Systems of Equations and Inequalities 575

- **7.1** Systems of Linear Equations: Two Variables 576
- **7.2** Systems of Linear Equations: Three Variables 592
- 7.3 Systems of Nonlinear Equations and Inequalities: Two Variables 603
- **7.4** Partial Fractions 613
- 7.5 Matrices and Matrix Operations 623
- **7.6** Solving Systems with Gaussian Elimination 634
- **7.7** Solving Systems with Inverses 647
- 7.8 Solving Systems with Cramer's Rule 661

Chapter 7 Review 672

Chapter 7 Review Exercises 676

Chapter 7 Practice Test 679

Analytic Geometry 681

- 8.1 The Ellipse 682
- 8.2 The Hyperbola 697
- 8.3 The Parabola 714
- 8.4 Rotation of Axis 727
- **8.5** Conic Sections in Polar Coordinates 740

Chapter 8 Review 749

Chapter 8 Review Exercises 752

Chapter 8 Practice Test 754

Sequences, Probability and Counting Theory 755

- 9.1 Sequences and Their Notations 756
- **9.2** Arithmetic Sequences 769
- 9.3 Geometric Sequences 779
- 9.4 Series and Their Notations 787
- 9.5 Counting Principles 800
- 9.6 Binomial Theorem 810
- **9.7** Probability 817

Chapter 9 Review 826

Chapter 9 Review Exercises 830

Chapter 9 Practice Test 833

Try It Answer Section A-1

Odd Answer Section B-1

Index C-1

7

Systems of Equations and Inequalities

Figure 1 Enigma machines like this one, once owned by Italian dictator Benito Mussolini, were used by government and military officials for enciphering and deciphering top-secret communications during World War II. (credit: Dave Addey, Flickr)

CHAPTER OUTLINE

- 7.1 Systems of Linear Equations: Two Variables
- 7.2 Systems of Linear Equations: Three Variables
- 7.3 Systems of Nonlinear Equations and Inequalities: Two Variables
- 7.4 Partial Fractions
- 7.5 Matrices and Matrix Operations
- 7.6 Solving Systems with Gaussian Elimination
- 7.7 Solving Systems with Inverses
- 7.8 Solving Systems with Cramer's Rule

Introduction

By 1943, it was obvious to the Nazi regime that defeat was imminent unless it could build a weapon with unlimited destructive power, one that had never been seen before in the history of the world. In September, Adolf Hitler ordered German scientists to begin building an atomic bomb. Rumors and whispers began to spread from across the ocean. Refugees and diplomats told of the experiments happening in Norway. However, Franklin D. Roosevelt wasn't sold, and even doubted British Prime Minister Winston Churchill's warning. Roosevelt wanted undeniable proof. Fortunately, he soon received the proof he wanted when a group of mathematicians cracked the "Enigma" code, proving beyond a doubt that Hitler was building an atomic bomb. The next day, Roosevelt gave the order that the United States begin work on the same.

The Enigma is perhaps the most famous cryptographic device ever known. It stands as an example of the pivotal role cryptography has played in society. Now, technology has moved cryptanalysis to the digital world.

Many ciphers are designed using invertible matrices as the method of message transference, as finding the inverse of a matrix is generally part of the process of decoding. In addition to knowing the matrix and its inverse, the receiver must also know the key that, when used with the matrix inverse, will allow the message to be read.

In this chapter, we will investigate matrices and their inverses, and various ways to use matrices to solve systems of equations. First, however, we will study systems of equations on their own: linear and nonlinear, and then partial fractions. We will not be breaking any secret codes here, but we will lay the foundation for future courses.

Download for free at https://openstax.org/ details/books/college-algebra

LEARNING OBJECTIVES

In this section, you will:

- Solve systems of equations by graphing.
- Solve systems of equations by substitution.
- Solve systems of equations by addition.
- Identify inconsistent systems of equations containing two variables.
- Express the solution of a system of dependent equations containing two variables.

