohm’s law \(V = IR \) into Joule’s law, we get the power dissipated by the first resistor as
\[P_1 = I^2R_1 = (0.600 \, A)^2(1.00 \, \Omega) = 0.360 \, W. \]
(12.12)

Similarly,
\[P_2 = I^2R_2 = (0.600 \, A)^2(6.00 \, \Omega) = 2.16 \, W \]
(12.13)

and
\[P_3 = I^2R_3 = (0.600 \, A)^2(13.0 \, \Omega) = 4.68 \, W. \]
(12.14)

Discussion for (d)
Power can also be calculated using either $P = IV$ or $P = \frac{V^2}{R}$, where V is the voltage drop across the resistor (not the full voltage of the source). The same values will be obtained.

Strategy and Solution for (e)

The easiest way to calculate power output of the source is to use $P = IV$, where V is the source voltage. This gives

$$P = (0.600 \text{ A})(12.0 \text{ V}) = 7.20 \text{ W}. \quad (12.15)$$

Discussion for (e)

Note, coincidentally, that the total power dissipated by the resistors is also 7.20 W, the same as the power put out by the source. That is,

$$P_1 + P_2 + P_3 = (0.360 + 2.16 + 4.68) \text{ W} = 7.20 \text{ W}. \quad (12.16)$$

Power is energy per unit time (watts), and so conservation of energy requires the power output of the source to be equal to the total power dissipated by the resistors.

Major Features of Resistors in Series

1. Series resistances add: $R_s = R_1 + R_2 + R_3 + \ldots$
2. The same current flows through each resistor in series.
3. Individual resistors in series do not get the total source voltage, but divide it.

Resistors in Parallel

Figure 12.4 shows resistors in **parallel**, wired to a voltage source. Resistors are in parallel when each resistor is connected directly to the voltage source by connecting wires having negligible resistance. Each resistor thus has the full voltage of the source applied to it.

Each resistor draws the same current it would if it alone were connected to the voltage source (provided the voltage source is not overloaded). For example, an automobile’s headlights, radio, and so on, are wired in parallel, so that they utilize the full voltage of the source and can operate completely independently. The same is true in your house, or any building. (See *Figure 12.4*(b).)
To find an expression for the equivalent parallel resistance \(R_p \), let us consider the currents that flow and how they are related to resistance. Since each resistor in the circuit has the full voltage, the currents flowing through the individual resistors are \(I_1 = \frac{V}{R_1}, \) \(I_2 = \frac{V}{R_2}, \) and \(I_3 = \frac{V}{R_3}. \) Conservation of charge implies that the total current \(I \) produced by the source is the sum of these currents:

\[
I = I_1 + I_2 + I_3. \tag{12.17}
\]

Substituting the expressions for the individual currents gives

\[
I = \frac{V}{R_1} + \frac{V}{R_2} + \frac{V}{R_3} = V \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \right) \tag{12.18}
\]

Note that Ohm's law for the equivalent single resistance gives

\[
I = \frac{V}{R_p} = V \left(\frac{1}{R_p} \right) \tag{12.19}
\]

The terms inside the parentheses in the last two equations must be equal. Generalizing to any number of resistors, the total resistance \(R_p \) of a parallel connection is related to the individual resistances by

\[
\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \ldots \tag{12.20}
\]

This relationship results in a total resistance \(R_p \) that is less than the smallest of the individual resistances. (This is seen in the next example.) When resistors are connected in parallel, more current flows from the source than would flow for any of them individually, and so the total resistance is lower.
Example 12.2 Calculating Resistance, Current, Power Dissipation, and Power Output: Analysis of a Parallel Circuit

Let the voltage output of the battery and resistances in the parallel connection in Figure 12.4 be the same as the previously considered series connection: \(V = 12.0 \text{ V} \), \(R_1 = 1.00 \ \Omega \), \(R_2 = 6.00 \ \Omega \), and \(R_3 = 13.0 \ \Omega \). (a) What is the total resistance? (b) Find the total current. (c) Calculate the currents in each resistor, and show these add to equal the total current output of the source. (d) Calculate the power dissipated by each resistor. (e) Find the power output of the source, and show that it equals the total power dissipated by the resistors.

Strategy and Solution for (a)
The total resistance for a parallel combination of resistors is found using the equation below. Entering known values gives

\[
\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} = \frac{1}{1.00 \ \Omega} + \frac{1}{6.00 \ \Omega} + \frac{1}{13.0 \ \Omega}.
\]

Thus,

\[
\frac{1}{R_p} = \frac{1}{1.00 \ \Omega} + \frac{1}{6.00 \ \Omega} + \frac{1}{13.0 \ \Omega} = 1.2436 \ \Omega.
\]

(Note that in these calculations, each intermediate answer is shown with an extra digit.)

We must invert this to find the total resistance \(R_p \). This yields

\[
R_p = \frac{1}{1.2436} \ \Omega = 0.8041 \ \Omega.
\]

The total resistance with the correct number of significant digits is \(R_p = 0.804 \ \Omega \).

Discussion for (a)
\(R_p \) is, as predicted, less than the smallest individual resistance.

Strategy and Solution for (b)
The total current can be found from Ohm’s law, substituting \(R_p \) for the total resistance. This gives

\[
I = \frac{V}{R_p} = \frac{12.0 \text{ V}}{0.8041 \ \Omega} = 14.92 \text{ A}.
\]

Discussion for (b)
Current \(I \) for each device is much larger than for the same devices connected in series (see the previous example). A circuit with parallel connections has a smaller total resistance than the resistors connected in series.

Strategy and Solution for (c)
The individual currents are easily calculated from Ohm’s law, since each resistor gets the full voltage. Thus,

\[
I_1 = \frac{V}{R_1} = \frac{12.0 \text{ V}}{1.00 \ \Omega} = 12.0 \text{ A}.
\]

Similarly,

\[
I_2 = \frac{V}{R_2} = \frac{12.0 \text{ V}}{6.00 \ \Omega} = 2.00 \text{ A}
\]

and

\[
I_3 = \frac{V}{R_3} = \frac{12.0 \text{ V}}{13.0 \ \Omega} = 0.92 \text{ A}.
\]

Discussion for (c)
The total current is the sum of the individual currents:

\[
I_1 + I_2 + I_3 = 14.92 \text{ A}.
\]

This is consistent with conservation of charge.

Strategy and Solution for (d)
The power dissipated by each resistor can be found using any of the equations relating power to current, voltage, and resistance, since all three are known. Let us use \(P = \frac{V^2}{R} \), since each resistor gets full voltage. Thus,

\[
P_1 = \frac{V^2}{R_1} = \frac{(12.0 \text{ V})^2}{1.00 \ \Omega} = 144 \text{ W}.
\]

Similarly,
\[P_2 = \frac{V^2}{R_2} = \frac{(12.0 \text{ V})^2}{6.00 \ \Omega} = 24.0 \text{ W} \quad \text{(12.30)} \]

and

\[P_3 = \frac{V^2}{R_3} = \frac{(12.0 \text{ V})^2}{13.0 \ \Omega} = 11.1 \text{ W}. \quad \text{(12.31)} \]

Discussion for (d)
The power dissipated by each resistor is considerably higher in parallel than when connected in series to the same voltage source.

Strategy and Solution for (e)
The total power can also be calculated in several ways. Choosing \(P = IV \), and entering the total current, yields

\[P = IV = (14.92 \text{ A})(12.0 \text{ V}) = 179 \text{ W}. \quad \text{(12.32)} \]

Discussion for (e)
Total power dissipated by the resistors is also 179 W:

\[P_1 + P_2 + P_3 = 144 \text{ W} + 24.0 \text{ W} + 11.1 \text{ W} = 179 \text{ W}. \quad \text{(12.33)} \]

This is consistent with the law of conservation of energy.

Overall Discussion
Note that both the currents and powers in parallel connections are greater than for the same devices in series.

Major Features of Resistors in Parallel

1. Parallel resistance is found from \(\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \ldots \), and it is smaller than any individual resistance in the combination.

2. Each resistor in parallel has the same full voltage of the source applied to it. (Power distribution systems most often use parallel connections to supply the myriad devices served with the same voltage and to allow them to operate independently.)

3. Parallel resistors do not each get the total current; they divide it.

Combinations of Series and Parallel

More complex connections of resistors are sometimes just combinations of series and parallel. These are commonly encountered, especially when wire resistance is considered. In that case, wire resistance is in series with other resistances that are in parallel.

Combinations of series and parallel can be reduced to a single equivalent resistance using the technique illustrated in Figure 12.5. Various parts are identified as either series or parallel, reduced to their equivalents, and further reduced until a single resistance is left. The process is more time consuming than difficult.

![Figure 12.5](image_url)

Figure 12.5 This combination of seven resistors has both series and parallel parts. Each is identified and reduced to an equivalent resistance, and these are further reduced until a single equivalent resistance is reached.

The simplest combination of series and parallel resistance, shown in Figure 12.6, is also the most instructive, since it is found in many applications. For example, \(R_1 \) could be the resistance of wires from a car battery to its electrical devices, which are in parallel. \(R_2 \) and \(R_3 \) could be the starter
motor and a passenger compartment light. We have previously assumed that wire resistance is negligible, but, when it is not, it has important effects, as the next example indicates.

Example 12.3 Calculating Resistance, IR Drop, Current, and Power Dissipation: Combining Series and Parallel Circuits

Figure 12.6 shows the resistors from the previous two examples wired in a different way—a combination of series and parallel. We can consider R_1 to be the resistance of wires leading to R_2 and R_3. (a) Find the total resistance. (b) What is the IR drop in R_1? (c) Find the current I_2 through R_2. (d) What power is dissipated by R_3?

Strategy and Solution for (a)

To find the total resistance, we note that R_2 and R_3 are in parallel and their combination R_p is in series with R_1. Thus the total (equivalent) resistance of this combination is

$$R_{\text{tot}} = R_1 + R_p.$$ \hfill (12.34)

First, we find R_p using the equation for resistors in parallel and entering known values:

$$\frac{1}{R_p} = \frac{1}{R_2} + \frac{1}{R_3} = \frac{1}{6.00 \ \Omega} + \frac{1}{13.0 \ \Omega} = \frac{0.2436}{\Omega}$$ \hfill (12.35)

Inverting gives

$$R_p = \frac{1}{0.2436} \Omega = 4.11 \ \Omega.$$ \hfill (12.36)

So the total resistance is

$$R_{\text{tot}} = R_1 + R_p = 1.00 \ \Omega + 4.11 \ \Omega = 5.11 \ \Omega.$$ \hfill (12.37)

Discussion for (a)

The total resistance of this combination is intermediate between the pure series and pure parallel values (20.0 Ω and 0.804 Ω, respectively) found for the same resistors in the two previous examples.

Strategy and Solution for (b)

To find the IR drop in R_1, we note that the full current I flows through R_1. Thus its IR drop is

$$V_1 = IR_1.$$ \hfill (12.38)

We must find I before we can calculate V_1. The total current I is found using Ohm's law for the circuit. That is,

$$I = \frac{V}{R_{\text{tot}}} = \frac{12.0 \ \text{V}}{5.11 \ \Omega} = 2.35 \ \text{A}.$$ \hfill (12.39)

Entering this into the expression above, we get

$$V_1 = IR_1 = (2.35 \ \text{A})(1.00 \ \Omega) = 2.35 \ \text{V}.$$ \hfill (12.40)

Discussion for (b)

The voltage applied to R_2 and R_3 is less than the total voltage by an amount V_1. When wire resistance is large, it can significantly affect the operation of the devices represented by R_2 and R_3.

Strategy and Solution for (c)

To find the current through R_2, we must first find the voltage applied to it. We call this voltage V_p, because it is applied to a parallel combination of resistors. The voltage applied to both R_2 and R_3 is reduced by the amount V_1, and so it is
\[V_p = V - V_1 = 12.0 \text{ V} - 2.35 \text{ V} = 9.65 \text{ V}. \]

(12.41)

Now the current \(I_2 \) through resistance \(R_2 \) is found using Ohm’s law:

\[I_2 = \frac{V_p}{R_2} = \frac{9.65 \text{ V}}{6.00 \Omega} = 1.61 \text{ A}. \]

(12.42)

Discussion for (c)

The current is less than the 2.00 A that flowed through \(R_2 \) when it was connected in parallel to the battery in the previous parallel circuit example.

Strategy and Solution for (d)

The power dissipated by \(R_2 \) is given by

\[P_2 = (I_2)^2 R_2 = (1.61 \text{ A})^2 (6.00 \Omega) = 15.5 \text{ W}. \]

(12.43)

Discussion for (d)

The power is less than the 24.0 W this resistor dissipated when connected in parallel to the 12.0-V source.

Practical Implications

One implication of this last example is that resistance in wires reduces the current and power delivered to a resistor. If wire resistance is relatively large, as in a worn (or a very long) extension cord, then this loss can be significant. If a large current is drawn, the \(IR \) drop in the wires can also be significant.

For example, when you are rummaging in the refrigerator and the motor comes on, the refrigerator light dims momentarily. Similarly, you can see the passenger compartment light dim when you start the engine of your car (although this may be due to resistance inside the battery itself).

What is happening in these high-current situations is illustrated in **Figure 12.7**. The device represented by \(R_3 \) has a very low resistance, and so when it is switched on, a large current flows. This increased current causes a larger \(IR \) drop in the wires represented by \(R_1 \), reducing the voltage across the light bulb (which is \(R_2 \)), which then dims noticeably.

![Figure 12.7](image)

Figure 12.7 Why do lights dim when a large appliance is switched on? The answer is that the large current the appliance motor draws causes a significant \(IR \) drop in the wires and reduces the voltage across the light.

Check Your Understanding

Can any arbitrary combination of resistors be broken down into series and parallel combinations? See if you can draw a circuit diagram of resistors that cannot be broken down into combinations of series and parallel.

Solution

No, there are many ways to connect resistors that are not combinations of series and parallel, including loops and junctions. In such cases Kirchhoff’s rules, to be introduced in [Kirchhoff’s Rules](https://legacy.cnx.org/content/m42359/latest) will allow you to analyze the circuit.

Problem-Solving Strategies for Series and Parallel Resistors

1. Draw a clear circuit diagram, labeling all resistors and voltage sources. This step includes a list of the knowns for the problem, since they are labeled in your circuit diagram.

2. Identify exactly what needs to be determined in the problem (identify the unknowns). A written list is useful.
3. Determine whether resistors are in series, parallel, or a combination of both series and parallel. Examine the circuit diagram to make this assessment. Resistors are in series if the same current must pass sequentially through them.

4. Use the appropriate list of major features for series or parallel connections to solve for the unknowns. There is one list for series and another for parallel. If your problem has a combination of series and parallel, reduce it in steps by considering individual groups of series or parallel connections, as done in this module and the examples. Special note: When finding \(R \), the reciprocal must be taken with care.

5. Check to see whether the answers are reasonable and consistent. Units and numerical results must be reasonable. Total series resistance should be greater, whereas total parallel resistance should be smaller, for example. Power should be greater for the same devices in parallel compared with series, and so on.

12.2 Examples: Battery Terminal Voltage, Animals as Detectors & Solar Cells

When you forget to turn off your car lights, they slowly dim as the battery runs down. Why don’t they simply blink off when the battery’s energy is gone? Their gradual dimming implies that battery output voltage decreases as the battery is depleted.

Furthermore, if you connect an excessive number of 12-V lights in parallel to a car battery, they will be dim even when the battery is fresh and even if the wires to the lights have very low resistance. This implies that the battery’s output voltage is reduced by the overload.

The reason for the decrease in output voltage for depleted or overloaded batteries is that all voltage sources have two fundamental parts—a source of electrical energy and an **internal resistance**. Let us examine both.

Electromotive Force

You can think of many different types of voltage sources. Batteries themselves come in many varieties. There are many types of mechanical/electrical generators, driven by many different energy sources, ranging from nuclear to wind. Solar cells create voltages directly from light, while thermoelectric devices create voltage from temperature differences.

A few voltage sources are shown in Figure 12.8. All such devices create a **potential difference** and can supply current if connected to a resistance. On the small scale, the potential difference creates an electric field that exerts force on charges, causing current. We thus use the name **electromotive force**, abbreviated emf.

Emf is not a force at all; it is a special type of potential difference. To be precise, the electromotive force (emf) is the potential difference of a source when no current is flowing. Units of emf are volts.

![Figure 12.8](https://example.com/figure12_8.png) A variety of voltage sources (clockwise from top left): the Brazos Wind Farm in Fluvanna, Texas (credit: Leaflet, Wikimedia Commons); the Krasnoyarsk Dam in Russia (credit: Alex Polezhaev); a solar farm (credit: U.S. Department of Energy); and a group of nickel metal hydride batteries (credit: Tisa Monto). The voltage output of each depends on its construction and load, and equals emf only if there is no load.

Electromotive force is directly related to the source of potential difference, such as the particular combination of chemicals in a battery. However, emf differs from the voltage output of the device when current flows. The voltage across the terminals of a battery, for example, is less than the emf when the battery supplies current, and it declines further as the battery is depleted or loaded down. However, if the device’s output voltage can be measured without drawing current, then output voltage will equal emf (even for a very depleted battery).

Internal Resistance

As noted before, a 12-V truck battery is physically larger, contains more charge and energy, and can deliver a larger current than a 12-V motorcycle battery. Both are lead-acid batteries with identical emf, but, because of its size, the truck battery has a smaller internal resistance \(r \). Internal resistance is the inherent resistance to the flow of current within the source itself.

![Figure 12.9](https://example.com/figure12_9.png) is a schematic representation of the two fundamental parts of any voltage source. The emf (represented by a script \(E \) in the figure) and internal resistance \(r \) are in series. The smaller the internal resistance for a given emf, the more current and the more power the source can supply.
Any voltage source (in this case, a carbon-zinc dry cell) has an emf related to its source of potential difference, and an internal resistance r related to its construction. (Note that the script E stands for emf.) Also shown are the output terminals across which the terminal voltage V is measured. Since $V = \text{emf} - Ir$, terminal voltage equals emf only if there is no current flowing.

The internal resistance r can behave in complex ways. As noted, r increases as a battery is depleted. But internal resistance may also depend on the magnitude and direction of the current through a voltage source, its temperature, and even its history. The internal resistance of rechargeable nickel-cadmium cells, for example, depends on how many times and how deeply they have been depleted.

Things Great and Small: The Submicroscopic Origin of Battery Potential

Various types of batteries are available, with emfs determined by the combination of chemicals involved. We can view this as a molecular reaction (what much of chemistry is about) that separates charge.

The lead-acid battery used in cars and other vehicles is one of the most common types. A single cell (one of six) of this battery is seen in **Figure 12.10**. The cathode (positive) terminal of the cell is connected to a lead oxide plate, while the anode (negative) terminal is connected to a lead plate. Both plates are immersed in sulfuric acid, the electrolyte for the system.

Figure 12.10 Artist's conception of a lead-acid cell. Chemical reactions in a lead-acid cell separate charge, sending negative charge to the anode, which is connected to the lead plates. The lead oxide plates are connected to the positive or cathode terminal of the cell. Sulfuric acid conducts the charge as well as participating in the chemical reaction.

The details of the chemical reaction are left to the reader to pursue in a chemistry text, but their results at the molecular level help explain the potential created by the battery. **Figure 12.11** shows the result of a single chemical reaction. Two electrons are placed on the anode, making it negative, provided that the cathode supplied two electrons. This leaves the cathode positively charged, because it has lost two electrons. In short, a separation of charge has been driven by a chemical reaction.

Note that the reaction will not take place unless there is a complete circuit to allow two electrons to be supplied to the cathode. Under many circumstances, these electrons come from the anode, flow through a resistance, and return to the cathode. Note also that since the chemical reactions involve substances with resistance, it is not possible to create the emf without an internal resistance.

Figure 12.11 Artist's conception of two electrons being forced onto the anode of a cell and two electrons being removed from the cathode of the cell. The chemical reaction in a lead-acid battery places two electrons on the anode and removes two from the cathode. It requires a closed circuit to proceed, since the two electrons must be supplied to the cathode.
Why are the chemicals able to produce a unique potential difference? Quantum mechanical descriptions of molecules, which take into account the types of atoms and numbers of electrons in them, are able to predict the energy states they can have and the energies of reactions between them. In the case of a lead-acid battery, an energy of 2 eV is given to each electron sent to the anode. Voltage is defined as the electrical potential energy divided by charge: \(V = \frac{PE}{q} \). An electron volt is the energy given to a single electron by a voltage of 1 V. So the voltage here is 2 V, since 2 eV is given to each electron. It is the energy produced in each molecular reaction that produces the voltage. A different reaction produces a different energy and, hence, a different voltage.

Terminal Voltage

The voltage output of a device is measured across its terminals and, thus, is called its **terminal voltage** \(V \). Terminal voltage is given by

\[
V = \text{emf} - Ir,
\]

where \(r \) is the internal resistance and \(I \) is the current flowing at the time of the measurement.

\(I \) is positive if current flows away from the positive terminal, as shown in Figure 12.9. You can see that the larger the current, the smaller the terminal voltage. And it is likewise true that the larger the internal resistance, the smaller the terminal voltage.

Suppose a load resistance \(R_{\text{load}} \) is connected to a voltage source, as in Figure 12.12. Since the resistances are in series, the total resistance in the circuit is \(R_{\text{load}} + r \). Thus the current is given by Ohm’s law to be

\[
I = \frac{\text{emf}}{R_{\text{load}} + r}.
\]

![Figure 12.12 Schematic of a voltage source and its load \(R_{\text{load}} \). Since the internal resistance \(r \) is in series with the load, it can significantly affect the terminal voltage and current delivered to the load. (Note that the script \(E \) stands for emf.)](image)

We see from this expression that the smaller the internal resistance \(r \), the greater the current the voltage source supplies to its load \(R_{\text{load}} \). As batteries are depleted, \(r \) increases. If \(r \) becomes a significant fraction of the load resistance, then the current is significantly reduced, as the following example illustrates.

Example 12.4 Calculating Terminal Voltage, Power Dissipation, Current, and Resistance: Terminal Voltage and Load

A certain battery has a 12.0-V emf and an internal resistance of 0.100 Ω. (a) Calculate its terminal voltage when connected to a 10.0-Ω load. (b) What is the terminal voltage when connected to a 0.500-Ω load? (c) What power does the 0.500-Ω load dissipate? (d) If the internal resistance grows to 0.500 Ω, find the current, terminal voltage, and power dissipated by a 0.500-Ω load.

Strategy

The analysis above gave an expression for current when internal resistance is taken into account. Once the current is found, the terminal voltage can be calculated using the equation \(V = \text{emf} - Ir \). Once current is found, the power dissipated by a resistor can also be found.

Solution for (a)

Entering the given values for the emf, load resistance, and internal resistance into the expression above yields

\[
I = \frac{\text{emf}}{R_{\text{load}} + r} = \frac{12.0 \text{ V}}{10.1 \Omega} = 1.188 \text{ A}.
\]

Enter the known values into the equation \(V = \text{emf} - Ir \) to get the terminal voltage:

\[
V = \text{emf} - Ir = 12.0 \text{ V} - (1.188 \text{ A})(0.100 \Omega) = 11.9 \text{ V}.
\]

Discussion for (a)

The terminal voltage here is only slightly lower than the emf, implying that 10.0 Ω is a light load for this particular battery.

