

Biodegradable mulches suppress weeds in dryland rice.

Biodegradable Mulches in BC Dryland Rice Cultivation

Shannon Campbell Dept. of Sustainable Agriculture

Introduction

- Flooded rice production is water-intensive and a major source of cropland methane emissions.
- Dryland rice is associated with higher weed competition and reduced yields.
- Biodegradable mulches to reduce weed pressure may serve as a sustainable alternative to flooding.

Methods

- Treatments of paper and oat straw mulches were applied in a factorial randomized complete block design with four blocks.
- Weed cover was measured, and all weeds removed, in June, July, and August.
- Mature grain was harvested in October and weighed to compare yield across treatments.

Results

- Mulches suppressed weeds in June and July but not in August (Fig. 1).
- Paper & straw in tandem were most effective vs control (p=<0.001) and there was an interaction between straw and paper treatments (p=0.039) (Fig. 1).
- · Mulching had no effect on yield.

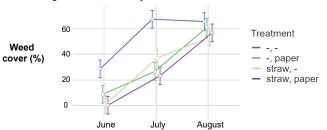


Figure 1. Weed canopy coverage (%) by mulch treatment (control, straw, paper, and both) on three weeding rounds in June, July, and August. Error bars depote standard error.

Acknowledgments

Thank you to Michael Bomford, Rebecca Harbut, Masa Shiroki, and Akio Nakamura for their guidance and support during this research.