7.1 SYSTEMS OF LINEAR EQUATIONS: TWO VARIABLES

Figure 1 (credit: Thomas Sørenes)

A skateboard manufacturer introduces a new line of boards. The manufacturer tracks its costs, which is the amount it spends to produce the boards, and its revenue, which is the amount it earns through sales of its boards. How can the company determine if it is making a profit with its new line? How many skateboards must be produced and sold before a profit is possible? In this section, we will consider linear equations with two variables to answer these and similar questions.

Introduction to Systems of Equations

In order to investigate situations such as that of the skateboard manufacturer, we need to recognize that we are dealing with more than one variable and likely more than one equation. A **system of linear equations** consists of two or more linear equations made up of two or more variables such that all equations in the system are considered simultaneously. To find the unique solution to a system of linear equations, we must find a numerical value for each variable in the system that will satisfy all equations in the system at the same time. Some linear systems may not have a solution and others may have an infinite number of solutions. In order for a linear system to have a unique solution, there must be at least as many equations as there are variables. Even so, this does not guarantee a unique solution.

In this section, we will look at systems of linear equations in two variables, which consist of two equations that contain two different variables. For example, consider the following system of linear equations in two variables.

$$2x + y = 15$$

$$3x - y = 5$$

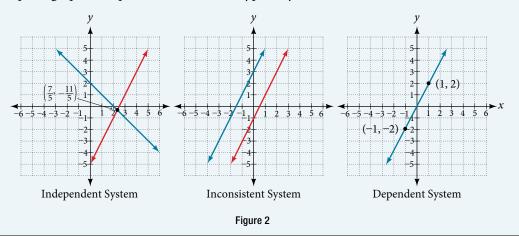
The *solution* to a system of linear equations in two variables is any ordered pair that satisfies each equation independently. In this example, the ordered pair (4, 7) is the solution to the system of linear equations. We can verify the solution by substituting the values into each equation to see if the ordered pair satisfies both equations. Shortly we will investigate methods of finding such a solution if it exists.

$$2(4) + (7) = 15$$
 True

$$3(4) - (7) = 5$$
 True

In addition to considering the number of equations and variables, we can categorize systems of linear equations by the number of solutions. A **consistent system** of equations has at least one solution. A consistent system is considered to be an **independent system** if it has a single solution, such as the example we just explored. The two lines have

different slopes and intersect at one point in the plane. A consistent system is considered to be a **dependent system** if the equations have the same slope and the same *y*-intercepts. In other words, the lines coincide so the equations represent the same line. Every point on the line represents a coordinate pair that satisfies the system. Thus, there are an infinite number of solutions.


Another type of system of linear equations is an **inconsistent system**, which is one in which the equations represent two parallel lines. The lines have the same slope and different *y*-intercepts. There are no points common to both lines; hence, there is no solution to the system.

types of linear systems

There are three types of systems of linear equations in two variables, and three types of solutions.

- An **independent system** has exactly one solution pair (x, y). The point where the two lines intersect is the only solution.
- An **inconsistent system** has no solution. Notice that the two lines are parallel and will never intersect.
- A **dependent system** has infinitely many solutions. The lines are coincident. They are the same line, so every coordinate pair on the line is a solution to both equations.

Figure 2 compares graphical representations of each type of system.

How To...

Given a system of linear equations and an ordered pair, determine whether the ordered pair is a solution.

- **1.** Substitute the ordered pair into each equation in the system.
- **2.** Determine whether true statements result from the substitution in both equations; if so, the ordered pair is a solution.

Example 1 Determining Whether an Ordered Pair Is a Solution to a System of Equations

Determine whether the ordered pair (5, 1) is a solution to the given system of equations.

$$x + 3y = 8$$
$$2x - 9 = y$$

Solution Substitute the ordered pair (5, 1) into both equations.

$$(5) + 3(1) = 8$$

 $8 = 8$ True
 $2(5) - 9 = (1)$
 $1 = 1$ True

The ordered pair (5, 1) satisfies both equations, so it is the solution to the system.