Solution for (b)
Similarly, with $R_{\text{load}} = 0.500 \ \Omega$, the current is

$$I = \frac{\text{emf}}{R_{\text{load}} + r} = \frac{12.0 \ \text{V}}{0.600 \ \Omega} = 20.0 \ \text{A}.$$ \hspace{1cm} (12.48)

The terminal voltage is now

$$V = \text{emf} - Ir = 12.0 \ \text{V} - (20.0 \ \text{A})(0.100 \ \Omega)$$

$$= 10.0 \ \text{V}.$$ \hspace{1cm} (12.49)

Discussion for (b)

This terminal voltage exhibits a more significant reduction compared with emf, implying $0.500 \ \Omega$ is a heavy load for this battery.

Solution for (c)

The power dissipated by the $0.500 - \Omega$ load can be found using the formula $P = I^2R$. Entering the known values gives

$$P_{\text{load}} = I^2R_{\text{load}} = (20.0 \ \text{A})^2(0.500 \ \Omega) = 2.00 \times 10^2 \ \text{W}.$$ \hspace{1cm} (12.50)

Discussion for (c)

Note that this power can also be obtained using the expressions $\frac{V^2}{R}$ or IV, where V is the terminal voltage (10.0 V in this case).

Solution for (d)

Here the internal resistance has increased, perhaps due to the depletion of the battery, to the point where it is as great as the load resistance. As before, we first find the current by entering the known values into the expression, yielding

$$I = \frac{\text{emf}}{R_{\text{load}} + r} = \frac{12.0 \ \text{V}}{1.00 \ \Omega} = 12.0 \ \text{A}.$$ \hspace{1cm} (12.51)

Now the terminal voltage is

$$V = \text{emf} - Ir = 12.0 \ \text{V} - (12.0 \ \text{A})(0.500 \ \Omega)$$

$$= 6.00 \ \text{V},$$ \hspace{1cm} (12.52)

and the power dissipated by the load is

$$P_{\text{load}} = I^2R_{\text{load}} = (12.0 \ \text{A})^2(0.500 \ \Omega) = 72.0 \ \text{W}.$$ \hspace{1cm} (12.53)

Discussion for (d)

We see that the increased internal resistance has significantly decreased terminal voltage, current, and power delivered to a load.

Battery testers, such as those in **Figure 12.13**, use small load resistors to intentionally draw current to determine whether the terminal voltage drops below an acceptable level. They really test the internal resistance of the battery. If internal resistance is high, the battery is weak, as evidenced by its low terminal voltage.

Figure 12.13 These two battery testers measure terminal voltage under a load to determine the condition of a battery. The large device is being used by a U.S. Navy electronics technician to test large batteries aboard the aircraft carrier USS Nimitz and has a small resistance that can dissipate large amounts of power. (credit: U.S. Navy photo by Photographer’s Mate Airman Jason A. Johnston) The small device is used on small batteries and has a digital display to indicate the acceptability of their terminal voltage. (credit: Keith Williamson)

Some batteries can be recharged by passing a current through them in the direction opposite to the current they supply to a resistance. This is done routinely in cars and batteries for small electrical appliances and electronic devices, and is represented pictorially in **Figure 12.14**. The voltage output of the battery charger must be greater than the emf of the battery to reverse current through it. This will cause the terminal voltage of the battery to be greater than the emf, since $V = \text{emf} - Ir$, and I is now negative.
Figure 12.14 A car battery charger reverses the normal direction of current through a battery, reversing its chemical reaction and replenishing its chemical potential.

Multiple Voltage Sources

There are two voltage sources when a battery charger is used. Voltage sources connected in series are relatively simple. When voltage sources are in series, their internal resistances add and their emfs add algebraically. (See Figure 12.15.) Series connections of voltage sources are common—for example, in flashlights, toys, and other appliances. Usually, the cells are in series in order to produce a larger total emf.

But if the cells oppose one another, such as when one is put into an appliance backward, the total emf is less, since it is the algebraic sum of the individual emfs.

A battery is a multiple connection of voltaic cells, as shown in Figure 12.16. The disadvantage of series connections of cells is that their internal resistances add. One of the authors once owned a 1957 MGA that had two 6-V batteries in series, rather than a single 12-V battery. This arrangement produced a large internal resistance that caused him many problems in starting the engine.

Figure 12.15 A series connection of two voltage sources. The emfs (each labeled with a script E) and internal resistances add, giving a total emf of \(\text{emf}_1 + \text{emf}_2 \) and a total internal resistance of \(r_1 + r_2 \).

Figure 12.16 Batteries are multiple connections of individual cells, as shown in this modern rendition of an old print. Single cells, such as AA or C cells, are commonly called batteries, although this is technically incorrect.

If the series connection of two voltage sources is made into a complete circuit with the emfs in opposition, then a current of magnitude

\[
I = \frac{(\text{emf}_1 - \text{emf}_2)}{r_1 + r_2}
\]

flows. See Figure 12.17, for example, which shows a circuit exactly analogous to the battery charger discussed above. If two voltage sources in series with emfs in the same sense are connected to a load \(R_{\text{load}} \), as in Figure 12.18, then

\[
I = \frac{(\text{emf}_1 + \text{emf}_2)}{r_1 + r_2 + R_{\text{load}}}
\]

flows.
Take-Home Experiment: Flashlight Batteries

Find a flashlight that uses several batteries and find new and old batteries. Based on the discussions in this module, predict the brightness of the flashlight when different combinations of batteries are used. Do your predictions match what you observe? Now place new batteries in the flashlight and leave the flashlight switched on for several hours. Is the flashlight still quite bright? Do the same with the old batteries. Is the flashlight as bright when left on for the same length of time with old and new batteries? What does this say for the case when you are limited in the number of available new batteries?

Figure 12.17 These two voltage sources are connected in series with their emfs in opposition. Current flows in the direction of the greater emf and is limited to

\[
I = \frac{\text{emf}_1 - \text{emf}_2}{r_1 + r_2}
\]

by the sum of the internal resistances. (Note that each emf is represented by script E in the figure.) A battery charger connected to a battery is an example of such a connection. The charger must have a larger emf than the battery to reverse current through it.

Figure 12.18 This schematic represents a flashlight with two cells (voltage sources) and a single bulb (load resistance) in series. The current that flows is

\[
I = \frac{\text{emf}_1 + \text{emf}_2}{r_1 + r_2 + R_{\text{load}}}
\]

(Note that each emf is represented by script E in the figure.)

Here, \(I = \frac{\text{emf}}{(r_{\text{tot}} + R_{\text{load}})} \) flows through the load, and \(r_{\text{tot}} \) is less than those of the individual batteries. For example, some diesel-powered cars use two 12-V batteries in parallel; they produce a total emf of 12 V but can deliver the larger current needed to start a diesel engine.

Figure 12.19 Two voltage sources with identical emfs in parallel and connected to a load resistance. In this simple case, the total emf is the same as the individual emfs. But the total internal resistance is reduced, since the internal resistances are in parallel. The parallel connection thus can produce a larger current.

Here, \(I = \frac{\text{emf}}{(r_{\text{tot}} + R_{\text{load}})} \) flows through the load.

Figure 12.19 Two voltage sources with identical emfs (each labeled by script E) connected in parallel produce the same emf but have a smaller total internal resistance than the individual sources. Parallel combinations are often used to deliver more current. Here \(I = \frac{\text{emf}}{(r_{\text{tot}} + R_{\text{load}})} \) flows through the load.
Animals as Electrical Detectors

A number of animals both produce and detect electrical signals. Fish, sharks, platypuses, and echidnas (spiny anteaters) all detect electric fields generated by nerve activity in prey. Electric eels produce their own emf through biological cells (electric organs) called electroplaques, which are arranged in both series and parallel as a set of batteries.

Electroplaques are flat, disk-like cells; those of the electric eel have a voltage of 0.15 V across each one. These cells are usually located toward the head or tail of the animal, although in the case of the electric eel, they are found along the entire body. The electroplaques in the South American eel are arranged in 140 rows, with each row stretching horizontally along the body and containing 5,000 electroplaques. This can yield an emf of approximately 600 V, and a current of 1 A—deadly.

The mechanism for detection of external electric fields is similar to that for producing nerve signals in the cell through depolarization and repolarization—the movement of ions across the cell membrane. Within the fish, weak electric fields in the water produce a current in a gel-filled canal that runs from the skin to sensing cells, producing a nerve signal. The Australian platypus, one of the very few mammals that lay eggs, can detect fields of 30 mV/m, while sharks have been found to be able to sense a field in their snouts as small as 100 mV/m (Figure 12.20). Electric eels use their own electric fields produced by the electroplaques to stun their prey or enemies.

Figure 12.20 Sand tiger sharks (Carcharias taurus), like this one at the Minnesota Zoo, use electroreceptors in their snouts to locate prey. (credit: Jim Winstead, Flickr)

Solar Cell Arrays

Another example dealing with multiple voltage sources is that of combinations of solar cells—wired in both series and parallel combinations to yield a desired voltage and current. Photovoltaic generation (PV), the conversion of sunlight directly into electricity, is based upon the photoelectric effect, in which photons hitting the surface of a solar cell create an electric current in the cell.

Most solar cells are made from pure silicon—either as single-crystal silicon, or as a thin film of silicon deposited upon a glass or metal backing. Most single cells have a voltage output of about 0.5 V, while the current output is a function of the amount of sunlight upon the cell (the incident solar radiation—the insolation). Under bright noon sunlight, a current of about 100 mA/cm² of cell surface area is produced by typical single-crystal cells.

Individual solar cells are connected electrically in modules to meet electrical-energy needs. They can be wired together in series or in parallel—connected like the batteries discussed earlier. A solar-cell array or module usually consists of between 36 and 72 cells, with a power output of 50 W to 140 W.

The output of the solar cells is direct current. For most uses in a home, AC is required, so a device called an inverter must be used to convert the DC to AC. Any extra output can then be passed on to the outside electrical grid for sale to the utility.

Take-Home Experiment: Virtual Solar Cells

One can assemble a “virtual” solar cell array by using playing cards, or business or index cards, to represent a solar cell. Combinations of these cards in series and/or parallel can model the required array output. Assume each card has an output of 0.5 V and a current (under bright light) of 2 A. Using your cards, how would you arrange them to produce an output of 6 A at 3 V (18 W)?

Suppose you were told that you needed only 18 W (but no required voltage). Would you need more cards to make this arrangement?

12.3 DC Voltmeters and Ammeters

Voltmeters measure voltage, whereas ammeters measure current. Some of the meters in automobile dashboards, digital cameras, cell phones, and tuner-amplifiers are voltmeters or ammeters. (See Figure 12.21.) The internal construction of the simplest of these meters and how they are connected to the system they monitor give further insight into applications of series and parallel connections.
Figure 12.21 The fuel and temperature gauges (far right and far left, respectively) in this 1996 Volkswagen are voltmeters that register the voltage output of “sender” units, which are hopefully proportional to the amount of gasoline in the tank and the engine temperature. (credit: Christian Giersing)

Voltmeters are connected in parallel with whatever device’s voltage is to be measured. A parallel connection is used because objects in parallel experience the same potential difference. (See Figure 12.22, where the voltmeter is represented by the symbol V.)

Ammeters are connected in series with whatever device’s current is to be measured. A series connection is used because objects in series have the same current passing through them. (See Figure 12.23, where the ammeter is represented by the symbol A.)

![Diagram of parallel and series connections]

Figure 12.22 (a) To measure potential differences in this series circuit, the voltmeter (V) is placed in parallel with the voltage source or either of the resistors. Note that terminal voltage is measured between points a and b. It is not possible to connect the voltmeter directly across the emf without including its internal resistance, r. (b) A digital voltmeter in use. (credit: Messtechniker, Wikimedia Commons)
Analog Meters: Galvanometers

Analog meters have a needle that swivels to point at numbers on a scale, as opposed to digital meters, which have numerical readouts similar to a hand-held calculator. The heart of most analog meters is a device called a galvanometer, denoted by \(G \). Current flow through a galvanometer, \(I_G \), produces a proportional needle deflection. (This deflection is due to the force of a magnetic field upon a current-carrying wire.) The two crucial characteristics of a given galvanometer are its resistance and current sensitivity. Current sensitivity is the current that gives a full-scale deflection of the galvanometer's needle, the maximum current that the instrument can measure. For example, a galvanometer with a current sensitivity of 50 μA has a maximum deflection of its needle when 50 μA flows through it, reads half-scale when 25 μA flows through it, and so on.

If such a galvanometer has a 25-Ω resistance, then a voltage of only \(V = IR = (50 \, \mu A)(25 \, \Omega) = 1.25 \, mV \) produces a full-scale reading. By connecting resistors to this galvanometer in different ways, you can use it as either a voltmeter or ammeter that can measure a broad range of voltages or currents.

Galvanometer as Voltmeter

Figure 12.24 shows how a galvanometer can be used as a voltmeter by connecting it in series with a large resistance, \(R \). The value of the resistance \(R \) is determined by the maximum voltage to be measured. Suppose you want 10 V to produce a full-scale deflection of a voltmeter containing a 25-Ω galvanometer with a 50-μA sensitivity. Then 10 V applied to the meter must produce a current of 50 μA. The total resistance must be

\[
R_{\text{tot}} = R + r = \frac{V}{I} = \frac{10 \, V}{50 \, \mu A} = 200 \, k\Omega, \text{ or} \]

\[
R = R_{\text{tot}} - r = 200 \, k\Omega - 25 \, \Omega \approx 200 \, k\Omega.
\]

(\(R \) is so large that the galvanometer resistance, \(r \), is nearly negligible.) Note that 5 V applied to this voltmeter produces a half-scale deflection by producing a 25-μA current through the meter, and so the voltmeter's reading is proportional to voltage as desired.

This voltmeter would not be useful for voltages less than about half a volt, because the meter deflection would be small and difficult to read accurately. For other voltage ranges, other resistances are placed in series with the galvanometer. Many meters have a choice of scales. That choice involves switching an appropriate resistance into series with the galvanometer.

Galvanometer as Ammeter

The same galvanometer can also be made into an ammeter by placing it in parallel with a small resistance \(R \), often called the shunt resistance, as shown in Figure 12.25. Since the shunt resistance is small, most of the current passes through it, allowing an ammeter to measure currents much greater than those producing a full-scale deflection of the galvanometer.

Suppose, for example, an ammeter is needed that gives a full-scale deflection for 1.0 A, and contains the same 25-Ω galvanometer with its 50-μA sensitivity. Since \(R \) and \(r \) are in parallel, the voltage across them is the same.

These \(IR \) drops are \(IR = I_G r \) so that \(IR = \frac{I_G}{I} = R \). Solving for \(R \), and noting that \(I_G \) is 50 μA and \(I \) is 0.999950 A, we have

\[
R = \frac{I_G}{I} = \frac{25 \, \Omega}{50 \, \mu A / 0.999950 \, A} = 1.25 \times 10^{-3} \, \Omega.
\]
Taking Measurements Alters the Circuit

When you use a voltmeter or ammeter, you are connecting another resistor to an existing circuit and, thus, altering the circuit. Ideally, voltmeters and ammeters do not appreciably affect the circuit, but it is instructive to examine the circumstances under which they do or do not interfere.

First, consider the voltmeter, which is always placed in parallel with the device being measured. Very little current flows through the voltmeter if its resistance is a few orders of magnitude greater than the device, and so the circuit is not appreciably affected. (See Figure 12.26(a).) A large resistance in parallel with a small one has a combined resistance essentially equal to the small one.) If, however, the voltmeter’s resistance is comparable to that of the device being measured, then the two in parallel have a smaller resistance, appreciably affecting the circuit. (See Figure 12.26(b).) The voltage across the device is not the same as when the voltmeter is out of the circuit.

Figure 12.26 (a) A voltmeter having a resistance much larger than the device ($R_{\text{V}} \gg R$) with which it is in parallel produces a parallel resistance essentially the same as the device and does not appreciably affect the circuit being measured. (b) Here the voltmeter has the same resistance as the device ($R_{\text{V}} \approx R$), so that the parallel resistance is half of what it is when the voltmeter is not connected. This is an example of a significant alteration of the circuit and is to be avoided.

An ammeter is placed in series in the branch of the circuit being measured, so that its resistance adds to that branch. Normally, the ammeter’s resistance is very small compared with the resistances of the devices in the circuit, and so the extra resistance is negligible. (See Figure 12.27(a).) However, if very small load resistances are involved, or if the ammeter is not as low in resistance as it should be, then the total series resistance is significantly greater, and the current in the branch being measured is reduced. (See Figure 12.27(b).)

A practical problem can occur if the ammeter is connected incorrectly. If it was put in parallel with the resistor to measure the current in it, you could possibly damage the meter; the low resistance of the ammeter would allow most of the current in the circuit to go through the galvanometer, and this current would be larger since the effective resistance is smaller.

Figure 12.27 (a) An ammeter normally has such a small resistance that the total series resistance in the branch being measured is not appreciably increased. The circuit is essentially unaltered compared with when the ammeter is absent. (b) Here the ammeter’s resistance is the same as that of the branch, so that the total resistance is doubled and the current is half what it is without the ammeter. This significant alteration of the circuit is to be avoided.

One solution to the problem of voltmeters and ammeters interfering with the circuits being measured is to use galvanometers with greater sensitivity. This allows construction of voltmeters with greater resistance and ammeters with smaller resistance than when less sensitive galvanometers are used.

There are practical limits to galvanometer sensitivity, but it is possible to get analog meters that make measurements accurate to a few percent. Note that the inaccuracy comes from altering the circuit, not from a fault in the meter.

Connections: Limits to Knowledge

Making a measurement alters the system being measured in a manner that produces uncertainty in the measurement. For macroscopic systems, such as the circuits discussed in this module, the alteration can usually be made negligibly small, but it cannot be eliminated entirely. For submicroscopic systems, such as atoms, nuclei, and smaller particles, measurement alters the system in a manner that cannot be made...
arbitrarily small. This actually limits knowledge of the system—even limiting what nature can know about itself. We shall see profound implications of this when the Heisenberg uncertainty principle is discussed in the modules on quantum mechanics.

There is another measurement technique based on drawing no current at all and, hence, not altering the circuit at all. These are called null measurements and are the topic of Null Measurements (https://legacy.cnx.org/content/m42362/latest). Digital meters that employ solid-state electronics and null measurements can attain accuracies of one part in 10^6.

Check Your Understanding

Digital meters are able to detect smaller currents than analog meters employing galvanometers. How does this explain their ability to measure voltage and current more accurately than analog meters?

Solution

Since digital meters require less current than analog meters, they alter the circuit less than analog meters. Their resistance as a voltmeter can be far greater than an analog meter, and their resistance as an ammeter can be far less than an analog meter. Consult Figure 12.22 and Figure 12.23 and their discussion in the text.

PhET Explorations: Circuit Construction Kit (DC Only), Virtual Lab

Stimulate a neuron and monitor what happens. Pause, rewind, and move forward in time in order to observe the ions as they move across the neuron membrane.

PhET Interactive Simulation

Figure 12.28 Circuit Construction Kit (DC Only), Virtual Lab (http://legacy.cnx.org/content/m42360/1.6/circuit-construction-kit-dc-virtual-lab_en.jar)

Glossary

- **ammeter**: an instrument that measures current
- **analog meter**: a measuring instrument that gives a readout in the form of a needle movement over a marked gauge
- **current**: the flow of charge through an electric circuit past a given point of measurement
- **current sensitivity**: the maximum current that a galvanometer can read
- **digital meter**: a measuring instrument that gives a readout in a digital form
- **electromotive force (emf)**: the potential difference of a source of electricity when no current is flowing; measured in volts
- **full-scale deflection**: the maximum deflection of a galvanometer needle, also known as current sensitivity; a galvanometer with a full-scale deflection of 50 μA has a maximum deflection of its needle when 50 μA flows through it
- **galvanometer**: an analog measuring device, denoted by G, that measures current flow using a needle deflection caused by a magnetic field force acting upon a current-carrying wire
- **internal resistance**: the amount of resistance within the voltage source
- **Joule's law**: the relationship between potential electrical power, voltage, and resistance in an electrical circuit, given by: $P_e = IV$
- **Ohm's law**: the relationship between current, voltage, and resistance within an electrical circuit: $V = IR$
- **parallel**: the wiring of resistors or other components in an electrical circuit such that each component receives an equal voltage from the power source; often pictured in a ladder-shaped diagram, with each component on a rung of the ladder
- **potential difference**: the difference in electric potential between two points in an electric circuit, measured in volts
- **resistance**: causing a loss of electrical power in a circuit
- **resistor**: a component that provides resistance to the current flowing through an electrical circuit
- **series**: a sequence of resistors or other components wired into a circuit one after the other
- **shunt resistance**: a small resistance R placed in parallel with a galvanometer G to produce an ammeter; the larger the current to be measured, the smaller R must be; most of the current flowing through the meter is shunted through R to protect the galvanometer
- **terminal voltage**: the voltage measured across the terminals of a source of potential difference
voltage: the electrical potential energy per unit charge; electric pressure created by a power source, such as a battery

voltage drop: the loss of electrical power as a current travels through a resistor, wire or other component

voltmeter: an instrument that measures voltage

Section Summary

12.1 Resistors in Series and Parallel

- The total resistance of an electrical circuit with resistors wired in a series is the sum of the individual resistances: \(R_s = R_1 + R_2 + R_3 + \ldots \)
- Each resistor in a series circuit has the same amount of current flowing through it.
- The voltage drop, or power dissipation, across each individual resistor in a series is different, and their combined total adds up to the power source input.
- The total resistance of an electrical circuit with resistors wired in parallel is less than the lowest resistance of any of the components and can be determined using the formula:

\[
\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \ldots
\]

- Each resistor in a parallel circuit has the same full voltage of the source applied to it.
- The current flowing through each resistor in a parallel circuit is different, depending on the resistance.
- If a more complex connection of resistors is a combination of series and parallel, it can be reduced to a single equivalent resistance by identifying its various parts as series or parallel, reducing each to its equivalent, and continuing until a single resistance is eventually reached.

12.2 Examples: Battery Terminal Voltage, Animals as Detectors & Solar Cells

- All voltage sources have two fundamental parts—a source of electrical energy that has a characteristic electromotive force (emf), and an internal resistance \(r \).
- The emf is the potential difference of a source when no current is flowing.
- The numerical value of the emf depends on the source of potential difference.
- The internal resistance \(r \) of a voltage source affects the output voltage when a current flows.
- The voltage output of a device is called its terminal voltage \(V \) and is given by \(V = \text{emf} - Ir \), where \(I \) is the electric current and is positive when flowing away from the positive terminal of the voltage source.
- When multiple voltage sources are in series, their internal resistances add and their emfs add algebraically.
- Solar cells can be wired in series or parallel to provide increased voltage or current, respectively.

12.3 DC Voltmeters and Ammeters

- Voltmeters measure voltage, and ammeters measure current.
- A voltmeter is placed in parallel with the voltage source to receive full voltage and must have a large resistance to limit its effect on the circuit.
- An ammeter is placed in series to get the full current flowing through a branch and must have a small resistance to limit its effect on the circuit.
- Both can be based on the combination of a resistor and a galvanometer, a device that gives an analog reading of current.
- Standard voltmeters and ammeters alter the circuit being measured and are thus limited in accuracy.

Conceptual Questions

12.1 Resistors in Series and Parallel

1. A switch has a variable resistance that is nearly zero when closed and extremely large when open, and it is placed in series with the device it controls. Explain the effect the switch in Figure 12.29 has on current when open and when closed.

![Figure 12.29](image-url)

Figure 12.29 A switch is ordinarily in series with a resistance and voltage source. Ideally, the switch has nearly zero resistance when closed but has an extremely large resistance when open. (Note that in this diagram, the script E represents the voltage (or electromotive force) of the battery.)

2. What is the voltage across the open switch in Figure 12.29?

3. There is a voltage across an open switch, such as in Figure 12.29. Why, then, is the power dissipated by the open switch small?

4. Why is the power dissipated by a closed switch, such as in Figure 12.29, small?

5. A student in a physics lab mistakenly wired a light bulb, battery, and switch as shown in Figure 12.30. Explain why the bulb is on when the switch is open, and off when the switch is closed. (Do not try this—it is hard on the battery!)
6. Knowing that the severity of a shock depends on the magnitude of the current through your body, would you prefer to be in series or parallel with a resistance, such as the heating element of a toaster, if shocked by it? Explain.

7. Would your headlights dim when you start your car’s engine if the wires in your automobile were superconductors? (Do not neglect the battery's internal resistance.) Explain.

8. Some strings of holiday lights are wired in series to save wiring costs. An old version utilized bulbs that break the electrical connection, like an open switch, when they burn out. If one such bulb burns out, what happens to the others? If such a string operates on 120 V and has 40 identical bulbs, what is the normal operating voltage of each? Newer versions use bulbs that short circuit, like a closed switch, when they burn out. If one such bulb burns out, what happens to the others? If such a string operates on 120 V and has 39 remaining identical bulbs, what is then the operating voltage of each?

9. If two household lightbulbs rated 60 W and 100 W are connected in series to household power, which will be brighter? Explain.

10. Suppose you are doing a physics lab that asks you to put a resistor into a circuit, but all the resistors supplied have a larger resistance than the requested value. How would you connect the available resistances to attempt to get the smaller value asked for?

11. Before World War II, some radios got power through a “resistance cord” that had a significant resistance. Such a resistance cord reduces the voltage to a desired level for the radio’s tubes and the like, and it saves the expense of a transformer. Explain why resistance cords become warm and waste energy when the radio is on.

12. Some light bulbs have three power settings (not including zero), obtained from multiple filaments that are individually switched and wired in parallel. What is the minimum number of filaments needed for three power settings?

12.2 Examples: Battery Terminal Voltage, Animals as Detectors & Solar Cells

14. Explain which battery is doing the charging and which is being charged in Figure 12.31.

15. Given a battery, an assortment of resistors, and a variety of voltage and current measuring devices, describe how you would determine the internal resistance of the battery.

16. Two different 12-V automobile batteries on a store shelf are rated at 600 and 850 “cold cranking amps.” Which has the smallest internal resistance?

17. What are the advantages and disadvantages of connecting batteries in series? In parallel?

18. Semitractor trucks use four large 12-V batteries. The starter system requires 24 V, while normal operation of the truck’s other electrical components utilizes 12 V. How could the four batteries be connected to produce 24 V? To produce 12 V? Why is 24 V better than 12 V for starting the truck’s engine (a very heavy load)?

12.3 DC Voltmeters and Ammeters

19. Why should you not connect an ammeter directly across a voltage source as shown in Figure 12.32? (Note that script E in the figure stands for emf.)
20. Suppose you are using a multimeter (one designed to measure a range of voltages, currents, and resistances) to measure current in a circuit and you inadvertently leave it in a voltmeter mode. What effect will the meter have on the circuit? What would happen if you were measuring voltage but accidentally put the meter in the ammeter mode?

21. Specify the points to which you could connect a voltmeter to measure the following potential differences in Figure 12.33: (a) the potential difference of the voltage source; (b) the potential difference across \(R_1 \); (c) across \(R_2 \); (d) across \(R_3 \); (e) across \(R_2 \) and \(R_3 \). Note that there may be more than one answer to each part.

![Figure 12.33](image-url)

22. To measure currents in Figure 12.33, you would replace a wire between two points with an ammeter. Specify the points between which you would place an ammeter to measure the following: (a) the total current; (b) the current flowing through \(R_1 \); (c) through \(R_2 \); (d) through \(R_3 \). Note that there may be more than one answer to each part.
12.1 Resistors in Series and Parallel

Note: Data taken from figures can be assumed to be accurate to three significant digits.

1. (a) What is the resistance of ten 275-Ω resistors connected in series? (b) In parallel?

2. (a) What is the resistance of a 1.00×10^2-Ω, a 2.50-kΩ, and a 4.00-kΩ resistor connected in series? (b) In parallel?

3. What are the largest and smallest resistances you can obtain by connecting a 36.0-Ω, a 50.0-Ω, and a 700-Ω resistor together?

4. An 1800-W toaster, a 1400-W electric frying pan, and a 75-W lamp are plugged into the same outlet in a 15-A, 120-V circuit. (The three devices are in parallel when plugged into the same socket.) (a) What current is drawn by each device? (b) Will this combination blow the 15-A fuse?

5. Your car’s 30.0-W headlight and 2.40-kW starter are ordinarily connected in parallel in a 12.0-V system. What power would one headlight and the starter consume if connected in series to a 12.0-V battery? (Neglect any other resistance in the circuit and any change in resistance in the two devices.)

6. (a) Given a 48.0-V battery and 24.0-Ω and 96.0-Ω resistors, find the current and power for each when connected in series. (b) Repeat when the resistances are in parallel.

7. Referring to the example combining series and parallel circuits and Figure 12.6, calculate \(I_3 \) in the following two different ways: (a) from the known values of \(I \) and \(I_2 \); (b) using Ohm’s law for \(R_3 \). In both parts explicitly show how you follow the steps in the Problem-Solving Strategies for Series and Parallel Resistors.

8. Referring to Figure 12.6: (a) Calculate \(P_3 \) and note how it compares with \(P_3 \) found in the first two example problems in this module. (b) Find the total power supplied by the source and compare it with the sum of the powers dissipated by the resistors.

9. Refer to Figure 12.7 and the discussion of lights dimming when a heavy appliance comes on. (a) Given the voltage source is 120 V, the wire resistance is 0.400 Ω, and the bulb is nominally 75.0 W, what power will the bulb dissipate if a total of 15.0 A passes through the wires when the motor comes on? Assume negligible change in bulb resistance. (b) What power is consumed by the motor?

10. A 240-kV power transmission line carrying 5.00×10^2 A is hung from grounded metal towers by ceramic insulators, each having a 1.00×10^9-Ω resistance. Figure 12.34. (a) What is the resistance to ground of 100 of these insulators? (b) Calculate the power dissipated by 100 of them. (c) What fraction of the power carried by the line is this? Explicitly show how you follow the steps in the Problem-Solving Strategies for Series and Parallel Resistors.

11. Show that if two resistors \(R_1 \) and \(R_2 \) are combined and one is much greater than the other (\(R_1 >> R_2 \)): (a) Their series resistance is very nearly equal to the greater resistance \(R_1 \). (b) Their parallel resistance is very nearly equal to smaller resistance \(R_2 \).

12. Unreasonable Results

Two resistors, one having a resistance of 145 Ω, are connected in parallel to produce a total resistance of 150 Ω. (a) What is the value of the second resistance? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?

13. Unreasonable Results

Two resistors, one having a resistance of 900 kΩ, are connected in series to produce a total resistance of 0.500 MΩ. (a) What is the value of the second resistance? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?

12.2 Examples: Battery Terminal Voltage, Animals as Detectors & Solar Cells

14. Standard automobile batteries have six lead-acid cells in series, creating a total emf of 12.0 V. What is the emf of an individual lead-acid cell?

15. Carbon-zinc dry cells (sometimes referred to as non-alkaline cells) have an emf of 1.54 V, and they are produced as single cells or in various combinations to form other voltages. (a) How many 1.54-V cells are needed to make the common 9-V battery used in many small electronic devices? (b) What is the actual emf of the approximately 9-V battery? (c) Discuss how internal resistance in the series connection of cells will affect the terminal voltage of this approximately 9-V battery.

16. What is the output voltage of a 3.0000-V lithium cell in a digital wristwatch that draws 0.300 mA, if the cell’s internal resistance is 2.00 Ω?

17. (a) What is the terminal voltage of a large 1.54-V carbon-zinc dry cell used in a physics lab to supply 2.00 A to a circuit, if the cell’s internal resistance is 0.100 Ω? (b) How much electrical power does the cell produce? (c) What power goes to its load?

18. What is the internal resistance of an automobile battery that has an emf of 12.0 V and a terminal voltage of 15.0 V while a current of 8.00 A is charging it?

19. (a) Find the terminal voltage of a 12.0-V motorcycle battery having a 0.600-Ω internal resistance, if it is being charged by a current of 10.0 A. (b) What is the output voltage of the battery charger?

20. A car battery with a 12-V emf and an internal resistance of 0.050 Ω is being charged with a current of 60 A. Note that in this
process the battery is being charged. (a) What is the potential difference across its terminals? (b) At what rate is thermal energy being dissipated in the battery? (c) At what rate is electric energy being converted to chemical energy? (d) What are the answers to (a) and (b) when the battery is used to supply 60 A to the starter motor?

21. The hot resistance of a flashlight bulb is 2.30 \(\Omega \), and it is run by a 1.58-V alkaline cell having a 0.100-\(\Omega \) internal resistance. (a) What current flows? (b) Calculate the power supplied to the bulb using \(I^2 R_{\text{bulb}} \). (c) Is this power the same as calculated using \(\frac{V^2}{R_{\text{bulb}}} \)?

22. The label on a portable radio recommends the use of rechargeable nickel-cadmium cells (nics), although they have a 1.25-V emf while alkaline cells have a 1.58-V emf. The radio has a 3.20-\(\Omega \) resistance. (a) Draw a circuit diagram of the radio and its batteries. Now, calculate the power delivered to the radio. (b) When using Nicad cells each having an internal resistance of 0.0400 \(\Omega \). (c) When using alkaline cells each having an internal resistance of 0.200 \(\Omega \). (d) Does this difference seem significant, considering that the radio’s effective resistance is lowered when its volume is turned up?

23. An automobile starter motor has an equivalent resistance of 0.0500 \(\Omega \) and is supplied by a 12.0-V battery with a 0.0100-\(\Omega \) internal resistance. (a) What is the current to the motor? (b) What voltage is applied to it? (c) What power is supplied to the motor? (d) Repeat these calculations for when the battery connections are corroded and add 0.0900 \(\Omega \) to the circuit. (Significant problems are caused by even small amounts of unwanted resistance in low-voltage, high-current applications.)

24. A child’s electronic toy is supplied by three 1.58-V alkaline cells having internal resistances of 0.0200 \(\Omega \), in series with a 1.53-V carbon-zinc dry cell having a 0.100-\(\Omega \) internal resistance. The load resistance is 10.0 \(\Omega \). (a) Draw a circuit diagram of the toy and its batteries. (b) What current flows? (c) How much power is supplied to the load? (d) What is the internal resistance of the dry cell if it goes bad, resulting in only 0.500 W being supplied to the load?

25. (a) What is the internal resistance of a voltage source if its terminal voltage drops by 2.00 V when the current supplied increases by 5.00 A? (b) Can the emf of the voltage source be found with the information supplied?

26. A person with body resistance between his hands of 10.0 k \(\Omega \) accidentally grasps the terminals of a 20.0-kV power supply. (Do NOT do this!) (a) Draw a circuit diagram to represent the situation. (b) If the internal resistance of the power supply is 2000 \(\Omega \), what is the current through his body? (c) What is the power dissipated in his body? (d) If the power supply is to be made safe by increasing its internal resistance, what should the internal resistance be for the maximum current in this situation to be 1.00 mA or less? (e) Will this modification compromise the effectiveness of the power supply for driving low-resistance devices? Explain your reasoning.

27. Electric fish generate current with biological cells called electroplaques, which are physiological emf devices. The electroplaques in the South American eel are arranged in 140 rows, each row stretching horizontally along the body and each containing 5000 electroplaques. Each electroplaque has an emf of 0.15 V and internal resistance of 0.25 \(\Omega \). If the water surrounding the fish has resistance of 800 \(\Omega \), how much current can the eel produce in water from near its head to near its tail?

28. Integrated Concepts

A 12.0-V emf automobile battery has a terminal voltage of 16.0 V when being charged by a current of 10.0 A. (a) What is the battery’s internal resistance? (b) What power is dissipated inside the battery? (c) At what rate (in °C/min) will its temperature increase if its mass is 20.0 kg and it has a specific heat of 0.300 kcal/kg °C, assuming no heat escapes?

29. Unreasonable Results

A 1.58-V alkaline cell with a 0.200-\(\Omega \) internal resistance is supplying 8.50 A to a load. (a) What is its terminal voltage? (b) What is the value of the load resistance? (c) What is unreasonable about these results? (d) Which assumptions are unreasonable or inconsistent?

30. Unreasonable Results

(a) What is the internal resistance of a 1.54-V dry cell that supplies 1.00 W of power to a 15.0-\(\Omega \) bulb? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?

12.3 DC Voltmeters and Ammeters

31. What is the sensitivity of the galvanometer (that is, what current gives a full-scale deflection) inside a voltmeter that has a 1.00-M \(\Omega \) resistance on its 30.0-V scale?

32. What is the sensitivity of the galvanometer (that is, what current gives a full-scale deflection) inside a voltmeter that has a 25.0-k \(\Omega \) resistance on its 100-V scale?

33. Find the resistance that must be placed in series with a 25.0-\(\Omega \) galvanometer having a 50.0-\(\mu \text{A} \) sensitivity (the same as the one discussed in the text) to allow it to be used as a voltmeter with a 0.100-V full-scale reading.

34. Find the resistance that must be placed in series with a 25.0-\(\Omega \) galvanometer having a 50.0-\(\mu \text{A} \) sensitivity (the same as the one discussed in the text) to allow it to be used as a voltmeter with a 3000-V full-scale reading. Include a circuit diagram with your solution.

35. Find the resistance that must be placed in parallel with a 25.0-\(\Omega \) galvanometer having a 50.0-\(\mu \text{A} \) sensitivity (the same as the one discussed in the text) to allow it to be used as an ammeter with a 10.0-A full-scale reading. Include a circuit diagram with your solution.

36. Find the resistance that must be placed in parallel with a 25.0-\(\Omega \) galvanometer having a 50.0-\(\mu \text{A} \) sensitivity (the same as the one discussed in the text) to allow it to be used as an ammeter with a 300-mA full-scale reading.

37. Find the resistance that must be placed in series with a 10.0-\(\Omega \) galvanometer having a 100-\(\mu \text{A} \) sensitivity to allow it to be used as a voltmeter with: (a) a 300-V full-scale reading, and (b) a 0.300-V full-scale reading.

38. Find the resistance that must be placed in parallel with a 10.0-\(\Omega \) galvanometer having a 100-\(\mu \text{A} \) sensitivity to allow it to be used as an ammeter with: (a) a 20.0-A full-scale reading, and (b) a 100-mA full-scale reading.

39. Suppose you measure the terminal voltage of a 1.585-V alkaline cell having an internal resistance of 0.100 \(\Omega \) by placing a 1.00-k \(\Omega \) voltmeter across its terminals. (See Figure 12.35.) (a) What current flows? (b) Find the terminal voltage. (c) To see how close the measured terminal voltage is to the emf, calculate their ratio.

40. Suppose you measure the terminal voltage of a 3.200-V lithium cell having an internal resistance of 5.00 \(\Omega \) by placing a 1.00-k \(\Omega \) voltmeter across its terminals. (a) What current flows? (b) Find the terminal voltage. (c) To see how close the measured terminal voltage is to the emf, calculate their ratio.
41. A certain ammeter has a resistance of $5.00 \times 10^{-5} \ \Omega$ on its 3.00-A scale and contains a 10.0-Ω galvanometer. What is the sensitivity of the galvanometer?

42. A 1.00-MΩ voltmeter is placed in parallel with a 75.0-kΩ resistor in a circuit. (a) Draw a circuit diagram of the connection. (b) What is the resistance of the combination? (c) If the voltage across the combination is kept the same as it was across the 75.0-kΩ resistor alone, what is the percent increase in current? (d) If the current through the combination is kept the same as it was through the 75.0-kΩ resistor alone, what is the percentage decrease in voltage? (e) Are the changes found in parts (c) and (d) significant? Discuss.

43. A 0.0200-Ω ammeter is placed in series with a 10.00-Ω resistor in a circuit. (a) Draw a circuit diagram of the connection. (b) Calculate the resistance of the combination. (c) If the voltage is kept the same across the combination as it was through the 10.00-Ω resistor alone, what is the percent decrease in current? (d) If the current is kept the same through the combination as it was through the 10.00-Ω resistor alone, what is the percent increase in voltage? (e) Are the changes found in parts (c) and (d) significant? Discuss.

44. Unreasonable Results
Suppose you have a 40.0-Ω galvanometer with a 25.0-μA sensitivity. (a) What resistance would you put in series with it to allow it to be used as a voltmeter that has a full-scale deflection for 0.500 mV? (b) What is unreasonable about this result? (c) Which assumptions are responsible?

45. Unreasonable Results
(a) What resistance would you put in parallel with a 40.0-Ω galvanometer having a 25.0-μA sensitivity to allow it to be used as an ammeter that has a full-scale deflection for 10.0-μA? (b) What is unreasonable about this result? (c) Which assumptions are responsible?
Introduction to Magnetism

One evening, an Alaskan sticks a note to his refrigerator with a small magnet. Through the kitchen window, the Aurora Borealis glows in the night sky. This grand spectacle is shaped by the same force that holds the note to the refrigerator.

People have been aware of magnets and magnetism for thousands of years. The earliest records date to well before the time of Christ, particularly in a region of Asia Minor called Magnesia (the name of this region is the source of words like magnetic). Magnetic rocks found in Magnesia, which is now part of western Turkey, stimulated interest during ancient times. A practical application for magnets was found later, when they were employed as navigational compasses. The use of magnets in compasses resulted not only in improved long-distance sailing, but also in the names of “north” and “south” being given to the two types of magnetic poles.
Today magnetism plays many important roles in our lives. Physicists’ understanding of magnetism has enabled the development of technologies that affect our everyday lives. The iPod in your purse or backpack, for example, wouldn’t have been possible without the applications of magnetism and electricity on a small scale.

The discovery that weak changes in a magnetic field in a thin film of iron and chromium could bring about much larger changes in electrical resistance was one of the first large successes of nanotechnology. The 2007 Nobel Prize in Physics went to Albert Fert from France and Peter Grunberg from Germany for this discovery of giant magnetoresistance and its applications to computer memory.

All electric motors, with uses as diverse as powering refrigerators, starting cars, and moving elevators, contain magnets. Generators, whether producing hydroelectric power or running bicycle lights, use magnetic fields. Recycling facilities employ magnets to separate iron from other refuse. Hundreds of millions of dollars are spent annually on magnetic containment of fusion as a future energy source. Magnetic resonance imaging (MRI) has become an important diagnostic tool in the field of medicine, and the use of magnetism to explore brain activity is a subject of contemporary research and development. The list of applications also includes computer hard drives, tape recording, detection of inhaled asbestos, and levitation of high-speed trains. Magnetism is used to explain atomic energy levels, cosmic rays, and charged particles trapped in the Van Allen belts. Once again, we will find all these disparate phenomena are linked by a small number of underlying physical principles.

13.1 Magnets

All magnets attract iron, such as that in a refrigerator door. However, magnets may attract or repel other magnets. Experimentation shows that all magnets have two poles. If freely suspended, one pole will point toward the north. The two poles are thus named the north magnetic pole and the south magnetic pole (or more properly, north-seeking and south-seeking poles, for the attractions in those directions).

Universal Characteristics of Magnets and Magnetic Poles

It is a universal characteristic of all magnets that like poles repel and unlike poles attract. (Note the similarity with electrostatics: unlike charges attract and like charges repel.)

Further experimentation shows that it is impossible to separate north and south poles in the manner that + and – charges can be separated.
Figure 13.4 One end of a bar magnet is suspended from a thread that points toward north. The magnet’s two poles are labeled N and S for north-seeking and south-seeking poles, respectively.

Misconception Alert: Earth’s Geographic North Pole Hides an S

The Earth acts like a very large bar magnet with its south-seeking pole near the geographic North Pole. That is why the north pole of your compass is attracted toward the geographic north pole of the Earth—because the magnetic pole that is near the geographic North Pole is actually a south magnetic pole! Confusion arises because the geographic term “North Pole” has come to be used (incorrectly) for the magnetic pole that is near the North Pole. Thus, “North magnetic pole” is actually a misnomer—it should be called the South magnetic pole.

Figure 13.5 Unlike poles attract, whereas like poles repel.

Figure 13.6 North and south poles always occur in pairs. Attempts to separate them result in more pairs of poles. If we continue to split the magnet, we will eventually get down to an iron atom with a north pole and a south pole—these, too, cannot be separated.
The fact that magnetic poles always occur in pairs of north and south is true from the very large scale—for example, sunspots always occur in pairs that are north and south magnetic poles—all the way down to the very small scale. Magnetic atoms have both a north pole and a south pole, as do many types of subatomic particles, such as electrons, protons, and neutrons.

Making Connections: Take-Home Experiment—Refrigerator Magnets

We know that like magnetic poles repel and unlike poles attract. See if you can show this for two refrigerator magnets. Will the magnets stick if you turn them over? Why do they stick to the door anyway? What can you say about the magnetic properties of the door next to the magnet? Do refrigerator magnets stick to metal or plastic spoons? Do they stick to all types of metal?

13.2 Ferromagnets and Electromagnets

Ferromagnets

Only certain materials, such as iron, cobalt, nickel, and gadolinium, exhibit strong magnetic effects. Such materials are called **ferromagnetic**, after the Latin word for iron, *ferrum*. A group of materials made from the alloys of the rare earth elements are also used as strong and permanent magnets; a popular one is neodymium. Other materials exhibit weak magnetic effects, which are detectable only with sensitive instruments. Not only do ferromagnetic materials respond strongly to magnets (the way iron is attracted to magnets), they can also be **magnetized** themselves—that is, they can be induced to be magnetic or made into permanent magnets.

![Image of magnetism](image)

Figure 13.7 An unmagnetized piece of iron is placed between two magnets, heated, and then cooled, or simply tapped when cold. The iron becomes a permanent magnet with the poles aligned as shown: its south pole is adjacent to the north pole of the original magnet, and its north pole is adjacent to the south pole of the original magnet. Note that there are attractive forces between the magnets.

When a magnet is brought near a previously unmagnetized ferromagnetic material, it causes local magnetization of the material with unlike poles closest, as in Figure 13.7. (This results in the attraction of the previously unmagnetized material to the magnet.) What happens on a microscopic scale is illustrated in Figure 13.8. The regions within the material called **domains** act like small bar magnets. Within domains, the poles of individual atoms are aligned. Each atom acts like a tiny bar magnet. Domains are small and randomly oriented in an unmagnetized ferromagnetic object. In response to an external magnetic field, the domains may grow to millimeter size, aligning themselves as shown in Figure 13.8(b). This induced magnetization can be made permanent if the material is heated and then cooled, or simply tapped in the presence of other magnets.

![Image of domain alignment](image)

Figure 13.8 (a) An unmagnetized piece of iron (or other ferromagnetic material) has randomly oriented domains. (b) When magnetized by an external field, the domains show greater alignment, and some grow at the expense of others. Individual atoms are aligned within domains; each atom acts like a tiny bar magnet.

Conversely, a permanent magnet can be demagnetized by hard blows or by heating it in the absence of another magnet. Increased thermal motion at higher temperature can disrupt and randomize the orientation and the size of the domains. There is a well-defined temperature for ferromagnetic materials, which is called the **Curie temperature**, above which they cannot be magnetized. The Curie temperature for iron is 1043 K (770°C), which is well above room temperature. There are several elements and alloys that have Curie temperatures much lower than room temperature and are ferromagnetic only below those temperatures.

Electromagnets

Early in the 19th century, it was discovered that electrical currents cause magnetic effects. The first significant observation was by the Danish scientist Hans Christian Oersted (1777–1851), who found that a compass needle was deflected by a current-carrying wire. This was the first significant evidence that the movement of charges had any connection with magnets. **Electromagnetism** is the use of electric current to make magnets. These temporarily induced magnets are called **electromagnets**. Electromagnets are employed for everything from a wrecking yard crane that lifts scrapped cars to controlling the beam of a 90-km-circumference particle accelerator to the magnets in medical imaging machines (See Figure 13.9).
Figure 13.9 Instrument for magnetic resonance imaging (MRI). The device uses a superconducting cylindrical coil for the main magnetic field. The patient goes into this “tunnel” on the gurney. (credit: Bill McChesney, Flickr)

Figure 13.10 shows that the response of iron filings to a current-carrying coil and to a permanent bar magnet. The patterns are similar. In fact, electromagnets and ferromagnets have the same basic characteristics—for example, they have north and south poles that cannot be separated and for which like poles repel and unlike poles attract.

![Diagram of iron filings near a coil and a magnet](image)

Figure 13.10 Iron filings near (a) a current-carrying coil and (b) a magnet act like tiny compass needles, showing the shape of their fields. Their response to a current-carrying coil and a permanent magnet is seen to be very similar, especially near the ends of the coil and the magnet.

Combining a ferromagnet with an electromagnet can produce particularly strong magnetic effects. (See Figure 13.11.) Whenever strong magnetic effects are needed, such as lifting scrap metal, or in particle accelerators, electromagnets are enhanced by ferromagnetic materials. Limits to how strong the magnets can be made are imposed by coil resistance (it will overheat and melt at sufficiently high current), and so superconducting magnets may be employed. These are still limited, because superconducting properties are destroyed by too great a magnetic field.

![Diagram of electromagnet with ferromagnetic core](image)

Figure 13.11 An electromagnet with a ferromagnetic core can produce very strong magnetic effects. Alignment of domains in the core produces a magnet, the poles of which are aligned with the electromagnet.

Figure 13.12 shows a few uses of combinations of electromagnets and ferromagnets. Ferromagnetic materials can act as memory devices, because the orientation of the magnetic fields of small domains can be reversed or erased. Magnetic information storage on videotapes and computer hard drives are among the most common applications. This property is vital in our digital world.
Figure 13.12 An electromagnet induces regions of permanent magnetism on a floppy disk coated with a ferromagnetic material. The information stored here is digital (a region is either magnetic or not); in other applications, it can be analog (with a varying strength), such as on audiotapes.

Current: The Source of All Magnetism

An electromagnet creates magnetism with an electric current. In later sections we explore this more quantitatively, finding the strength and direction of magnetic fields created by various currents. But what about ferromagnets? Figure 13.13 shows models of how electric currents create magnetism at the submicroscopic level. (Note that we cannot directly observe the paths of individual electrons about atoms, and so a model or visual image, consistent with all direct observations, is made. We can directly observe the electron’s orbital angular momentum, its spin momentum, and subsequent magnetic moments, all of which are explained with electric-current-creating subatomic magnetism.) Currents, including those associated with other submicroscopic particles like protons, allow us to explain ferromagnetism and all other magnetic effects. Ferromagnetism, for example, results from an internal cooperative alignment of electron spins, possible in some materials but not in others.

Crucial to the statement that electric current is the source of all magnetism is the fact that it is impossible to separate north and south magnetic poles. (This is far different from the case of positive and negative charges, which are easily separated.) A current loop always produces a magnetic dipole—that is, a magnetic field that acts like a north pole and south pole pair. Since isolated north and south magnetic poles, called magnetic monopoles, are not observed, currents are used to explain all magnetic effects. If magnetic monopoles did exist, then we would have to modify this underlying connection that all magnetism is due to electrical current. There is no known reason that magnetic monopoles should not exist—they are simply never observed—and so searches at the subnuclear level continue. If they do not exist, we would like to find out why not. If they do exist, we would like to see evidence of them.

Electric Currents and Magnetism

Electric current is the source of all magnetism.

Figure 13.13 (a) In the planetary model of the atom, an electron orbits a nucleus, forming a closed-current loop and producing a magnetic field with a north pole and a south pole. (b) Electrons have spin and can be crudely pictured as rotating charge, forming a current that produces a magnetic field with a north pole and a south pole. Neither the planetary model nor the image of a spinning electron is completely consistent with modern physics. However, they do provide a useful way of understanding phenomena.
13.3 Magnetic Fields and Magnetic Field Lines

Einstein is said to have been fascinated by a compass as a child, perhaps musing on how the needle felt a force without direct physical contact. His ability to think deeply and clearly about action at a distance, particularly for gravitational, electric, and magnetic forces, later enabled him to create his revolutionary theory of relativity. Since magnetic forces act at a distance, we define a **magnetic field** to represent magnetic forces. The pictorial representation of magnetic field lines is very useful in visualizing the strength and direction of the magnetic field. As shown in Figure 13.15, the **direction of magnetic field lines** is defined to be the direction in which the north end of a compass needle points. The magnetic field is traditionally called the **B-field**.

![Magnetic Field Lines](image)

Figure 13.15 Magnetic field lines are defined to have the direction that a small compass points when placed at a location. (a) If small compasses are used to map the magnetic field around a bar magnet, they will point in the directions shown: away from the north pole of the magnet, toward the south pole of the magnet. (Recall that the Earth's north magnetic pole is really a south pole in terms of definitions of poles on a bar magnet.) (b) Connecting the arrows gives continuous magnetic field lines. The strength of the field is proportional to the closeness (or density) of the lines. (c) If the interior of the magnet could be probed, the field lines would be found to form continuous closed loops.

Small compasses used to test a magnetic field will not disturb it. (This is analogous to the way we tested electric fields with a small test charge. In both cases, the fields represent only the object creating them and not the probe testing them.) Figure 13.16 shows how the magnetic field appears for a current loop and a long straight wire, as could be explored with small compasses. A small compass placed in these fields will align itself parallel to the field line at its location, with its north pole pointing in the direction of B. Note the symbols used for field into and out of the paper.

![Magnetic Field Lines](image)

Figure 13.16 Small compasses could be used to map the fields shown here. (a) The magnetic field of a circular current loop is similar to that of a bar magnet. (b) A long and straight wire creates a field with magnetic field lines forming circular loops. (c) When the wire is in the plane of the paper, the field is perpendicular to the paper. Note that the symbols used for the field pointing inward (like the tail of an arrow) and the field pointing outward (like the tip of an arrow).

Making Connections: Concept of a Field

A field is a way of mapping forces surrounding any object that can act on another object at a distance without apparent physical connection. The field represents the object generating it. Gravitational fields map gravitational forces, electric fields map electrical forces, and magnetic fields map magnetic forces.

Extensive exploration of magnetic fields has revealed a number of hard-and-fast rules. We use magnetic field lines to represent the field (the lines are a pictorial tool, not a physical entity in and of themselves). The properties of magnetic field lines can be summarized by these rules:

1. The direction of the magnetic field is tangent to the field line at any point in space. A small compass will point in the direction of the field line.
2. The strength of the field is proportional to the closeness of the lines. It is exactly proportional to the number of lines per unit area perpendicular to the lines (called the areal density).

3. Magnetic field lines can never cross, meaning that the field is unique at any point in space.

4. Magnetic field lines are continuous, forming closed loops without beginning or end. They go from the north pole to the south pole.

The last property is related to the fact that the north and south poles cannot be separated. It is a distinct difference from electric field lines, which begin and end on the positive and negative charges. If magnetic monopoles existed, then magnetic field lines would begin and end on them.

13.4 Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field

What is the mechanism by which one magnet exerts a force on another? The answer is related to the fact that all magnetism is caused by current, the flow of charge. Magnetic fields exert forces on moving charges, and so they exert forces on other magnets, all of which have moving charges.

Right Hand Rule 1

The magnetic force on a moving charge is one of the most fundamental known. Magnetic force is as important as the electrostatic or Coulomb force. Yet the magnetic force is more complex, in both the number of factors that affects it and in its direction, than the relatively simple Coulomb force. The magnitude of the magnetic force \(F \) on a charge \(q \) moving at a speed \(v \) in a magnetic field of strength \(B \) is given by

\[
F = qvB \sin \theta,
\]

where \(\theta \) is the angle between the directions of \(v \) and \(B \). This force is often called the Lorentz force. In fact, this is how we define the magnetic field strength \(B \)—in terms of the force on a charged particle moving in a magnetic field. The SI unit for magnetic field strength \(B \) is called the tesla (T) after the eccentric but brilliant inventor Nikola Tesla (1856–1943). To determine how the tesla relates to other SI units, we solve \(F = qvB \sin \theta \) for \(B \).

\[
B = \frac{F}{qv \sin \theta}
\]

Because \(\sin \theta \) is unitless, the tesla is

\[
1 \text{ T} = \frac{1 \text{ N}}{C \cdot \text{m/s}} = \frac{1 \text{ N}}{A \cdot \text{m}}
\]

(note that C/s = A).

Another smaller unit, called the gauss (G), where \(1 \text{ G} = 10^{-4} \text{ T} \), is sometimes used. The strongest permanent magnets have fields near 2 T; superconducting electromagnets may attain 10 T or more. The Earth’s magnetic field on its surface is only about \(5 \times 10^{-5} \text{ T} \), or 0.5 G.

The direction of the magnetic force \(F \) is perpendicular to the plane formed by \(v \) and \(B \), as determined by the right hand rule 1 (or RHR-1), which is illustrated in Figure 13.17. RHR-1 states that, to determine the direction of the magnetic force on a positive moving charge, you point the thumb of the right hand in the direction of \(v \), the fingers in the direction of \(B \), and a perpendicular to the palm points in the direction of \(F \). One way to remember this is that there is one velocity, and so the thumb represents it. There are many field lines, and so the fingers represent them. The force is in the direction you would push with your palm. The force on a negative charge is in exactly the opposite direction to that on a positive charge.

![Figure 13.17](https://legacy.cnx.org/content/col11588/1.13)

Figure 13.17 Magnetic fields exert forces on moving charges. This force is one of the most basic known. The direction of the magnetic force on a moving charge is perpendicular to the plane formed by \(v \) and \(B \) and follows right hand rule 1 (RHR-1) as shown. The magnitude of the force is proportional to \(q \), \(v \), \(B \), and the sine of the angle between \(v \) and \(B \).
Making Connections: Charges and Magnets

There is no magnetic force on static charges. However, there is a magnetic force on moving charges. When charges are stationary, their electric fields do not affect magnets. But, when charges move, they produce magnetic fields that exert forces on other magnets. When there is relative motion, a connection between electric and magnetic fields emerges—each affects the other.

Example 13.1 Calculating Magnetic Force: Earth’s Magnetic Field on a Charged Glass Rod

With the exception of compasses, you seldom see or personally experience forces due to the Earth’s small magnetic field. To illustrate this, suppose that in a physics lab you rub a glass rod with silk, placing a 20-nC positive charge on it. Calculate the force on the rod due to the Earth’s magnetic field, if you throw it with a horizontal velocity of 10 m/s due west in a place where the Earth’s field is due north parallel to the ground. (The direction of the force is determined with right hand rule 1 as shown in Figure 13.18.)

![Image of a positively charged object moving due west in a region where the Earth’s magnetic field is due north experiences a force that is straight down as shown. A negative charge moving in the same direction would feel a force straight up.](image)

Figure 13.18 A positively charged object moving due west in a region where the Earth’s magnetic field is due north experiences a force that is straight down as shown. A negative charge moving in the same direction would feel a force straight up.

Strategy

We are given the charge, its velocity, and the magnetic field strength and direction. We can thus use the equation \(F = qvB \sin \theta \) to find the force.

Solution

The magnetic force is

\[
F = qvB \sin \theta.
\]

(13.4)

We see that \(\sin \theta = 1 \), since the angle between the velocity and the direction of the field is 90°. Entering the other given quantities yields

\[
F = \left(20 \times 10^{-9} \text{ C}\right) \left(10 \text{ m/s}\right) \left(5 \times 10^{-5} \text{ T}\right) = 1 \times 10^{-11} \text{ N.}
\]

(13.5)

Discussion

This force is completely negligible on any macroscopic object, consistent with experience. (It is calculated to only one digit, since the Earth’s field varies with location and is given to only one digit.) The Earth’s magnetic field, however, does produce very important effects, particularly on submicroscopic particles. Some of these are explored in Force on a Moving Charge in a Magnetic Field: Examples and Applications.

13.5 Force on a Moving Charge in a Magnetic Field: Examples and Applications

Magnetic force can cause a charged particle to move in a circular or spiral path. Cosmic rays are energetic charged particles in outer space, some of which approach the Earth. They can be forced into spiral paths by the Earth’s magnetic field. Protons in giant accelerators are kept in a circular path by magnetic force. The bubble chamber photograph in Figure 13.19 shows charged particles moving in such curved paths. The curved paths of charged particles in magnetic fields are the basis of a number of phenomena and can even be used analytically, such as in a mass spectrometer.
So does the magnetic force cause circular motion? Magnetic force is always perpendicular to velocity, so that it does no work on the charged particle. The particle's kinetic energy and speed thus remain constant. The direction of motion is affected, but not the speed. This is typical of uniform circular motion. The simplest case occurs when a charged particle moves perpendicular to a uniform B-field, such as shown in Figure 13.20. (If this takes place in a vacuum, the magnetic field is the dominant factor determining the motion.) Here, the magnetic force supplies the centripetal force $F_c = \frac{mv^2}{r}$. Noting that $\sin \theta = 1$, we see that $F = qvB$.

Because the magnetic force F supplies the centripetal force F_c, we have

$$qvB = \frac{mv^2}{r}.$$

(13.6)

Solving for r yields

$$r = \frac{mv}{qB}.$$

(13.7)

Here, r is the radius of curvature of the path of a charged particle with mass m and charge q, moving at a speed v perpendicular to a magnetic field of strength B. If the velocity is not perpendicular to the magnetic field, then v is the component of the velocity perpendicular to the field. The component of the velocity parallel to the field is unaffected, since the magnetic force is zero for motion parallel to the field. This produces a spiral motion rather than a circular one.
Example 13.2 Calculating the Curvature of the Path of an Electron Moving in a Magnetic Field: A Magnet on a TV Screen

A magnet brought near an old-fashioned TV screen such as in Figure 13.21 (TV sets with cathode ray tubes instead of LCD screens) severely distorts its picture by altering the path of the electrons that make its phosphors glow. (Don’t try this at home, as it will permanently magnetize and ruin the TV.) To illustrate this, calculate the radius of curvature of the path of an electron having a velocity of 6.00×10^7 m/s (corresponding to the accelerating voltage of about 10.0 kV used in some TVs) perpendicular to a magnetic field of strength $B = 0.500$ T (obtainable with permanent magnets).

![Figure 13.21](image)

Side view showing what happens when a magnet comes in contact with a computer monitor or TV screen. Electrons moving toward the screen spiral about magnetic field lines, maintaining the component of their velocity parallel to the field lines. This distorts the image on the screen.

Strategy

We can find the radius of curvature r directly from the equation $r = \frac{mv}{qB}$, since all other quantities in it are given or known.

Solution

Using known values for the mass and charge of an electron, along with the given values of v and B gives us

$$r = \frac{mv}{qB} = \frac{\left(9.11 \times 10^{-31} \text{ kg}\right) \left(6.00 \times 10^7 \text{ m/s}\right)}{\left(1.60 \times 10^{-19} \text{ C}\right) \left(0.500 \text{ T}\right)}$$

$$= 6.83 \times 10^{-4} \text{ m}$$

or

$$r = 0.683 \text{ mm}.$$ \hspace{1cm} (13.8)

Discussion

The small radius indicates a large effect. The electrons in the TV picture tube are made to move in very tight circles, greatly altering their paths and distorting the image.

![Figure 13.22](image)

When a charged particle moves along a magnetic field line into a region where the field becomes stronger, the particle experiences a force that reduces the component of velocity parallel to the field. This force slows the motion along the field line and here reverses it, forming a “magnetic mirror.”

Figure 13.21 shows how electrons not moving perpendicular to magnetic field lines follow the field lines. The component of velocity parallel to the lines is unaffected, and so the charges spiral along the field lines. If field strength increases in the direction of motion, the field will exert a force to slow the charges, forming a kind of magnetic mirror, as shown below.
The properties of charged particles in magnetic fields are related to such different things as the Aurora Australis or Aurora Borealis and particle accelerators. Charged particles approaching magnetic field lines may get trapped in spiral orbits about the lines rather than crossing them, as seen above. Some cosmic rays, for example, follow the Earth’s magnetic field lines, entering the atmosphere near the magnetic poles and causing the southern or northern lights through their ionization of molecules in the atmosphere. This glow of energized atoms and molecules is seen in Figure 13.1. Those particles that approach middle latitudes must cross magnetic field lines, and many are prevented from penetrating the atmosphere. Cosmic rays are a component of background radiation; consequently, they give a higher radiation dose at the poles than at the equator.

Figure 13.23 Energetic electrons and protons, components of cosmic rays, from the Sun and deep outer space often follow the Earth’s magnetic field lines rather than cross them. (Recall that the Earth’s north magnetic pole is really a south pole in terms of a bar magnet.)

Some incoming charged particles become trapped in the Earth’s magnetic field, forming two belts above the atmosphere known as the Van Allen radiation belts after the discoverer James A. Van Allen, an American astrophysicist. (See Figure 13.24.) Particles trapped in these belts form radiation fields (similar to nuclear radiation) so intense that manned space flights avoid them and satellites with sensitive electronics are kept out of them. In the few minutes it took lunar missions to cross the Van Allen radiation belts, astronauts received radiation doses more than twice the allowed annual exposure for radiation workers. Other planets have similar belts, especially those having strong magnetic fields like Jupiter.

Figure 13.24 The Van Allen radiation belts are two regions in which energetic charged particles are trapped in the Earth’s magnetic field. One belt lies about 300 km above the Earth’s surface, the other about 16,000 km. Charged particles in these belts migrate along magnetic field lines and are partially reflected away from the poles by the stronger fields there. The charged particles that enter the atmosphere are replenished by the Sun and sources in deep outer space.

Back on Earth, we have devices that employ magnetic fields to contain charged particles. Among them are the giant particle accelerators that have been used to explore the substructure of matter. (See Figure 13.25.) Magnetic fields not only control the direction of the charged particles, they also are used to focus particles into beams and overcome the repulsion of like charges in these beams.
Thermonuclear fusion (like that occurring in the Sun) is a hope for a future clean energy source. One of the most promising devices is the tokamak, which uses magnetic fields to contain (or trap) and direct the reactive charged particles. (See Figure 13.26.) Less exotic, but more immediately practical, amplifiers in microwave ovens use a magnetic field to contain oscillating electrons. These oscillating electrons generate the microwaves sent into the oven.

Figure 13.25 The Fermilab facility in Illinois has a large particle accelerator (the most powerful in the world until 2008) that employs magnetic fields (magnets seen here in orange) to contain and direct its beam. This and other accelerators have been in use for several decades and have allowed us to discover some of the laws underlying all matter. (credit: ammcrim, Flickr)

Mass spectrometers have a variety of designs, and many use magnetic fields to measure mass. The curvature of a charged particle’s path in the field is related to its mass and is measured to obtain mass information. (See More Applications of Magnetism.) Historically, such techniques were employed in the first direct observations of electron charge and mass. Today, mass spectrometers (sometimes coupled with gas chromatographs) are used to determine the make-up and sequencing of large biological molecules.

13.6 Magnetic Force on a Current-Carrying Conductor

Because charges ordinarily cannot escape a conductor, the magnetic force on charges moving in a conductor is transmitted to the conductor itself.
Figure 13.27 The magnetic field exerts a force on a current-carrying wire in a direction given by the right hand rule 1 (the same direction as that on the individual moving charges). This force can easily be large enough to move the wire, since typical currents consist of very large numbers of moving charges.

We can derive an expression for the magnetic force on a current by taking a sum of the magnetic forces on individual charges. (The forces add because they are in the same direction.) The force on an individual charge moving at the drift velocity \(v_d \) is given by \(F = qv_d B \sin \theta \). Taking \(B \) to be uniform over a length of wire \(l \) and zero elsewhere, the total magnetic force on the wire is then \(F = (qv_d B \sin \theta)(N) \), where \(N \) is the number of charge carriers in the section of wire of length \(l \). Now, \(N = nV \), where \(n \) is the number of charge carriers per unit volume and \(V \) is the volume of wire in the field. Noting that \(V = AI \), where \(A \) is the cross-sectional area of the wire, then the force on the wire is \(F = (qv_d B \sin \theta)(nAI) \).

Gathering terms,
\[
F = (nqAv_d)B \sin \theta.
\] (13.10)

Because \(nqAv_d = I \) (see Current),
\[
F = lIB \sin \theta
\] (13.11)

is the equation for magnetic force on a length \(l \) of wire carrying a current \(I \) in a uniform magnetic field \(B \), as shown in Figure 13.28. If we divide both sides of this expression by \(l \), we find that the magnetic force per unit length of wire in a uniform field is \(\frac{F}{l} = IB \sin \theta \). The direction of this force is given by RHR-1, with the thumb in the direction of the current \(I \). Then, with the fingers in the direction of \(B \), a perpendicular to the palm points in the direction of \(F \), as in Figure 13.28.

Figure 13.28 The force on a current-carrying wire in a magnetic field is \(F = lIB \sin \theta \). Its direction is given by RHR-1.

Example 13.3 Calculating Magnetic Force on a Current-Carrying Wire: A Strong Magnetic Field

Calculate the force on the wire shown in Figure 13.27, given \(B = 1.50 \text{ T} \), \(l = 5.00 \text{ cm} \), and \(I = 20.0 \text{ A} \).

Strategy
The force can be found with the given information by using \(F = lIB \sin \theta \) and noting that the angle \(\theta \) between \(I \) and \(B \) is \(90^\circ \), so that \(\sin \theta = 1 \).

Solution
Entering the given values into $F = II\mathcal{B} \sin \theta$ yields

$$F = II\mathcal{B} \sin \theta = (20.0 \, \text{A})(0.0500 \, \text{m})(1.50 \, \text{T})(1).$$ \hspace{1cm} (13.12)

The units for tesla are $1 \, \text{T} = \frac{\text{N}}{\text{A} \cdot \text{m}}$; thus,

$$F = 1.50 \, \text{N},$$ \hspace{1cm} (13.13)

\textbf{Discussion}

This large magnetic field creates a significant force on a small length of wire.

Magnetic force on current-carrying conductors is used to convert electric energy to work. (Motors are a prime example—they employ loops of wire and are considered in the next section.) Magnetohydrodynamics (MHD) is the technical name given to a clever application where magnetic force pumps fluids without moving mechanical parts. (See Figure 13.29.)

![Figure 13.29 Magnetohydrodynamics. The magnetic force on the current passed through this fluid can be used as a nonmechanical pump.](image)

A strong magnetic field is applied across a tube and a current is passed through the fluid at right angles to the field, resulting in a force on the fluid parallel to the tube axis as shown. The absence of moving parts makes this attractive for moving a hot, chemically active substance, such as the liquid sodium employed in some nuclear reactors. Experimental artificial hearts are testing with this technique for pumping blood, perhaps circumventing the adverse effects of mechanical pumps. (Cell membranes, however, are affected by the large fields needed in MHD, delaying its practical application in humans.) MHD propulsion for nuclear submarines has been proposed, because it could be considerably quieter than conventional propeller drives. The deterrent value of nuclear submarines is based on their ability to hide and survive a first or second nuclear strike. As we slowly disassemble our nuclear weapons arsenals, the submarine branch will be the last to be decommissioned because of this ability (See Figure 13.30.) Existing MHD drives are heavy and inefficient—much development work is needed.

![Figure 13.30 An MHD propulsion system in a nuclear submarine could produce significantly less turbulence than propellers and allow it to run more silently. The development of a silent drive submarine was dramatized in the book and the film The Hunt for Red October.](image)

\section*{13.7 More Applications of Magnetism}

\textbf{Mass Spectrometry}

The curved paths followed by charged particles in magnetic fields can be put to use. A charged particle moving perpendicular to a magnetic field travels in a circular path having a radius r.

It was noted that this relationship could be used to measure the mass of charged particles such as ions. A mass spectrometer is a device that measures such masses. Most mass spectrometers use magnetic fields for this purpose, although some of them have extremely sophisticated designs. Since there are five variables in the relationship, there are many possibilities. However, if \(v \), \(q \), and \(B \) can be fixed, then the radius of the path \(r \) is simply proportional to the mass \(m \) of the charged particle. Let us examine one such mass spectrometer that has a relatively simple design. (See Figure 13.31.) The process begins with an ion source, a device like an electron gun. The ion source gives ions their charge, accelerates them to some velocity \(v \), and directs a beam of them into the next stage of the spectrometer. This next region is a velocity selector that only allows particles with a particular value of \(v \) to get through.

\[
r = \frac{mv}{qB}
\]

Figure 13.31 This mass spectrometer uses a velocity selector to fix \(v \) so that the radius of the path is proportional to mass.

The velocity selector has both an electric field and a magnetic field, perpendicular to one another, producing forces in opposite directions on the ions. Only those ions for which the forces balance travel in a straight line into the next region. If the forces balance, then the electric force \(F = qE \) equals the magnetic force \(F = qvB \), so that \(qE = qvB \). Noting that \(q \) cancels, we see that

\[
v = \frac{E}{B}
\]

is the velocity particles must have to make it through the velocity selector, and further, that \(v \) can be selected by varying \(E \) and \(B \). In the final region, there is only a uniform magnetic field, and so the charged particles move in circular arcs with radii proportional to particle mass. The paths also depend on charge \(q \), but since \(q \) is in multiples of electron charges, it is easy to determine and to discriminate between ions in different charge states.

Mass spectrometry today is used extensively in chemistry and biology laboratories to identify chemical and biological substances according to their mass-to-charge ratios. In medicine, mass spectrometers are used to measure the concentration of isotopes used as tracers. Usually, biological molecules such as proteins are very large, so they are broken down into smaller fragments before analyzing. Recently, large virus particles have been analyzed as a whole on mass spectrometers. Sometimes a gas chromatograph or high-performance liquid chromatograph provides an initial separation of the large molecules, which are then input into the mass spectrometer.

Cathode Ray Tubes—CRTs—and the Like

What do non-flat-screen TVs, old computer monitors, x-ray machines, and the 2-mile-long Stanford Linear Accelerator have in common? All of them accelerate electrons, making them different versions of the electron gun. Many of these devices use magnetic fields to steer the accelerated electrons. Figure 13.32 shows the construction of the type of cathode ray tube (CRT) found in some TVs, oscilloscopes, and old computer monitors. Two pairs of coils are used to steer the electrons, one vertically and the other horizontally, to their desired destination.
Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is one of the most useful and rapidly growing medical imaging tools. It non-invasively produces two-dimensional and three-dimensional images of the body that provide important medical information with none of the hazards of x-rays. MRI is based on an effect called nuclear magnetic resonance (NMR) in which an externally applied magnetic field interacts with the nuclei of certain atoms, particularly those of hydrogen (protons). These nuclei possess their own small magnetic fields, similar to those of electrons and the current loops discussed earlier in this chapter.

When placed in an external magnetic field, such nuclei experience a torque that pushes or aligns the nuclei into one of two new energy states—depending on the orientation of its spin (analogous to the N pole and S pole in a bar magnet). Transitions from the lower to higher energy state can be achieved by using an external radio frequency signal to "flip" the orientation of the small magnets. (This is actually a quantum mechanical process. The direction of the nuclear magnetic field is quantized as is energy in the radio waves. We will return to these topics in later chapters.) The specific frequency of the radio waves that are absorbed and reemitted depends sensitively on the type of nucleus, the chemical environment, and the external magnetic field strength. Therefore, this is a resonance phenomenon in which nuclei in a magnetic field act like resonators (analogous to those discussed in the treatment of sound in Oscillatory Motion and Waves (https://legacy.cnx.org/content/m42239/latest/)) that absorb and reemit only certain frequencies. Hence, the phenomenon is named nuclear magnetic resonance (NMR).

NMR has been used for more than 50 years as an analytical tool. It was formulated in 1946 by F. Bloch and E. Purcell, with the 1952 Nobel Prize in Physics going to them for their work. Over the past two decades, NMR has been developed to produce detailed images in a process now called magnetic resonance imaging (MRI), a name coined to avoid the use of the word "nuclear" and the concomitant implication that nuclear radiation is involved. (It is not.) The 2003 Nobel Prize in Medicine went to P. Lauterbur and P. Mansfield for their work with MRI applications.

The largest part of the MRI unit is a superconducting magnet that creates a magnetic field, typically between 1 and 2 T in strength, over a relatively large volume. MRI images can be both highly detailed and informative about structures and organ functions. It is helpful that normal and non-normal tissues respond differently for slight changes in the magnetic field. In most medical images, the protons that are hydrogen nuclei are imaged. (About 2/3 of the atoms in the body are hydrogen.) Their location and density give a variety of medically useful information, such as organ function, the condition of tissue (as in the brain), and the shape of structures, such as vertebral disks and knee-joint surfaces. MRI can also be used to follow the movement of certain ions across membranes, yielding information on active transport, osmosis, dialysis, and other phenomena. With excellent spatial resolution, MRI can provide information about tumors, strokes, shoulder injuries, infections, etc.

An image requires position information as well as the density of a nuclear type (usually protons). By varying the magnetic field slightly over the volume to be imaged, the resonant frequency of the protons is made to vary with position. Broadcast radio frequencies are swept over an appropriate range and nuclei absorb and reemit them only if the nuclei are in a magnetic field with the correct strength. The imaging receiver gathers information through the body almost point by point, building up a tissue map. The reception of reemitted radio waves as a function of frequency thus gives position information. These “slices” or cross sections through the body are only several mm thick. The intensity of the reemitted radio waves is proportional to the concentration of the nuclear type being flipped, as well as information on the chemical environment in that area of the body. Various techniques are available for enhancing contrast in images and for obtaining more information. Scans called T1, T2, or proton density scans rely on different relaxation mechanisms of nuclei. Relaxation refers to the time it takes for the protons to return to equilibrium after the external field is turned off. This time depends upon tissue type and status (such as inflammation).

While MRI images are superior to x rays for certain types of tissue and have none of the hazards of x rays, they do not completely supplant x-ray images. MRI is less effective than x rays for detecting breaks in bone, for example, and in imaging breast tissue, so the two diagnostic tools complement each other. MRI images are also expensive compared to simple x-ray images and tend to be used most often where they supply information not readily obtained from x rays. Another disadvantage of MRI is that the patient is totally enclosed with detectors close to the body for about 30 minutes or more, leading to claustrophobia. It is also difficult for the obese patient to be in the magnet tunnel. New “open-MRI” machines are now available in which the magnet does not completely surround the patient.

Over the last decade, the development of much faster scans, called “functional MRI” (fMRI), has allowed us to map the functioning of various regions in the brain responsible for thought and motor control. This technique measures the change in blood flow for activities (thought, experiences, action) in the brain. The nerve cells increase their consumption of oxygen when active. Blood hemoglobin releases oxygen to active nerve cells and has somewhat different magnetic properties when oxygenated than when deoxygenated. With MRI, we can measure this and detect a blood oxygen-dependent signal. Most of the brain scans today use fMRI.

Other Medical Uses of Magnetic Fields

Currents in nerve cells and the heart create magnetic fields like any other currents. These can be measured but with some difficulty since their strengths are about 10^{-6} to 10^{-8} less than the Earth’s magnetic field. Recording of the heart’s magnetic field as it beats is called a magnetocardiogram (MCG), while measurements of the brain’s magnetic field is called a magnetoencephalogram (MEG). Both give information that differs from that obtained by measuring the electric fields of these organs (ECGs and EEGs), but they are not yet of sufficient importance to make these difficult measurements common.

Figure 13.32 The cathode ray tube (CRT) is so named because rays of electrons originate at the cathode in the electron gun. Magnetic coils are used to steer the beam in many CRTs. In this case, the beam is moved down. Another pair of horizontal coils would steer the beam horizontally.
In both of these techniques, the sensors do not touch the body. MCG can be used in fetal studies, and is probably more sensitive than echocardiography. MCG also looks at the heart’s electrical activity whose voltage output is too small to be recorded by surface electrodes as in EKG. It has the potential of being a rapid scan for early diagnosis of cardiac ischemia (obstruction of blood flow to the heart) or problems with the fetus.

MEG can be used to identify abnormal electrical discharges in the brain that produce weak magnetic signals. Therefore, it looks at brain activity, not just brain structure. It has been used for studies of Alzheimer’s disease and epilepsy. Advances in instrumentation to measure very small magnetic fields have allowed these two techniques to be used more in recent years. What is used is a sensor called a SQUID, for superconducting quantum interference device. This operates at liquid helium temperatures and can measure magnetic fields thousands of times smaller than the Earth’s.

Finally, there is a burgeoning market for magnetic cures in which magnets are applied in a variety of ways to the body, from magnetic bracelets to magnetic mattresses. The best that can be said for such practices is that they are apparently harmless, unless the magnets get close to the patient’s computer or magnetic storage disks. Claims are made for a broad spectrum of benefits from cleansing the blood to giving the patient more energy, but clinical studies have not verified these claims, nor is there an identifiable mechanism by which such benefits might occur.

PhET Explorations: Magnet and Compass

Ever wonder how a compass worked to point you to the Arctic? Explore the interactions between a compass and bar magnet, and then add the Earth and find the surprising answer! Vary the magnet’s strength, and see how things change both inside and outside. Use the field meter to measure how the magnetic field changes.

![PhET Interactive Simulation](http://legacy.cnx.org/content/m42388/1.4/magnet-and-compass_en.jar)

Glossary

- **B-field**: another term for magnetic field
- **Curie temperature**: the temperature above which a ferromagnetic material cannot be magnetized
- **direction of magnetic field lines**: the direction that the north end of a compass needle points
- **domains**: regions within a material that behave like small bar magnets
- **electromagnet**: an object that is temporarily magnetic when an electrical current is passed through it
- **electromagnetism**: the use of electrical currents to induce magnetism
- **ferromagnetic**: materials, such as iron, cobalt, nickel, and gadolinium, that exhibit strong magnetic effects
- **gauss**: G, the unit of the magnetic field strength; $1 \text{ G} = 10^{-4} \text{T}$
- **Lorentz force**: the force on a charge moving in a magnetic field
- **magnetic field**: the representation of magnetic forces
- **magnetic field lines**: the pictorial representation of the strength and the direction of a magnetic field
- **magnetic force**: the force on a charge produced by its motion through a magnetic field; the Lorentz force
- **magnetic monopoles**: an isolated magnetic pole; a south pole without a north pole, or vice versa (no magnetic monopole has ever been observed)
- **magnetic resonance imaging (MRI)**: a medical imaging technique that uses magnetic fields create detailed images of internal tissues and organs
- **magnetized**: to be turned into a magnet; to be induced to be magnetic
- **magnetocardiogram (MCG)**: a recording of the heart’s magnetic field as it beats
- **magnetoencephalogram (MEG)**: a measurement of the brain’s magnetic field
- **north magnetic pole**: the end or the side of a magnet that is attracted toward Earth’s geographic north pole
- **nuclear magnetic resonance (NMR)**: a phenomenon in which an externally applied magnetic field interacts with the nuclei of certain atoms
- **right hand rule 1 (RHR-1)**: the rule to determine the direction of the magnetic force on a positive moving charge: when the thumb of the right hand points in the direction of the charge's velocity \mathbf{v} and the fingers point in the direction of the magnetic field \mathbf{B}, then the force on the charge is perpendicular and away from the palm; the force on a negative charge is perpendicular and into the palm
- **south magnetic pole**: the end or the side of a magnet that is attracted toward Earth’s geographic south pole
tesla: \(T \), the SI unit of the magnetic field strength; \(1 \, T = \frac{1 \, N}{A \cdot m} \)

Section Summary

13.1 Magnets
- Magnetism is a subject that includes the properties of magnets, the effect of the magnetic force on moving charges and currents, and the creation of magnetic fields by currents.
- There are two types of magnetic poles, called the north magnetic pole and south magnetic pole.
- North magnetic poles are those that are attracted toward the Earth's geographic north pole.
- Like poles repel and unlike poles attract.
- Magnetic poles always occur in pairs of north and south—it is not possible to isolate north and south poles.

13.2 Ferromagnets and Electromagnets
- Magnetic poles always occur in pairs of north and south—it is not possible to isolate north and south poles.
- All magnetism is created by electric current.
- Ferromagnetic materials, such as iron, are those that exhibit strong magnetic effects.
- The atoms in ferromagnetic materials act like small magnets (due to currents within the atoms) and can be aligned, usually in millimeter-sized regions called domains.
- Domains can grow and align on a larger scale, producing permanent magnets. Such a material is magnetized, or induced to be magnetic.
- Above a material's Curie temperature, thermal agitation destroys the alignment of atoms, and ferromagnetism disappears.
- Electromagnets employ electric currents to make magnetic fields, often aided by induced fields in ferromagnetic materials.

13.3 Magnetic Fields and Magnetic Field Lines
- Magnetic fields can be pictorially represented by magnetic field lines, the properties of which are as follows:
 1. The field is tangent to the magnetic field line.
 2. Field strength is proportional to the line density.
 3. Field lines cannot cross.
 4. Field lines are continuous loops.

13.4 Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field
- Magnetic fields exert a force on a moving charge, the magnitude of which is
 \[F = qvB \sin \theta, \]
 where \(\theta \) is the angle between the directions of \(v \) and \(B \).
- The SI unit for magnetic field strength \(B \) is the tesla (T), which is related to other units by
 \[1 \, T = \frac{1 \, N}{C \cdot m/s} = \frac{1 \, N}{A \cdot m}. \]
- The direction of the force on a moving charge is given by right hand rule 1 (RHR-1): Point the thumb of the right hand in the direction of \(v \), the fingers in the direction of \(B \), and a perpendicular to the palm points in the direction of \(F \).
- The force is perpendicular to the plane formed by \(v \) and \(B \). Since the force is zero if \(v \) is parallel to \(B \), charged particles often follow magnetic field lines rather than cross them.

13.5 Force on a Moving Charge in a Magnetic Field: Examples and Applications
- Magnetic force can supply centripetal force and cause a charged particle to move in a circular path of radius
 \[r = \frac{mv}{qB}, \]
 where \(v \) is the component of the velocity perpendicular to \(B \) for a charged particle with mass \(m \) and charge \(q \).

13.6 Magnetic Force on a Current-Carrying Conductor
- The magnetic force on current-carrying conductors is given by
 \[F = lB \sin \theta, \]
 where \(I \) is the current, \(l \) is the length of a straight conductor in a uniform magnetic field \(B \), and \(\theta \) is the angle between \(I \) and \(B \). The force follows RHR-1 with the thumb in the direction of \(I \).

13.7 More Applications of Magnetism
- Crossed (perpendicular) electric and magnetic fields act as a velocity filter, giving equal and opposite forces on any charge with velocity perpendicular to the fields and of magnitude
 \[\nu = \frac{E}{B}. \]
13.1 Magnets
1. Volcanic and other such activity at the mid-Atlantic ridge extrudes material to fill the gap between separating tectonic plates associated with continental drift. The magnetization of rocks is found to reverse in a coordinated manner with distance from the ridge. What does this imply about the Earth's magnetic field and how could the knowledge of the spreading rate be used to give its historical record?

13.3 Magnetic Fields and Magnetic Field Lines
2. Explain why the magnetic field would not be unique (that is, not have a single value) at a point in space where magnetic field lines might cross. (Consider the direction of the field at such a point.)
3. List the ways in which magnetic field lines and electric field lines are similar. For example, the field direction is tangent to the line at any point in space. Also list the ways in which they differ. For example, electric force is parallel to electric field lines, whereas magnetic force on moving charges is perpendicular to magnetic field lines.
4. Noting that the magnetic field lines of a bar magnet resemble the electric field lines of a pair of equal and opposite charges, do you expect the magnetic field to rapidly decrease in strength with distance from the magnet? Is this consistent with your experience with magnets?
5. Is the Earth's magnetic field parallel to the ground at all locations? If not, where is it parallel to the surface? Is its strength the same at all locations? If not, where is it greatest?

13.4 Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field
6. If a charged particle moves in a straight line through some region of space, can you say that the magnetic field in that region is necessarily zero?

13.5 Force on a Moving Charge in a Magnetic Field: Examples and Applications
7. How can the motion of a charged particle be used to distinguish between a magnetic and an electric field?
8. High-velocity charged particles can damage biological cells and are a component of radiation exposure in a variety of locations ranging from research facilities to natural background. Describe how you could use a magnetic field to shield yourself.
9. If a cosmic ray proton approaches the Earth from outer space along a line toward the center of the Earth that lies in the plane of the equator, in what direction will it be deflected by the Earth's magnetic field? What about an electron? A neutron?
10. What are the signs of the charges on the particles in Figure 13.34?

![Figure 13.34](image)

11. Which of the particles in Figure 13.35 has the greatest velocity, assuming they have identical charges and masses?

![Figure 13.35](image)

12. Which of the particles in Figure 13.35 has the greatest mass, assuming all have identical charges and velocities?

13. While operating, a high-precision TV monitor is placed on its side during maintenance. The image on the monitor changes color and blurs slightly. Discuss the possible relation of these effects to the Earth's magnetic field.

13.6 Magnetic Force on a Current-Carrying Conductor
14. Draw a sketch of the situation in Figure 13.27 showing the direction of electrons carrying the current, and use RHR-1 to verify the direction of the force on the wire.
15. Verify that the direction of the force in an MHD drive, such as that in Figure 13.29, does not depend on the sign of the charges carrying the current across the fluid.
16. Why would a magnetohydrodynamic drive work better in ocean water than in fresh water? Also, why would superconducting magnets be desirable?
17. Which is more likely to interfere with compass readings, AC current in your refrigerator or DC current when you start your car? Explain.

13.7 More Applications of Magnetism

18. Measurements of the weak and fluctuating magnetic fields associated with brain activity are called magnetoencephalograms (MEGs). Do the brain’s magnetic fields imply coordinated or uncoordinated nerve impulses? Explain.

19. Discuss the possibility that a Hall voltage would be generated on the moving heart of a patient during MRI imaging. Also discuss the same effect on the wires of a pacemaker. (The fact that patients with pacemakers are not given MRIs is significant.)

20. A patient in an MRI unit turns his head quickly to one side and experiences momentary dizziness and a strange taste in his mouth. Discuss the possible causes.

21. You are told that in a certain region there is either a uniform electric or magnetic field. What measurement or observation could you make to determine the type? (Ignore the Earth’s magnetic field.)

22. An example of magnetohydrodynamics (MHD) comes from the flow of a river (salty water). This fluid interacts with the Earth’s magnetic field to produce a potential difference between the two river banks. How would you go about calculating the potential difference?

23. Draw gravitational field lines between 2 masses, electric field lines between a positive and a negative charge, electric field lines between 2 positive charges and magnetic field lines around a magnet. Qualitatively describe the differences between the fields and the entities responsible for the field lines.
13.4 Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field

1. What is the direction of the magnetic force on a positive charge that moves as shown in each of the six cases shown in Figure 13.36?

![Figure 13.36](image)

2. Repeat Exercise 13.1 for a negative charge.

3. What is the direction of the velocity of a negative charge that experiences the magnetic force shown in each of the three cases in Figure 13.37, assuming it moves perpendicular to \(\mathbf{B} \)?

![Figure 13.37](image)

4. Repeat Exercise 13.3 for a positive charge.

5. What is the direction of the magnetic field that produces the magnetic force on a positive charge shown in each of the three cases in the figure below, assuming \(\mathbf{B} \) is perpendicular to \(\mathbf{v} \)?

![Figure 13.38](image)

6. Repeat Exercise 13.5 for a negative charge.

7. What is the maximum force on an aluminum rod with a 0.100-\(\mu \)C charge that you pass between the poles of a 1.50-T permanent magnet at a speed of 5.00 m/s? In what direction is the force?

8. (a) Aircraft sometimes acquire small static charges. Suppose a supersonic jet has a 0.500-\(\mu \)C charge and flies due west at a speed of 660 m/s over the Earth’s south magnetic pole, where the 8.00\(\times \)10\(^{-5}\) T magnetic field points straight up. What are the direction and the magnitude of the magnetic force on the plane? (b) Discuss whether the value obtained in part (a) implies this is a significant or negligible effect.

9. (a) A cosmic ray proton moving toward the Earth at 5.00\(\times \)10\(^7\) m/s experiences a magnetic force of 1.70\(\times \)10\(^{-16}\) N. What is the strength of the magnetic field if there is a 45\(^\circ\) angle between it and the proton's velocity? (b) Is the value obtained in part (a) consistent with the known strength of the Earth’s magnetic field on its surface? Discuss.

10. An electron moving at 4.00\(\times \)10\(^3\) m/s in a 1.25-T magnetic field experiences a magnetic force of 1.40\(\times \)10\(^{-16}\) N. What angle does the velocity of the electron make with the magnetic field? There are two answers.

11. (a) A physicist performing a sensitive measurement wants to limit the magnetic force on a moving charge in her equipment to less than 1.00\(\times \)10\(^{-12}\) N. What is the greatest the charge can be if it moves at a maximum speed of 30.0 m/s in the Earth’s field? (b) Discuss whether it would be difficult to limit the charge to less than the value found in (a) by comparing it with typical static electricity and noting that static is often absent.

13.5 Force on a Moving Charge in a Magnetic Field: Examples and Applications

If you need additional support for these problems, see More Applications of Magnetism.

12. A cosmic ray electron moves at 7.50\(\times \)10\(^6\) m/s perpendicular to the Earth’s magnetic field at an altitude where field strength is 1.00\(\times \)10\(^{-5}\) T. What is the radius of the circular path the electron follows?

13. A proton moves at 7.50\(\times \)10\(^7\) m/s perpendicular to a magnetic field. The field causes the proton to travel in a circular path of radius 0.800 m. What is the field strength?

14. (a) Viewers of Star Trek hear of an antimatter drive on the Starship Enterprise. One possibility for such a futuristic energy source is to store antimatter charged particles in a vacuum chamber, circulating in a magnetic field, and then extract them as needed. Antimatter annihilates with normal matter, producing pure energy. What strength magnetic field is needed to hold antiprotons, moving at 5.00\(\times \)10\(^7\) m/s in a circular path 2.00 m in radius? Antiprotons have the same mass as protons but the opposite (negative) charge. (b) Is this field strength obtainable with today’s technology or is it a futuristic possibility?

15. (a) An oxygen-16 ion with a mass of 2.66\(\times \)10\(^{-26}\) kg travels at 5.00\(\times \)10\(^6\) m/s perpendicular to a 1.20-T magnetic field, which makes it move in a circular arc with a 0.231-m radius. What positive charge is on the ion? (b) What is the ratio of this charge to the charge of an electron? (c) Discuss why the ratio found in (b) should be an integer.

16. What radius circular path does an electron travel if it moves at the same speed and in the same magnetic field as the proton in Exercise 13.13?

17. A velocity selector in a mass spectrometer uses a 0.100-T magnetic field. (a) What electric field strength is needed to select a speed of 4.00\(\times \)10\(^6\) m/s? (b) What is the voltage between the plates if they are separated by 1.00 cm?

18. An electron in a TV CRT moves with a speed of 6.00\(\times \)10\(^7\) m/s, in a direction perpendicular to the Earth’s field, which has a strength of
5.00 \times 10^{-5} \text{ T}. (a) What strength electric field must be applied perpendicular to the Earth’s field to make the electron move in a straight line? (b) If this is done between plates separated by 1.00 cm, what is the voltage applied? (Note that TV’s are usually surrounded by a ferromagnetic material to shield against external magnetic fields and avoid the need for such a correction.)

19. (a) At what speed will a proton move in a circular path of the same radius as the electron in Exercise 13.12? (b) What would the radius of the path be if the proton had the same speed as the electron? (c) What would the radius be if the proton had the same kinetic energy as the electron? (d) The same momentum?

20. A mass spectrometer is being used to separate common oxygen-16 from the much rarer oxygen-18, taken from a sample of old glacial ice. (The relative abundance of these oxygen isotopes is related to climatic temperature at the time the ice was deposited.) The ratio of the masses of these two ions is 16 to 18, the mass of oxygen-16 is 2.66 \times 10^{-26} \text{ kg}, and they are singly charged and travel at 5.00 \times 10^6 \text{ m/s} in a 1.20-T magnetic field. What is the separation between their paths when they hit a target after traversing a semicircle?

21. (a) Triply charged uranium-235 and uranium-238 ions are being separated in a mass spectrometer. (The much rarer uranium-235 is used as reactor fuel.) The masses of the ions are 3.90 \times 10^{-23} \text{ kg} and 3.95 \times 10^{-25} \text{ kg}, respectively, and they travel at 3.00 \times 10^5 \text{ m/s} in a 0.250-T field. What is the separation between their paths when they hit a target after traversing a semicircle? (b) Discuss whether this distance between their paths seems to be big enough to be practical in the separation of uranium-235 from uranium-238.

13.6 Magnetic Force on a Current-Carrying Conductor

22. What is the direction of the magnetic force on the current in each of the six cases in Figure 13.39?

Figure 13.39

23. What is the direction of a current that experiences the magnetic force shown in each of the three cases in Figure 13.40, assuming the current runs perpendicular to \(B \)?

Figure 13.40

24. What is the direction of the magnetic force that produces the magnetic force shown on the currents in each of the three cases in Figure 13.41, assuming \(\mathbf{B} \) is perpendicular to \(\mathbf{I} \)?

Figure 13.41

25. (a) What is the force per meter on a lightning bolt at the equator that carries 20,000 A perpendicular to the Earth’s 3.00 \times 10^{-5} \text{ T} field? (b) What is the direction of the force if the current is straight up and the Earth’s field direction is due north, parallel to the ground?

26. (a) A DC power line for a light-rail system carries 1000 A at an angle of 30.0º to the Earth’s 5.00 \times 10^{-5} \text{ T} field. What is the force on a 100-m section of this line? (b) Discuss practical concerns this presents, if any.

27. What force is exerted on the water in an MHD drive utilizing a 25.0-cm-diameter tube, if 100-A current is passed across the tube that is perpendicular to a 2.00-T magnetic field? (The relatively small size of this force indicates the need for very large currents and magnetic fields to make practical MHD drives.)

28. A wire carrying a 30.0-A current passes between the poles of a strong magnet that is perpendicular to its field and experiences a 2.16-N force on the 4.00 cm of wire in the field. What is the average field strength?

29. (a) A 0.750-m-long section of cable carrying current to a car starter motor makes an angle of 60º with the Earth’s 5.50 \times 10^{-5} \text{ T} field. What is the current when the wire experiences a force of 7.00 \times 10^{-3} \text{ N}? (b) If you run the wire between the poles of a strong horseshoe magnet, subjecting 5.00 cm of it to a 1.75-T field, what force is exerted on this segment of wire?

30. (a) What is the angle between a wire carrying an 8.00-A current and the 1.20-T field it is in if 50.0 cm of the wire experiences a magnetic force of 2.40 N? (b) What is the force on the wire if it is rotated to make an angle of 90º with the field?

31. The force on the rectangular loop of wire in the magnetic field in Figure 13.42 can be used to measure field strength. The field is uniform, and the plane of the loop is perpendicular to the field. (a) What is the direction of the magnetic force on the loop? Justify the claim that the forces on the sides of the loop are equal and opposite, independent of how much of the loop is in the field and do not affect the net force on the loop. (b) If a current of 5.00 A is used, what is the force per tesla on the 20.0-cm-wide loop?
0.650 \times 10^{-15} \text{ m} \text{ in radius carrying } 1.05 \times 10^{4} \text{ A. What is the field at the center of such a loop?}

36. Inside a motor, 30.0 A passes through a 250-turn circular loop that is 10.0 cm in radius. What is the magnetic field strength created at its center?

37. Nonnuclear submarines use batteries for power when submerged. (a) Find the magnetic field 50.0 cm from a straight wire carrying 1200 A from the batteries to the drive mechanism of a submarine. (b) What is the field if the wires to and from the drive mechanism are side by side? (c) Discuss the effects this could have for a compass on the submarine that is not shielded.

38. How strong is the magnetic field inside a solenoid with 10,000 turns per meter that carries 20.0 A?

39. What current is needed in the solenoid described in Exercise 13.32 to produce a magnetic field 10^{4} times the Earth’s magnetic field of $5.00 \times 10^{-5} \text{ T}$?

40. How far from the starter cable of a car, carrying 150 A, must you be to experience a field less than the Earth’s ($5.00 \times 10^{-5} \text{ T}$)? Assume a long straight wire carries the current. (In practice, the body of your car shields the dashboard compass.)

41. Measurements affect the system being measured, such as the current loop in Figure 13.42. (a) Estimate the field the loop creates by calculating the field at the center of a circular loop 20.0 cm in diameter carrying 5.00 A. (b) What is the smallest field strength this loop can be used to measure, if its field must alter the measured field by less than 0.0100%?

42. Figure 13.46 shows a long straight wire just touching a loop carrying a current I_1. Both lie in the same plane. (a) What direction must the current I_2 in the straight wire have to create a field at the center of the loop in the direction opposite to that created by the loop? (b) What is the ratio of I_1 / I_2 that gives zero field strength at the center of the loop? (c) What is the direction of the field directly above the loop under this circumstance?

Figure 13.46

43. Find the magnitude and direction of the magnetic field at the point equidistant from the wires in m42386 (https://legacy.cnx.org/content/m42386/latest/#import-auto-id2069440) (a), using the rules of vector addition to sum the contributions from each wire.

44. Find the magnitude and direction of the magnetic field at the point equidistant from the wires in m42386 (https://legacy.cnx.org/content/m42386/latest/#import-auto-id2069440) (b), using the rules of vector addition to sum the contributions from each wire.

45. What current is needed in the top wire in m42386 (https://legacy.cnx.org/content/m42386/latest/#import-auto-id2069440) (a) to produce a field of zero at the point equidistant from the wires, if the currents in the bottom two wires are both 10.0 A into the page?

46. Calculate the size of the magnetic field 20 m below a high voltage power line. The line carries 450 MW at a voltage of 300,000 V.

47. Integrated Concepts

(a) A pendulum is set up so that its bob (a thin copper disk) swings between the poles of a permanent magnet as shown in Figure 13.47. What is the magnitude and direction of the magnetic force on the bob at
the lowest point in its path, if it has a positive 0.250 μC charge and is released from a height of 30.0 cm above its lowest point? The magnetic field strength is 1.50 T. (b) What is the acceleration of the bob at the bottom of its swing if its mass is 30.0 grams and it is hung from a flexible string? Be certain to include a free-body diagram as part of your analysis.

Figure 13.47

48. Integrated Concepts
(a) What voltage will accelerate electrons to a speed of 6.00x10^{-7} m/s? (b) Find the radius of curvature of the path of a proton accelerated through this potential in a 0.500-T field and compare this with the radius of curvature of an electron accelerated through the same potential.

49. Integrated Concepts
Find the radius of curvature of the path of a 25.0-MeV proton moving perpendicularly to the 1.20-T field of a cyclotron.

50. Integrated Concepts
To construct a nonmechanical water meter, a 0.500-T magnetic field is placed across the supply water pipe to a home and the Hall voltage is recorded. (a) Find the flow rate in liters per second through a 3.00-cm-diameter pipe if the Hall voltage is 60.0 mV. (b) What would the Hall voltage be for the same flow rate through a 10.0-cm-diameter pipe with the same field applied?

51. Integrated Concepts
(a) Using the values given for an MHD drive in Exercise 13.33, and assuming the force is uniformly applied to the fluid, calculate the pressure created in N/m^2. (b) Is this a significant fraction of an atmosphere?

52. Integrated Concepts
(a) Calculate the maximum torque on a 50-turn, 1.50 cm radius circular current loop carrying 50 μA in a 0.500-T field. (b) If this coil is to be used in a galvanometer that reads 50 μA full scale, what force constant spring must be used, if it is attached 1.00 cm from the axis of rotation and is stretched by the 60° arc moved?

53. Integrated Concepts
A current balance used to define the ampere is designed so that the current through it is constant, as is the distance between wires. Even so, if the wires change length with temperature, the force between them will change. What percent change in force per degree will occur if the wires are copper?

54. Integrated Concepts
(a) Show that the period of the circular orbit of a charged particle moving perpendicularly to a uniform magnetic field is \(T = \frac{2\pi m}{qB} \). (b) What is the frequency \(f \)? (c) What is the angular velocity \(\omega \)? Note that these results are independent of the velocity and radius of the orbit and, hence, of the energy of the particle. (Figure 13.48.)

Figure 13.48 Cyclotrons accelerate charged particles orbiting in a magnetic field by placing an AC voltage on the metal Dees, between which the particles move, so that energy is added twice each orbit. The frequency is constant, since it is independent of the particle energy—the radius of the orbit simply increases with energy until the particles approach the edge and are extracted for various experiments and applications.

55. Integrated Concepts
A cyclotron accelerates charged particles as shown in Figure 13.48. Using the results of the previous problem, calculate the frequency of the accelerating voltage needed for a proton in a 1.20-T field.

56. Integrated Concepts
(a) A 0.140-kg baseball, pitched at 40.0 m/s horizontally and perpendicular to the Earth's horizontal 5.00x10^{-5} T field, has a 100-nC charge on it. What distance is it deflected from its path by the magnetic force, after traveling 30.0 m horizontally? (b) Would you suggest this as a secret technique for a pitcher to throw curve balls?

57. Integrated Concepts
(a) What is the direction of the force on a wire carrying a current due east in a location where the Earth's field is due north? Both are parallel to the ground. (b) Calculate the force per meter if the wire carries 20.0 A and the field strength is 3.00x10^{-5} T. (c) What diameter copper wire would have its weight supported by this force? (d) Calculate the resistance per meter and the voltage per meter needed.

58. Integrated Concepts
One long straight wire is to be held directly above another by repulsion between their currents. The lower wire carries 100 A and the wire 7.50 cm above it is 10-gauge (2.588 mm diameter) copper wire. (a) What current must flow in the upper wire, neglecting the Earth's field? (b) What is the smallest current if the Earth's 3.00x10^{-5} T field is parallel to the ground and is not neglected? (c) Is the supported wire in a stable or unstable equilibrium if displaced vertically? If displaced horizontally?

59. Unreasonable Results
(a) Find the charge on a baseball, thrown at 35.0 m/s perpendicular to the Earth's 5.00x10^{-5} T field, that experiences a 1.00-N magnetic force. (b) What is unreasonable about this result? (c) Which assumption or premise is responsible?

60. Unreasonable Results
A charged particle having mass 6.64x10^{-27} kg (that of a helium atom) moving at 8.70x10^{-5} m/s perpendicular to a 1.50-T magnetic
field travels in a circular path of radius 16.0 mm. (a) What is the charge of the particle? (b) What is unreasonable about this result? (c) Which assumptions are responsible?

61. Unreasonable Results
An inventor wants to generate 120-V power by moving a 1.00-m-long wire perpendicular to the Earth’s 5.00×10^{-5} T field. (a) Find the speed with which the wire must move. (b) What is unreasonable about this result? (c) Which assumption is responsible?

62. Unreasonable Results
Frustrated by the small Hall voltage obtained in blood flow measurements, a medical physicist decides to increase the applied magnetic field strength to get a 0.500-V output for blood moving at 30.0 cm/s in a 1.50-cm-diameter vessel. (a) What magnetic field strength is needed? (b) What is unreasonable about this result? (c) Which premise is responsible?

63. Unreasonable Results
A surveyor 100 m from a long straight 200-kV DC power line suspects that its magnetic field may equal that of the Earth and affect compass readings. (a) Calculate the current in the wire needed to create a 5.00×10^{-5} T field at this distance. (b) What is unreasonable about this result? (c) Which assumption or premise is responsible?

64. Construct Your Own Problem
Consider a mass separator that applies a magnetic field perpendicular to the velocity of ions and separates the ions based on the radius of curvature of their paths in the field. Construct a problem in which you calculate the magnetic field strength needed to separate two ions that differ in mass, but not charge, and have the same initial velocity. Among the things to consider are the types of ions, the velocities they can be given before entering the magnetic field, and a reasonable value for the radius of curvature of the paths they follow. In addition, calculate the separation distance between the ions at the point where they are detected.

65. Construct Your Own Problem
Consider using the torque on a current-carrying coil in a magnetic field to detect relatively small magnetic fields (less than the field of the Earth, for example). Construct a problem in which you calculate the maximum torque on a current-carrying loop in a magnetic field. Among the things to be considered are the size of the coil, the number of loops it has, the current you pass through the coil, and the size of the field you wish to detect. Discuss whether the torque produced is large enough to be effectively measured. Your instructor may also wish for you to consider the effects, if any, of the field produced by the coil on the surroundings that could affect detection of the small field.
A USEFUL INFORMATION

This appendix is broken into several tables.

- Table A1, Important Constants
- Table A2, Submicroscopic Masses
- Table A3, Solar System Data
- Table A4, Metric Prefixes for Powers of Ten and Their Symbols
- Table A5, The Greek Alphabet
- Table A6, SI units
- Table A7, Selected British Units
- Table A8, Other Units
- Table A9, Useful Formulae

Table A1. Important Constants

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Best Value</th>
<th>Approximate Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>Speed of light in vacuum</td>
<td>2.99792458×10^8 m/s</td>
<td>3.00×10^8 m/s</td>
</tr>
<tr>
<td>G</td>
<td>Gravitational constant</td>
<td>$6.67384(80) \times 10^{-11}$ N \cdot m^2/kg^2</td>
<td>6.67×10^{-11} N \cdot m^2/kg^2</td>
</tr>
<tr>
<td>N_A</td>
<td>Avogadro's number</td>
<td>$6.02214129(27) \times 10^{23}$</td>
<td>6.02×10^{23}</td>
</tr>
<tr>
<td>k</td>
<td>Boltzmann's constant</td>
<td>$1.380648(13) \times 10^{-23}$ J/K</td>
<td>1.38×10^{-23} J/K</td>
</tr>
<tr>
<td>R</td>
<td>Gas constant</td>
<td>$8.314462(75)$ J/mol \cdot K</td>
<td>8.31 J/mol \cdot K = 1.99 cal/mol \cdot K = 0.0821 atm \cdot L/mol \cdot K</td>
</tr>
<tr>
<td>σ</td>
<td>Stefan-Boltzmann constant</td>
<td>$5.670373(21) \times 10^{-8}$ W/m^2 \cdot K</td>
<td>5.67×10^{-8} W/m^2 \cdot K</td>
</tr>
<tr>
<td>k</td>
<td>Coulomb force constant</td>
<td>$8.987551788... \times 10^9$ N \cdot m^2/C^2</td>
<td>8.99×10^9 N \cdot m^2/C^2</td>
</tr>
<tr>
<td>q_e</td>
<td>Charge on electron</td>
<td>$-1.602176565(35) \times 10^{-19}$ C</td>
<td>-1.60×10^{-19} C</td>
</tr>
<tr>
<td>ε_0</td>
<td>Permittivity of free space</td>
<td>$8.854187817... \times 10^{-12}$ C^2/N \cdot m^2</td>
<td>8.85×10^{-12} C^2/N \cdot m^2</td>
</tr>
<tr>
<td>μ_0</td>
<td>Permeability of free space</td>
<td>$4\pi \times 10^{-7}$ T \cdot m/A</td>
<td>1.26×10^{-6} T \cdot m/A</td>
</tr>
<tr>
<td>h</td>
<td>Planck's constant</td>
<td>$6.62606957(29) \times 10^{-34}$ J \cdot s</td>
<td>6.63×10^{-34} J \cdot s</td>
</tr>
</tbody>
</table>

Table A2. Submicroscopic Masses

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Best Value</th>
<th>Approximate Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_e</td>
<td>Electron mass</td>
<td>$9.10938291(40)\times 10^{-31}$ kg</td>
<td>9.11×10^{-31} kg</td>
</tr>
<tr>
<td>m_p</td>
<td>Proton mass</td>
<td>$1.672621777(74)\times 10^{-27}$ kg</td>
<td>1.6726×10^{-27} kg</td>
</tr>
<tr>
<td>m_n</td>
<td>Neutron mass</td>
<td>$1.674927351(74)\times 10^{-27}$ kg</td>
<td>1.6749×10^{-27} kg</td>
</tr>
<tr>
<td>u</td>
<td>Atomic mass unit</td>
<td>$1.660538921(73)\times 10^{-27}$ kg</td>
<td>1.6605×10^{-27} kg</td>
</tr>
</tbody>
</table>

Table A3. Solar System Data

<table>
<thead>
<tr>
<th>Sun</th>
<th>mass</th>
<th>Approximate Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1.99×10^{30} kg</td>
</tr>
<tr>
<td></td>
<td>average radius</td>
<td>6.96×10^8 m</td>
</tr>
</tbody>
</table>

1. Stated values are according to the National Institute of Standards and Technology Reference on Constants, Units, and Uncertainty, www.physics.nist.gov/cuu (accessed May 18, 2012). Values in parentheses are the uncertainties in the last digits. Numbers without uncertainties are exact as defined.
2. Stated values are according to the National Institute of Standards and Technology Reference on Constants, Units, and Uncertainty, www.physics.nist.gov/cuu (accessed May 18, 2012). Values in parentheses are the uncertainties in the last digits. Numbers without uncertainties are exact as defined.
<table>
<thead>
<tr>
<th>Earth</th>
<th>mass</th>
<th>5.9736×10^{24} kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>average radius</td>
<td>6.376×10^{6} m</td>
<td></td>
</tr>
<tr>
<td>orbital period</td>
<td>3.16×10^{7} s</td>
<td></td>
</tr>
<tr>
<td>Moon</td>
<td>mass</td>
<td>7.35×10^{22} kg</td>
</tr>
<tr>
<td>average radius</td>
<td>1.74×10^{6} m</td>
<td></td>
</tr>
<tr>
<td>orbital period (average)</td>
<td>2.36×10^{6} s</td>
<td></td>
</tr>
<tr>
<td>Earth-moon distance (average)</td>
<td>3.84×10^{8} m</td>
<td></td>
</tr>
</tbody>
</table>

Table A4 Metric Prefixes for Powers of Ten and Their Symbols

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Symbol</th>
<th>Value</th>
<th>Prefix</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>tera</td>
<td>T</td>
<td>10^{12}</td>
<td>deci</td>
<td>d</td>
<td>10^{-1}</td>
</tr>
<tr>
<td>giga</td>
<td>G</td>
<td>10^{9}</td>
<td>centi</td>
<td>c</td>
<td>10^{-2}</td>
</tr>
<tr>
<td>mega</td>
<td>M</td>
<td>10^{6}</td>
<td>milli</td>
<td>m</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>kilo</td>
<td>k</td>
<td>10^{3}</td>
<td>micro</td>
<td>μ</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>hecto</td>
<td>h</td>
<td>10^{2}</td>
<td>nano</td>
<td>n</td>
<td>10^{-9}</td>
</tr>
<tr>
<td>deka</td>
<td>da</td>
<td>10^{1}</td>
<td>pico</td>
<td>p</td>
<td>10^{-12}</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>10^{0} (= 1)</td>
<td>femto</td>
<td>f</td>
<td>10^{-15}</td>
</tr>
</tbody>
</table>

Table A5 The Greek Alphabet

Alpha	Α	α	Eta	Η	η	Nu	Ν	ν	Tau	Τ	τ
Beta	Β	β	Theta	Θ	θ	Xi	Ξ	ξ	Upsilon	Υ	υ
Gamma	Γ	γ	Iota	Ι	ι	Omicron	Ο	ο	Phi	Φ	ϕ
Delta	Δ	δ	Kappa	Κ	κ	Pi	Π	π	Chi	Χ	χ
Epsilon	Ε	ε	Lambda	Λ	λ	Rho	Ρ	ρ	Psi	Ψ	ψ
Zeta	Ζ	ζ	Mu	Μ	μ	Sigma	Σ	σ	Omega	Ω	ω

Table A6 SI Units

<table>
<thead>
<tr>
<th>Entity</th>
<th>Abbreviation</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamental units</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>m</td>
<td>meter</td>
</tr>
<tr>
<td>Mass</td>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>Time</td>
<td>s</td>
<td>second</td>
</tr>
<tr>
<td>Current</td>
<td>A</td>
<td>ampere</td>
</tr>
<tr>
<td>Supplementary unit</td>
<td>Angle</td>
<td>rad</td>
</tr>
<tr>
<td>Derived units</td>
<td>Force</td>
<td>N = kg · m/s²</td>
</tr>
<tr>
<td>Energy</td>
<td>J = kg · m²/s²</td>
<td>joule</td>
</tr>
<tr>
<td>Power</td>
<td>W = J/s</td>
<td>watt</td>
</tr>
<tr>
<td>Pressure</td>
<td>Pa = N/m²</td>
<td>pascal</td>
</tr>
<tr>
<td>Frequency</td>
<td>Hz = 1/s</td>
<td>hertz</td>
</tr>
<tr>
<td>Entity</td>
<td>Abbreviation</td>
<td>Name</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>Electronic potential</td>
<td>$V = J/C$</td>
<td>volt</td>
</tr>
<tr>
<td>Capacitance</td>
<td>$F = C/V$</td>
<td>farad</td>
</tr>
<tr>
<td>Charge</td>
<td>$C = s \cdot A$</td>
<td>coulomb</td>
</tr>
<tr>
<td>Resistance</td>
<td>$\Omega = V/A$</td>
<td>ohm</td>
</tr>
<tr>
<td>Magnetic field</td>
<td>$T = N/(A \cdot m)$</td>
<td>tesla</td>
</tr>
<tr>
<td>Nuclear decay rate</td>
<td>$Bq = 1/s$</td>
<td>becquerel</td>
</tr>
</tbody>
</table>

Table A7 Selected British Units

<table>
<thead>
<tr>
<th>Length</th>
<th>1 inch (in.) = 2.54 cm (exactly)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 foot (ft) = 0.3048 m</td>
</tr>
<tr>
<td></td>
<td>1 mile (mi) = 1.609 km</td>
</tr>
<tr>
<td>Force</td>
<td>1 pound (lb) = 4.448 N</td>
</tr>
<tr>
<td>Energy</td>
<td>1 British thermal unit (Btu) = 1.055×10³ J</td>
</tr>
<tr>
<td>Power</td>
<td>1 horsepower (hp) = 746 W</td>
</tr>
<tr>
<td>Pressure</td>
<td>1 lb/in² = 6.895×10⁻³ Pa</td>
</tr>
</tbody>
</table>

Table A8 Other Units

<table>
<thead>
<tr>
<th>Length</th>
<th>1 light year (ly) = 9.46×10¹⁵ m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 astronomical unit (au) = 1.50×10¹¹ m</td>
</tr>
<tr>
<td></td>
<td>1 nautical mile = 1.852 km</td>
</tr>
<tr>
<td></td>
<td>1 angstrom (Å) = 10⁻¹⁰ m</td>
</tr>
<tr>
<td>Area</td>
<td>1 acre (ac) = 4.05×10³ m²</td>
</tr>
<tr>
<td></td>
<td>1 square foot (ft²) = 9.29×10⁻² m²</td>
</tr>
<tr>
<td></td>
<td>1 barn (b) = 10⁻²⁸ m²</td>
</tr>
<tr>
<td>Volume</td>
<td>1 liter (L) = 10⁻³ m³</td>
</tr>
<tr>
<td></td>
<td>1 U.S. gallon (gal) = 3.785×10⁻³ m³</td>
</tr>
<tr>
<td>Mass</td>
<td>1 solar mass = 1.99×10³⁰ kg</td>
</tr>
<tr>
<td></td>
<td>1 metric ton = 10³ kg</td>
</tr>
<tr>
<td></td>
<td>1 atomic mass unit (u) = 1.6605×10⁻²⁷ kg</td>
</tr>
<tr>
<td>Time</td>
<td>1 year (y) = 3.16×10⁷ s</td>
</tr>
<tr>
<td></td>
<td>1 day (d) = 86,400 s</td>
</tr>
<tr>
<td>Speed</td>
<td>1 mile per hour (mph) = 1.609 km/h</td>
</tr>
<tr>
<td></td>
<td>1 nautical mile per hour (naut) = 1.852 km/h</td>
</tr>
<tr>
<td>Angle</td>
<td>1 degree (°) = 1.745×10⁻² rad</td>
</tr>
<tr>
<td></td>
<td>1 minute of arc (') = 1/60 degree</td>
</tr>
</tbody>
</table>
1 second of arc (") = 1 / 60 minute of arc

1 grad = 1.571 × 10⁻² rad

Energy

1 kiloton TNT (kT) = 4.2 × 10¹² J

1 kilowatt hour (kW ⋅ h) = 3.60 × 10⁶ J

1 food calorie (kcal) = 4186 J

1 calorie (cal) = 4.186 J

1 electron volt (eV) = 1.60 × 10⁻¹⁹ J

Pressure

1 atmosphere (atm) = 1.013 × 10⁵ Pa

1 millimeter of mercury (mm Hg) = 133.3 Pa

1 torricelli (torr) = 1 mm Hg = 133.3 Pa

Nuclear decay rate

1 curie (Ci) = 3.70 × 10¹⁰ Bq

<table>
<thead>
<tr>
<th>Table A9 Useful Formulae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circumference of a circle with radius (r) or diameter (d)</td>
</tr>
<tr>
<td>Area of a circle with radius (r) or diameter (d)</td>
</tr>
<tr>
<td>Area of a sphere with radius (r)</td>
</tr>
<tr>
<td>Volume of a sphere with radius (r)</td>
</tr>
</tbody>
</table>
Glossary of Key Symbols and Notation

In this glossary, key symbols and notation are briefly defined.

Table B1

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>any symbol</td>
<td>average (indicated by a bar over a symbol—e.g., (\bar{v}) is average velocity)</td>
</tr>
<tr>
<td>°C</td>
<td>Celsius degree</td>
</tr>
<tr>
<td>°F</td>
<td>Fahrenheit degree</td>
</tr>
<tr>
<td>//</td>
<td>parallel</td>
</tr>
<tr>
<td>⊥</td>
<td>perpendicular</td>
</tr>
<tr>
<td>(\propto)</td>
<td>proportional to</td>
</tr>
<tr>
<td>±</td>
<td>plus or minus</td>
</tr>
<tr>
<td>(\nu)</td>
<td>zero as a subscript denotes an initial value</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>alpha rays</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>angular acceleration</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>temperature coefficient(s) of resistivity</td>
</tr>
<tr>
<td>(\beta)</td>
<td>beta rays</td>
</tr>
<tr>
<td>(\beta)</td>
<td>sound level</td>
</tr>
<tr>
<td>(\beta)</td>
<td>volume coefficient of expansion</td>
</tr>
<tr>
<td>(\beta^-)</td>
<td>electron emitted in nuclear beta decay</td>
</tr>
<tr>
<td>(\beta^+)</td>
<td>positron decay</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>gamma rays</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>surface tension</td>
</tr>
<tr>
<td>(\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}})</td>
<td>a constant used in relativity</td>
</tr>
<tr>
<td>(\Delta)</td>
<td>change in whatever quantity follows</td>
</tr>
<tr>
<td>(\delta)</td>
<td>uncertainty in whatever quantity follows</td>
</tr>
<tr>
<td>(\Delta E)</td>
<td>change in energy between the initial and final orbits of an electron in an atom</td>
</tr>
<tr>
<td>(\Delta E)</td>
<td>uncertainty in energy</td>
</tr>
<tr>
<td>(\Delta m)</td>
<td>difference in mass between initial and final products</td>
</tr>
<tr>
<td>(\Delta N)</td>
<td>number of decays that occur</td>
</tr>
<tr>
<td>(\Delta p)</td>
<td>change in momentum</td>
</tr>
<tr>
<td>(\Delta p)</td>
<td>uncertainty in momentum</td>
</tr>
<tr>
<td>(\Delta P E_g)</td>
<td>change in gravitational potential energy</td>
</tr>
<tr>
<td>(\Delta \theta)</td>
<td>rotation angle</td>
</tr>
<tr>
<td>(\Delta s)</td>
<td>distance traveled along a circular path</td>
</tr>
<tr>
<td>(\Delta t)</td>
<td>uncertainty in time</td>
</tr>
<tr>
<td>(\Delta t_0)</td>
<td>proper time as measured by an observer at rest relative to the process</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>ΔV</td>
<td>potential difference</td>
</tr>
<tr>
<td>Δx</td>
<td>uncertainty in position</td>
</tr>
<tr>
<td>ε_0</td>
<td>permittivity of free space</td>
</tr>
<tr>
<td>η</td>
<td>viscosity</td>
</tr>
<tr>
<td>θ</td>
<td>angle between the force vector and the displacement vector</td>
</tr>
<tr>
<td>θ</td>
<td>angle between two lines</td>
</tr>
<tr>
<td>θ</td>
<td>contact angle</td>
</tr>
<tr>
<td>θ</td>
<td>direction of the resultant</td>
</tr>
<tr>
<td>θ_B</td>
<td>Brewster's angle</td>
</tr>
<tr>
<td>θ_C</td>
<td>critical angle</td>
</tr>
<tr>
<td>κ</td>
<td>dielectric constant</td>
</tr>
<tr>
<td>λ</td>
<td>decay constant of a nuclide</td>
</tr>
<tr>
<td>λ</td>
<td>wavelength</td>
</tr>
<tr>
<td>λ_n</td>
<td>wavelength in a medium</td>
</tr>
<tr>
<td>μ_0</td>
<td>permeability of free space</td>
</tr>
<tr>
<td>μ_k</td>
<td>coefficient of kinetic friction</td>
</tr>
<tr>
<td>μ_s</td>
<td>coefficient of static friction</td>
</tr>
<tr>
<td>v_e</td>
<td>electron neutrino</td>
</tr>
<tr>
<td>π^+</td>
<td>positive pion</td>
</tr>
<tr>
<td>π^-</td>
<td>negative pion</td>
</tr>
<tr>
<td>π^0</td>
<td>neutral pion</td>
</tr>
<tr>
<td>ρ</td>
<td>density</td>
</tr>
<tr>
<td>ρ_c</td>
<td>critical density, the density needed to just halt universal expansion</td>
</tr>
<tr>
<td>ρ_f</td>
<td>fluid density</td>
</tr>
<tr>
<td>$\bar{\rho}_{\text{obj}}$</td>
<td>average density of an object</td>
</tr>
<tr>
<td>ρ / ρ_w</td>
<td>specific gravity</td>
</tr>
<tr>
<td>τ</td>
<td>characteristic time constant for a resistance and inductance (RL) or resistance and capacitance (RC) circuit</td>
</tr>
<tr>
<td>τ</td>
<td>characteristic time for a resistor and capacitor (RC) circuit</td>
</tr>
<tr>
<td>τ</td>
<td>torque</td>
</tr>
<tr>
<td>Υ</td>
<td>upsilon meson</td>
</tr>
<tr>
<td>Φ</td>
<td>magnetic flux</td>
</tr>
<tr>
<td>ϕ</td>
<td>phase angle</td>
</tr>
<tr>
<td>Ω</td>
<td>ohm (unit)</td>
</tr>
<tr>
<td>ω</td>
<td>angular velocity</td>
</tr>
<tr>
<td>A</td>
<td>ampere (current unit)</td>
</tr>
<tr>
<td>A</td>
<td>area</td>
</tr>
<tr>
<td>A</td>
<td>cross-sectional area</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>A</td>
<td>total number of nucleons</td>
</tr>
<tr>
<td>a</td>
<td>acceleration</td>
</tr>
<tr>
<td>a_B</td>
<td>Bohr radius</td>
</tr>
<tr>
<td>a_c</td>
<td>centripetal acceleration</td>
</tr>
<tr>
<td>a_t</td>
<td>tangential acceleration</td>
</tr>
<tr>
<td>AC</td>
<td>alternating current</td>
</tr>
<tr>
<td>AM</td>
<td>amplitude modulation</td>
</tr>
<tr>
<td>atm</td>
<td>atmosphere</td>
</tr>
<tr>
<td>B</td>
<td>baryon number</td>
</tr>
<tr>
<td>B</td>
<td>blue quark color</td>
</tr>
<tr>
<td>\bar{B}</td>
<td>antiblue (yellow) antiquark color</td>
</tr>
<tr>
<td>b</td>
<td>quark flavor bottom or beauty</td>
</tr>
<tr>
<td>B</td>
<td>bulk modulus</td>
</tr>
<tr>
<td>B</td>
<td>magnetic field strength</td>
</tr>
<tr>
<td>B_{int}</td>
<td>electron’s intrinsic magnetic field</td>
</tr>
<tr>
<td>B_{orb}</td>
<td>orbital magnetic field</td>
</tr>
<tr>
<td>BE</td>
<td>binding energy of a nucleus—it is the energy required to completely disassemble it into separate protons and neutrons</td>
</tr>
<tr>
<td>BE / A</td>
<td>binding energy per nucleon</td>
</tr>
<tr>
<td>Bq</td>
<td>becquerel—one decay per second</td>
</tr>
<tr>
<td>C</td>
<td>capacitance (amount of charge stored per volt)</td>
</tr>
<tr>
<td>C</td>
<td>coulomb (a fundamental SI unit of charge)</td>
</tr>
<tr>
<td>C_p</td>
<td>total capacitance in parallel</td>
</tr>
<tr>
<td>C_s</td>
<td>total capacitance in series</td>
</tr>
<tr>
<td>CG</td>
<td>center of gravity</td>
</tr>
<tr>
<td>CM</td>
<td>center of mass</td>
</tr>
<tr>
<td>c</td>
<td>quark flavor charm</td>
</tr>
<tr>
<td>c</td>
<td>specific heat</td>
</tr>
<tr>
<td>c</td>
<td>speed of light</td>
</tr>
<tr>
<td>Cal</td>
<td>kilocalorie</td>
</tr>
<tr>
<td>cal</td>
<td>calorie</td>
</tr>
<tr>
<td>COP_{hp}</td>
<td>heat pump’s coefficient of performance</td>
</tr>
<tr>
<td>COP_{ref}</td>
<td>coefficient of performance for refrigerators and air conditioners</td>
</tr>
<tr>
<td>$\cos \theta$</td>
<td>cosine</td>
</tr>
<tr>
<td>$\cot \theta$</td>
<td>cotangent</td>
</tr>
<tr>
<td>$\csc \theta$</td>
<td>cosecant</td>
</tr>
<tr>
<td>D</td>
<td>diffusion constant</td>
</tr>
<tr>
<td>d</td>
<td>displacement</td>
</tr>
<tr>
<td>d</td>
<td>quark flavor down</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>dB</td>
<td>decibel</td>
</tr>
<tr>
<td>(d_i)</td>
<td>distance of an image from the center of a lens</td>
</tr>
<tr>
<td>(d_o)</td>
<td>distance of an object from the center of a lens</td>
</tr>
<tr>
<td>DC</td>
<td>direct current</td>
</tr>
<tr>
<td>(E)</td>
<td>electric field strength</td>
</tr>
<tr>
<td>(\varepsilon)</td>
<td>emf (voltage) or Hall electromotive force</td>
</tr>
<tr>
<td>emf</td>
<td>electromotive force</td>
</tr>
<tr>
<td>(E)</td>
<td>energy of a single photon</td>
</tr>
<tr>
<td>(E)</td>
<td>nuclear reaction energy</td>
</tr>
<tr>
<td>(E)</td>
<td>relativistic total energy</td>
</tr>
<tr>
<td>(E)</td>
<td>total energy</td>
</tr>
<tr>
<td>(E_0)</td>
<td>ground state energy for hydrogen</td>
</tr>
<tr>
<td>(E_0)</td>
<td>rest energy</td>
</tr>
<tr>
<td>EC</td>
<td>electron capture</td>
</tr>
<tr>
<td>(E_{\text{cap}})</td>
<td>energy stored in a capacitor</td>
</tr>
<tr>
<td>(\epsilon_f)</td>
<td>efficiency—the useful work output divided by the energy input</td>
</tr>
<tr>
<td>(\epsilon_f')</td>
<td>Carnot efficiency</td>
</tr>
<tr>
<td>(E_{\text{in}})</td>
<td>energy consumed (food digested in humans)</td>
</tr>
<tr>
<td>(E_{\text{ind}})</td>
<td>energy stored in an inductor</td>
</tr>
<tr>
<td>(E_{\text{out}})</td>
<td>energy output</td>
</tr>
<tr>
<td>(e)</td>
<td>emissivity of an object</td>
</tr>
<tr>
<td>(e^+)</td>
<td>antielectron or positron</td>
</tr>
<tr>
<td>eV</td>
<td>electron volt</td>
</tr>
<tr>
<td>(F)</td>
<td>farad (unit of capacitance, a coulomb per volt)</td>
</tr>
<tr>
<td>(F)</td>
<td>focal point of a lens</td>
</tr>
<tr>
<td>(F)</td>
<td>force</td>
</tr>
<tr>
<td>(F)</td>
<td>magnitude of a force</td>
</tr>
<tr>
<td>(F)</td>
<td>restoring force</td>
</tr>
<tr>
<td>(F_B)</td>
<td>buoyant force</td>
</tr>
<tr>
<td>(F_c)</td>
<td>centripetal force</td>
</tr>
<tr>
<td>(F_i)</td>
<td>force input</td>
</tr>
<tr>
<td>(F_{\text{net}})</td>
<td>net force</td>
</tr>
<tr>
<td>(F_0)</td>
<td>force output</td>
</tr>
<tr>
<td>FM</td>
<td>frequency modulation</td>
</tr>
<tr>
<td>(f)</td>
<td>focal length</td>
</tr>
<tr>
<td>(f)</td>
<td>frequency</td>
</tr>
<tr>
<td>(f_0)</td>
<td>resonant frequency of a resistance, inductance, and capacitance ((RCL)) series circuit</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>f_0</td>
<td>threshold frequency for a particular material (photoelectric effect)</td>
</tr>
<tr>
<td>f_1</td>
<td>fundamental</td>
</tr>
<tr>
<td>f_2</td>
<td>first overtone</td>
</tr>
<tr>
<td>f_3</td>
<td>second overtone</td>
</tr>
<tr>
<td>f_B</td>
<td>beat frequency</td>
</tr>
<tr>
<td>f_k</td>
<td>magnitude of kinetic friction</td>
</tr>
<tr>
<td>f_s</td>
<td>magnitude of static friction</td>
</tr>
<tr>
<td>G</td>
<td>gravitational constant</td>
</tr>
<tr>
<td>G</td>
<td>green quark color</td>
</tr>
<tr>
<td>\bar{G}</td>
<td>antigreen (magenta) antiquark color</td>
</tr>
<tr>
<td>g</td>
<td>acceleration due to gravity</td>
</tr>
<tr>
<td>g</td>
<td>gluons (carrier particles for strong nuclear force)</td>
</tr>
<tr>
<td>h</td>
<td>change in vertical position</td>
</tr>
<tr>
<td>h</td>
<td>height above some reference point</td>
</tr>
<tr>
<td>h</td>
<td>maximum height of a projectile</td>
</tr>
<tr>
<td>h</td>
<td>Planck's constant</td>
</tr>
<tr>
<td>hf</td>
<td>photon energy</td>
</tr>
<tr>
<td>h_i</td>
<td>height of the image</td>
</tr>
<tr>
<td>h_o</td>
<td>height of the object</td>
</tr>
<tr>
<td>I</td>
<td>electric current</td>
</tr>
<tr>
<td>I</td>
<td>intensity</td>
</tr>
<tr>
<td>I</td>
<td>intensity of a transmitted wave</td>
</tr>
<tr>
<td>I</td>
<td>moment of inertia (also called rotational inertia)</td>
</tr>
<tr>
<td>I_0</td>
<td>intensity of a polarized wave before passing through a filter</td>
</tr>
<tr>
<td>I_{ave}</td>
<td>average intensity for a continuous sinusoidal electromagnetic wave</td>
</tr>
<tr>
<td>I_{rms}</td>
<td>average current</td>
</tr>
<tr>
<td>J</td>
<td>joule</td>
</tr>
<tr>
<td>J/Ψ</td>
<td>Joules/psi meson</td>
</tr>
<tr>
<td>K</td>
<td>kelvin</td>
</tr>
<tr>
<td>k</td>
<td>Boltzmann constant</td>
</tr>
<tr>
<td>k</td>
<td>force constant of a spring</td>
</tr>
<tr>
<td>K_a</td>
<td>x rays created when an electron falls into an $n = 1$ shell vacancy from the $n = 3$ shell</td>
</tr>
<tr>
<td>K_β</td>
<td>x rays created when an electron falls into an $n = 2$ shell vacancy from the $n = 3$ shell</td>
</tr>
<tr>
<td>kcal</td>
<td>kilocalorie</td>
</tr>
<tr>
<td>KE</td>
<td>translational kinetic energy</td>
</tr>
<tr>
<td>KE + PE</td>
<td>mechanical energy</td>
</tr>
<tr>
<td>KE$_e$</td>
<td>kinetic energy of an ejected electron</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>KE<sub>rel</sub></td>
<td>relativistic kinetic energy</td>
</tr>
<tr>
<td>KE<sub>rot</sub></td>
<td>rotational kinetic energy</td>
</tr>
<tr>
<td>KE</td>
<td>thermal energy</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram (a fundamental SI unit of mass)</td>
</tr>
<tr>
<td>L</td>
<td>angular momentum</td>
</tr>
<tr>
<td>L</td>
<td>liter</td>
</tr>
<tr>
<td>L</td>
<td>magnitude of angular momentum</td>
</tr>
<tr>
<td>L</td>
<td>self-inductance</td>
</tr>
<tr>
<td>ℓ<sup>e</sup></td>
<td>angular momentum quantum number</td>
</tr>
<tr>
<td>L<sub>α</sub></td>
<td>x rays created when an electron falls into an (n = 2) shell from the (n = 3) shell</td>
</tr>
<tr>
<td>L<sub>e</sub></td>
<td>electron total family number</td>
</tr>
<tr>
<td>L<sub>μ</sub></td>
<td>muon family total number</td>
</tr>
<tr>
<td>L<sub>τ</sub></td>
<td>tau family total number</td>
</tr>
<tr>
<td>L<sub>f</sub></td>
<td>heat of fusion</td>
</tr>
<tr>
<td>L<sub>f</sub> and L<sub>v</sub></td>
<td>latent heat coefficients</td>
</tr>
<tr>
<td>L<sub>orb</sub></td>
<td>orbital angular momentum</td>
</tr>
<tr>
<td>L<sub>s</sub></td>
<td>heat of sublimation</td>
</tr>
<tr>
<td>L<sub>v</sub></td>
<td>heat of vaporization</td>
</tr>
<tr>
<td>L<sub>z</sub></td>
<td>z - component of the angular momentum</td>
</tr>
<tr>
<td>M</td>
<td>angular magnification</td>
</tr>
<tr>
<td>M</td>
<td>mutual inductance</td>
</tr>
<tr>
<td>m</td>
<td>indicates metastable state</td>
</tr>
<tr>
<td>m</td>
<td>magnification</td>
</tr>
<tr>
<td>m</td>
<td>mass</td>
</tr>
<tr>
<td>m</td>
<td>mass of an object as measured by a person at rest relative to the object</td>
</tr>
<tr>
<td>m</td>
<td>meter (a fundamental SI unit of length)</td>
</tr>
<tr>
<td>m</td>
<td>order of interference</td>
</tr>
<tr>
<td>m</td>
<td>overall magnification (product of the individual magnifications)</td>
</tr>
<tr>
<td>m<sub>a</sub></td>
<td>atomic mass of a nuclide</td>
</tr>
<tr>
<td>MA</td>
<td>mechanical advantage</td>
</tr>
<tr>
<td>m<sub>e</sub></td>
<td>magnification of the eyepiece</td>
</tr>
<tr>
<td>m<sub>e</sub></td>
<td>mass of the electron</td>
</tr>
<tr>
<td>m<sub>ℓ</sub></td>
<td>angular momentum projection quantum number</td>
</tr>
<tr>
<td>m<sub>n</sub></td>
<td>mass of a neutron</td>
</tr>
<tr>
<td>m<sub>o</sub></td>
<td>magnification of the objective lens</td>
</tr>
<tr>
<td>mol</td>
<td>mole</td>
</tr>
<tr>
<td>m<sub>p</sub></td>
<td>mass of a proton</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>m_s</td>
<td>spin projection quantum number</td>
</tr>
<tr>
<td>N</td>
<td>magnitude of the normal force</td>
</tr>
<tr>
<td>N</td>
<td>newton</td>
</tr>
<tr>
<td>\textbf{N}</td>
<td>normal force</td>
</tr>
<tr>
<td>N</td>
<td>number of neutrons</td>
</tr>
<tr>
<td>n</td>
<td>index of refraction</td>
</tr>
<tr>
<td>n</td>
<td>number of free charges per unit volume</td>
</tr>
<tr>
<td>N_A</td>
<td>Avogadro's number</td>
</tr>
<tr>
<td>N_r</td>
<td>Reynolds number</td>
</tr>
<tr>
<td>$N \cdot m$</td>
<td>newton-meter (work-energy unit)</td>
</tr>
<tr>
<td>$N \cdot m$</td>
<td>newtons times meters (SI unit of torque)</td>
</tr>
<tr>
<td>OE</td>
<td>other energy</td>
</tr>
<tr>
<td>P</td>
<td>power</td>
</tr>
<tr>
<td>P</td>
<td>power of a lens</td>
</tr>
<tr>
<td>P</td>
<td>pressure</td>
</tr>
<tr>
<td>p</td>
<td>momentum</td>
</tr>
<tr>
<td>p</td>
<td>momentum magnitude</td>
</tr>
<tr>
<td>p</td>
<td>relativistic momentum</td>
</tr>
<tr>
<td>P_{tot}</td>
<td>total momentum</td>
</tr>
<tr>
<td>P_{tot}</td>
<td>total momentum some time later</td>
</tr>
<tr>
<td>P_{abs}</td>
<td>absolute pressure</td>
</tr>
<tr>
<td>P_{atm}</td>
<td>atmospheric pressure</td>
</tr>
<tr>
<td>P_{atm}</td>
<td>standard atmospheric pressure</td>
</tr>
<tr>
<td>PE</td>
<td>potential energy</td>
</tr>
<tr>
<td>PE_{el}</td>
<td>elastic potential energy</td>
</tr>
<tr>
<td>PE_{elec}</td>
<td>electric potential energy</td>
</tr>
<tr>
<td>PE_s</td>
<td>potential energy of a spring</td>
</tr>
<tr>
<td>P_{g}</td>
<td>gauge pressure</td>
</tr>
<tr>
<td>P_{in}</td>
<td>power consumption or input</td>
</tr>
<tr>
<td>P_{out}</td>
<td>useful power output going into useful work or a desired, form of energy</td>
</tr>
<tr>
<td>Q</td>
<td>latent heat</td>
</tr>
<tr>
<td>Q</td>
<td>net heat transferred into a system</td>
</tr>
<tr>
<td>Q</td>
<td>flow rate—volume per unit time flowing past a point</td>
</tr>
<tr>
<td>$+Q$</td>
<td>positive charge</td>
</tr>
<tr>
<td>$-Q$</td>
<td>negative charge</td>
</tr>
<tr>
<td>q</td>
<td>electron charge</td>
</tr>
<tr>
<td>q_p</td>
<td>charge of a proton</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>q</td>
<td>test charge</td>
</tr>
<tr>
<td>QF</td>
<td>quality factor</td>
</tr>
<tr>
<td>R</td>
<td>activity, the rate of decay</td>
</tr>
<tr>
<td>R</td>
<td>radius of curvature of a spherical mirror</td>
</tr>
<tr>
<td>R_-</td>
<td>red quark color</td>
</tr>
<tr>
<td>R</td>
<td>antired (cyan) quark color</td>
</tr>
<tr>
<td>R</td>
<td>resistance</td>
</tr>
<tr>
<td>R</td>
<td>resultant or total displacement</td>
</tr>
<tr>
<td>R</td>
<td>Rydberg constant</td>
</tr>
<tr>
<td>R</td>
<td>universal gas constant</td>
</tr>
<tr>
<td>r</td>
<td>distance from pivot point to the point where a force is applied</td>
</tr>
<tr>
<td>r</td>
<td>internal resistance</td>
</tr>
<tr>
<td>r_\perp</td>
<td>perpendicular lever arm</td>
</tr>
<tr>
<td>r</td>
<td>radius of a nucleus</td>
</tr>
<tr>
<td>r</td>
<td>radius of curvature</td>
</tr>
<tr>
<td>r</td>
<td>resistivity</td>
</tr>
<tr>
<td>r or rad</td>
<td>radiation dose unit</td>
</tr>
<tr>
<td>rem</td>
<td>roentgen equivalent man</td>
</tr>
<tr>
<td>rad</td>
<td>radian</td>
</tr>
<tr>
<td>RBE</td>
<td>relative biological effectiveness</td>
</tr>
<tr>
<td>RC</td>
<td>resistor and capacitor circuit</td>
</tr>
<tr>
<td>rms</td>
<td>root mean square</td>
</tr>
<tr>
<td>r_n</td>
<td>radius of the nth H-atom orbit</td>
</tr>
<tr>
<td>R_p</td>
<td>total resistance of a parallel connection</td>
</tr>
<tr>
<td>R_s</td>
<td>total resistance of a series connection</td>
</tr>
<tr>
<td>R_s</td>
<td>Schwarzschild radius</td>
</tr>
<tr>
<td>S</td>
<td>entropy</td>
</tr>
<tr>
<td>S</td>
<td>intrinsic spin (intrinsic angular momentum)</td>
</tr>
<tr>
<td>S</td>
<td>magnitude of the intrinsic (internal) spin angular momentum</td>
</tr>
<tr>
<td>S</td>
<td>shear modulus</td>
</tr>
<tr>
<td>S</td>
<td>strangeness quantum number</td>
</tr>
<tr>
<td>s</td>
<td>quark flavor strange</td>
</tr>
<tr>
<td>s</td>
<td>second (fundamental SI unit of time)</td>
</tr>
<tr>
<td>s</td>
<td>spin quantum number</td>
</tr>
<tr>
<td>s</td>
<td>total displacement</td>
</tr>
<tr>
<td>$\sec \theta$</td>
<td>secant</td>
</tr>
<tr>
<td>$\sin \theta$</td>
<td>sine</td>
</tr>
<tr>
<td>s_z</td>
<td>z-component of spin angular momentum</td>
</tr>
<tr>
<td>T</td>
<td>period—time to complete one oscillation</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>T</td>
<td>temperature</td>
</tr>
<tr>
<td>T_c</td>
<td>critical temperature—temperature below which a material becomes a superconductor</td>
</tr>
<tr>
<td>T</td>
<td>tension</td>
</tr>
<tr>
<td>T</td>
<td>tesla (magnetic field strength B)</td>
</tr>
<tr>
<td>t</td>
<td>quark flavor top or truth</td>
</tr>
<tr>
<td>t</td>
<td>time</td>
</tr>
<tr>
<td>$t_{1/2}$</td>
<td>half-life—the time in which half of the original nuclei decay</td>
</tr>
<tr>
<td>$\tan \theta$</td>
<td>tangent</td>
</tr>
<tr>
<td>U</td>
<td>internal energy</td>
</tr>
<tr>
<td>u</td>
<td>quark flavor up</td>
</tr>
<tr>
<td>u</td>
<td>unified atomic mass unit</td>
</tr>
<tr>
<td>u</td>
<td>velocity of an object relative to an observer</td>
</tr>
<tr>
<td>u'</td>
<td>velocity relative to another observer</td>
</tr>
<tr>
<td>V</td>
<td>electric potential</td>
</tr>
<tr>
<td>V</td>
<td>terminal voltage</td>
</tr>
<tr>
<td>V</td>
<td>volt (unit)</td>
</tr>
<tr>
<td>V</td>
<td>volume</td>
</tr>
<tr>
<td>ν</td>
<td>relative velocity between two observers</td>
</tr>
<tr>
<td>ν</td>
<td>speed of light in a material</td>
</tr>
<tr>
<td>ν</td>
<td>velocity</td>
</tr>
<tr>
<td>$\bar{\nu}$</td>
<td>average fluid velocity</td>
</tr>
<tr>
<td>$V_B - V_A$</td>
<td>change in potential</td>
</tr>
<tr>
<td>ν_d</td>
<td>drift velocity</td>
</tr>
<tr>
<td>V_p</td>
<td>transformer input voltage</td>
</tr>
<tr>
<td>V_{rms}</td>
<td>rms voltage</td>
</tr>
<tr>
<td>V_s</td>
<td>transformer output voltage</td>
</tr>
<tr>
<td>ν_{tot}</td>
<td>total velocity</td>
</tr>
<tr>
<td>ν_w</td>
<td>propagation speed of sound or other wave</td>
</tr>
<tr>
<td>ν_w</td>
<td>wave velocity</td>
</tr>
<tr>
<td>W</td>
<td>work</td>
</tr>
<tr>
<td>W</td>
<td>net work done by a system</td>
</tr>
<tr>
<td>W</td>
<td>watt</td>
</tr>
<tr>
<td>w</td>
<td>weight</td>
</tr>
<tr>
<td>w_f</td>
<td>weight of the fluid displaced by an object</td>
</tr>
<tr>
<td>W_c</td>
<td>total work done by all conservative forces</td>
</tr>
<tr>
<td>W_{nc}</td>
<td>total work done by all nonconservative forces</td>
</tr>
<tr>
<td>W_{out}</td>
<td>useful work output</td>
</tr>
<tr>
<td>X</td>
<td>amplitude</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>X</td>
<td>symbol for an element</td>
</tr>
<tr>
<td>(Z)</td>
<td>notation for a particular nuclide</td>
</tr>
<tr>
<td>(x)</td>
<td>deformation or displacement from equilibrium</td>
</tr>
<tr>
<td>(x)</td>
<td>displacement of a spring from its undeformed position</td>
</tr>
<tr>
<td>(x)</td>
<td>horizontal axis</td>
</tr>
<tr>
<td>(X_C)</td>
<td>capacitive reactance</td>
</tr>
<tr>
<td>(X_L)</td>
<td>inductive reactance</td>
</tr>
<tr>
<td>(x_{rms})</td>
<td>root mean square diffusion distance</td>
</tr>
<tr>
<td>(y)</td>
<td>vertical axis</td>
</tr>
<tr>
<td>(Y)</td>
<td>elastic modulus or Young's modulus</td>
</tr>
<tr>
<td>(Z)</td>
<td>atomic number (number of protons in a nucleus)</td>
</tr>
<tr>
<td>(Z)</td>
<td>impedance</td>
</tr>
</tbody>
</table>
model, 18, 29, 65
Modern physics, 5
modern physics, 18
motion, 91, 98

N
net external force, 111, 126
net work, 180, 208
newton, 112
newton-meters, 180
Newton's first law of motion, 109, 127, 126
Newton's second law of motion, 110, 126
Newton's third law of motion, 116, 127, 126
Newton's universal law of gravitation, 160, 170
nonconservative force, 192, 208
normal force, 119, 127
north magnetic pole, 330, 346
Nuclear energy, 196
nuclear energy, 208
nuclear magnetic resonance (NMR), 345, 346

O
ohm, 287, 296
ohmic, 287, 296
Ohm's law, 287, 296, 304, 322
order of magnitude, 7, 18

P
parallel, 306, 322
percent uncertainty, 13, 18
perfectly inelastic collision, 227, 233
photoconductor, 255, 260
physical quantity, 5, 18
physics, 18
point charge, 250, 260
point masses, 230, 233
polarization, 245, 260
position, 24, 65
potential difference, 268, 312, 322
potential difference (or voltage), 277
potential energy, 189, 189, 208
potential energy of a spring, 189, 208
power, 199, 208
precision, 12, 18
projectile, 91, 98
Projectile motion, 91
projectile motion, 98
proton, 260
protons, 241

Q
Quantum mechanics, 5
quantum mechanics, 18
quark, 233
quarks, 224

R
radiant energy, 196, 208
range, 97, 98
Relativity, 5
relativity, 18
Renewable forms of energy, 205
renewable forms of energy, 208
resistance, 287, 296, 304, 322
resistivity, 289, 296
resistor, 304, 322
resultant, 80, 98
resultant vector, 79, 98
right hand rule 1, 336
right hand rule 1 (RHR-1), 346

S
scalar, 26, 65, 84, 98, 272, 277
second, 6, 18
second law of motion, 218, 233
series, 304, 322
shunt resistance, 320, 322
SI units, 6, 18
significant figures, 14, 18
simple circuit, 287, 296
slope, 58, 65
south magnetic pole, 330, 346
static electricity, 239, 260
static friction, 141, 147
system, 110, 127

T
tail, 79, 98
temperature coefficient of resistivity, 291, 296
tension, 121, 127
terminal voltage, 314, 322
tesla, 336, 347
test charge, 250, 260
theory, 18
thermal energy, 192, 196, 208
thrust, 116, 127, 127
time, 27, 65
trajectory, 91, 98

U
ultracentrifuge, 170
uncertainty, 13, 18
uniform circular motion, 154, 170
units, 5, 18
useful work, 203, 208

V
Van de Graaff generator, 260
Van de Graaff generators, 254
vector, 26, 65, 78, 98, 260, 272, 277
vector addition, 252, 260
vectors, 77, 251
voltage, 269, 304, 323
voltage drop, 304, 323
voltmeter, 323
Voltmeters, 318

W
watt, 200, 208
weight, 112, 127
Weight, 119
work, 178, 208
work-energy theorem, 182, 208

X
xerography, 255, 260

Y
y-intercept, 58, 65
Edited by: Takashi Sato
URL: https://legacy.cnx.org/content/col11588/1.13/
Copyright: Takashi Sato
License: http://creativecommons.org/licenses/by/4.0/
Based on: College Physics <http://legacy.cnx.org/content/col11406/1.7> arranged by OpenStax College.

Module: Derived copy of Preface to College Physics
Used here as: Preface
By: Takashi Sato
URL: https://legacy.cnx.org/content/m47963/1.2/
Copyright: Takashi Sato
License: http://creativecommons.org/licenses/by/3.0/
Based on: Preface to College Physics <http://legacy.cnx.org/content/m42955/1.7> by OpenStax College.

Module: Notes by T. Sato
By: Takashi Sato
URL: https://legacy.cnx.org/content/m47968/1.5/
Copyright: Takashi Sato
License: http://creativecommons.org/licenses/by/4.0/

Module: Introduction to Science and the Realm of Physics, Physical Quantities, and Units
By: OpenStax College
URL: https://legacy.cnx.org/content/m42119/1.3/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: Physics: An Introduction
By: Takashi Sato
URL: https://legacy.cnx.org/content/m55620/1.4/
Copyright: Takashi Sato
License: http://creativecommons.org/licenses/by/4.0/
Based on: Physics: An Introduction <http://legacy.cnx.org/content/m42092/1.4> by OpenStax College.

Module: Physical Quantities and Units
By: OpenStax College
URL: https://legacy.cnx.org/content/m42091/1.7/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: Accuracy, Precision, and Significant Figures
By: OpenStax College
URL: https://legacy.cnx.org/content/m42120/1.7/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: Approximation
By: OpenStax College
URL: https://legacy.cnx.org/content/m42121/1.5/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: Introduction to One-Dimensional Kinematics
By: OpenStax College
URL: https://legacy.cnx.org/content/m42122/1.2/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/
Module: **Displacement**
By: OpenStax College
URL: https://legacy.cnx.org/content/m42033/1.4/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/4.0/

Module: **Vectors, Scalars, and Coordinate Systems**
By: OpenStax College
URL: https://legacy.cnx.org/content/m42124/1.2/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: **Time, Velocity, and Speed**
By: OpenStax College
URL: https://legacy.cnx.org/content/m42096/1.4/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: **Acceleration**
By: OpenStax College
URL: https://legacy.cnx.org/content/m42100/1.4/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/4.0/

Module: **Motion Equations for Constant Acceleration in One Dimension**
By: OpenStax College
URL: https://legacy.cnx.org/content/m42099/1.9/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/4.0/

Module: **Problem-Solving Basics for One-Dimensional Kinematics**
By: OpenStax College
URL: https://legacy.cnx.org/content/m42125/1.2/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: **Falling Objects**
By: OpenStax College
URL: https://legacy.cnx.org/content/m42102/1.5/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: **Graphical Analysis of One-Dimensional Motion**
By: OpenStax College
URL: https://legacy.cnx.org/content/m42103/1.5/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/4.0/

Module: **Introduction to Two-Dimensional Kinematics**
By: OpenStax College
URL: https://legacy.cnx.org/content/m42126/1.3/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: **Kinematics in Two Dimensions: An Introduction**
By: OpenStax College
URL: https://legacy.cnx.org/content/m42104/1.4/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: **Vector Addition and Subtraction: Graphical Methods**
By: OpenStax College
URL: https://legacy.cnx.org/content/m42127/1.7/
Module: Vector Addition and Subtraction: Analytical Methods
By: OpenStax College
URL: https://legacy.cnx.org/content/m42128/1.10/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: Projectile Motion
By: Takashi Sato
URL: https://legacy.cnx.org/content/m55663/1.1/
Copyright: Takashi Sato
License: http://creativecommons.org/licenses/by/4.0/
Based on: Projectile Motion <http://legacy.cnx.org/content/m42042/1.12> by OpenStax College.

Module: Introduction to Dynamics: Newton’s Laws of Motion
By: OpenStax College
URL: https://legacy.cnx.org/content/m42129/1.4/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: Development of Force Concept
By: OpenStax College
URL: https://legacy.cnx.org/content/m42069/1.3/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: Newton’s First Law of Motion: Inertia
By: OpenStax College
URL: https://legacy.cnx.org/content/m42130/1.2/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: Newton’s Second Law of Motion: Concept of a System
By: OpenStax College
URL: https://legacy.cnx.org/content/m42073/1.8/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: Newton’s Third Law of Motion: Symmetry in Forces
By: OpenStax College
URL: https://legacy.cnx.org/content/m42074/1.5/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: Normal, Tension, and Other Examples of Forces
By: OpenStax College
URL: https://legacy.cnx.org/content/m42075/1.8/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/4.0/

Module: Introduction: Application of Newton’s Laws in Problem Solving
By: Takashi Sato
URL: https://legacy.cnx.org/content/m55647/1.2/
Copyright: Takashi Sato
License: http://creativecommons.org/licenses/by/4.0/
Based on: Introduction: Further Applications of Newton’s Laws <http://legacy.cnx.org/content/m42138/1.2> by OpenStax College.

Module: Problem-Solving Strategies
By: OpenStax College
URL: https://legacy.cnx.org/content/m42076/1.8/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: **Further Applications of Newton’s Laws of Motion**
By: OpenStax College
URL: https://legacy.cnx.org/content/m42132/1.8/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: **Friction**
By: OpenStax College
URL: https://legacy.cnx.org/content/m42139/1.7/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/4.0/

Module: **Introduction to Uniform Circular Motion and Gravitation**
By: OpenStax College
URL: https://legacy.cnx.org/content/m42140/1.2/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: **Centripetal Acceleration**
By: Takashi Sato
URL: https://legacy.cnx.org/content/m55621/1.4/
Copyright: Takashi Sato
License: http://creativecommons.org/licenses/by/4.0/
Based on: Centripetal Acceleration <http://legacy.cnx.org/content/m42084/1.8> by OpenStax College.

Module: **Centripetal Force**
By: Takashi Sato
URL: https://legacy.cnx.org/content/m55664/1.3/
Copyright: Takashi Sato
License: http://creativecommons.org/licenses/by/4.0/
Based on: Centripetal Force <http://legacy.cnx.org/content/m42086/1.9> by OpenStax College.

Module: **Newton’s Universal Law of Gravitation**
By: Takashi Sato
URL: https://legacy.cnx.org/content/m55636/1.1/
Copyright: Takashi Sato
License: http://creativecommons.org/licenses/by/4.0/
Based on: Newton’s Universal Law of Gravitation <http://legacy.cnx.org/content/m42143/1.5> by OpenStax College.

Module: **Satellites and Kepler’s Laws: An Argument for Simplicity**
By: OpenStax College
URL: https://legacy.cnx.org/content/m42144/1.5/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/4.0/

Module: **Introduction to Work, Energy, and Energy Resources**
By: OpenStax College
URL: https://legacy.cnx.org/content/m42145/1.2/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/4.0/

Module: **Work: The Scientific Definition**
By: OpenStax College
URL: https://legacy.cnx.org/content/m42146/1.5/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: **Kinetic Energy and the Work-Energy Theorem**
By: OpenStax College
URL: https://legacy.cnx.org/content/m42147/1.5/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: Gravitational Potential Energy
By: OpenStax College
URL: https://legacy.cnx.org/content/m42148/1.7/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/4.0/

Module: Conservative Forces and Potential Energy
By: OpenStax College
URL: https://legacy.cnx.org/content/m42149/1.4/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: Nonconservative Forces
By: OpenStax College
URL: https://legacy.cnx.org/content/m42150/1.6/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: Conservation of Energy
By: OpenStax College
URL: https://legacy.cnx.org/content/m42151/1.5/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: Power
By: OpenStax College
URL: https://legacy.cnx.org/content/m42152/1.4/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: Work, Energy, and Power in Humans
By: OpenStax College
URL: https://legacy.cnx.org/content/m42153/1.5/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: World Energy Use
By: OpenStax College
URL: https://legacy.cnx.org/content/m42154/1.5/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: Introduction to Linear Momentum and Collisions
By: OpenStax College
URL: https://legacy.cnx.org/content/m42155/1.3/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/4.0/

Module: Linear Momentum and Force
By: OpenStax College
URL: https://legacy.cnx.org/content/m42156/1.3/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: Impulse
By: OpenStax College
URL: https://legacy.cnx.org/content/m42159/1.6/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: Conservation of Momentum
By: OpenStax College
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: Electromotive Force: Terminal Voltage
Used here as: Examples: Battery Terminal Voltage, Animals as Detectors & Solar Cells
By: OpenStax College
URL: https://legacy.cnx.org/content/m42357/1.3/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: DC Voltmeters and Ammeters
By: OpenStax College
URL: https://legacy.cnx.org/content/m42360/1.6/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: Introduction to Magnetism
By: OpenStax College
URL: https://legacy.cnx.org/content/m42365/1.2/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: Magnets
By: OpenStax College
URL: https://legacy.cnx.org/content/m42366/1.3/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: Ferromagnets and Electromagnets
By: OpenStax College
URL: https://legacy.cnx.org/content/m42368/1.4/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: Magnetic Fields and Magnetic Field Lines
By: OpenStax College
URL: https://legacy.cnx.org/content/m42370/1.2/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field
By: OpenStax College
URL: https://legacy.cnx.org/content/m42372/1.4/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: Force on a Moving Charge in a Magnetic Field: Examples and Applications
By: OpenStax College
URL: https://legacy.cnx.org/content/m42375/1.2/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: Magnetic Force on a Current-Carrying Conductor
By: OpenStax College
URL: https://legacy.cnx.org/content/m42398/1.4/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/

Module: More Applications of Magnetism
By: OpenStax College
URL: https://legacy.cnx.org/content/m42388/1.4/
Copyright: Rice University
License: http://creativecommons.org/licenses/by/3.0/
ABOUT CONNEXIONS

Since 1999, Connexions has been pioneering a global system where anyone can create course materials and make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and learning environment open to anyone interested in education, including students, teachers, professors and lifelong learners. We connect ideas and facilitate educational communities. Connexions's modular, interactive courses are in use worldwide by universities, community colleges, K-12 schools, distance learners, and lifelong learners. Connexions materials are in many languages, including English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese, and Thai.