Analysis We can see the solution clearly by plotting the graph of each equation. Since the solution is an ordered pair that satisfies both equations, it is a point on both of the lines and thus the point of intersection of the two lines. See **Figure 3**.

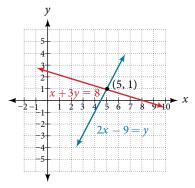


Figure 3

Try It #1

Determine whether the ordered pair (8, 5) is a solution to the following system.

$$5x - 4y = 20$$
$$2x + 1 = 3y$$

Solving Systems of Equations by Graphing

There are multiple methods of solving systems of linear equations. For a system of linear equations in two variables, we can determine both the type of system and the solution by graphing the system of equations on the same set of axes.

Example 2 Solving a System of Equations in Two Variables by Graphing

Solve the following system of equations by graphing. Identify the type of system.

$$2x + y = -8$$
$$x - y = -1$$

Solution Solve the first equation for *y*.

$$2x + y = -8$$
$$y = -2x - 8$$

Solve the second equation for *y*.

$$x - y = -1$$
$$y = x + 1$$

Graph both equations on the same set of axes as in **Figure 4**.

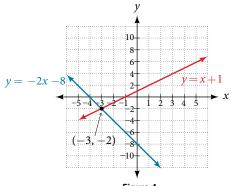


Figure 4

The lines appear to intersect at the point (-3, -2). We can check to make sure that this is the solution to the system by substituting the ordered pair into both equations.

$$2(-3) + (-2) = -8$$

 $-8 = -8$ True
 $(-3) - (-2) = -1$
 $-1 = -1$ True

The solution to the system is the ordered pair (-3, -2), so the system is independent.

Try It #2

Solve the following system of equations by graphing.

$$2x - 5y = -25$$
$$-4x + 5y = 35$$

0 & A...

Can graphing be used if the system is inconsistent or dependent?

Yes, in both cases we can still graph the system to determine the type of system and solution. If the two lines are parallel, the system has no solution and is inconsistent. If the two lines are identical, the system has infinite solutions and is a dependent system.

Solving Systems of Equations by Substitution

Solving a linear system in two variables by graphing works well when the solution consists of integer values, but if our solution contains decimals or fractions, it is not the most precise method. We will consider two more methods of solving a system of linear equations that are more precise than graphing. One such method is solving a system of equations by the **substitution method**, in which we solve one of the equations for one variable and then substitute the result into the second equation to solve for the second variable. Recall that we can solve for only one variable at a time, which is the reason the substitution method is both valuable and practical.

How To ...

Given a system of two equations in two variables, solve using the substitution method.

- **1.** Solve one of the two equations for one of the variables in terms of the other.
- 2. Substitute the expression for this variable into the second equation, then solve for the remaining variable.
- **3.** Substitute that solution into either of the original equations to find the value of the first variable. If possible, write the solution as an ordered pair.
- **4.** Check the solution in both equations.

Example 3 Solving a System of Equations in Two Variables by Substitution

Solve the following system of equations by substitution.

$$-x + y = -5$$
$$2x - 5y = 1$$

Solution First, we will solve the first equation for *y*.

$$-x + y = -5$$
$$y = x - 5$$

Now we can substitute the expression x - 5 for y in the second equation.

$$2x - 5y = 1$$
$$2x - 5(x - 5) = 1$$
$$2x - 5x + 25 = 1$$
$$-3x = -24$$
$$x = 8$$

Now, we substitute x = 8 into the first equation and solve for y.

$$-(8) + y = -5$$
$$y = 3$$

Our solution is (8, 3).

Check the solution by substituting (8, 3) into both equations.

$$-x + y = -5$$

 $-(8) + (3) = -5$ True
 $2x - 5y = 1$
 $2(8) - 5(3) = 1$ True

Try It #3

Solve the following system of equations by substitution.

$$x = y + 3$$
$$4 = 3x - 2y$$

Q & A...

Can the substitution method be used to solve any linear system in two variables?

Yes, but the method works best if one of the equations contains a coefficient of 1 or -1 so that we do not have to deal with fractions.

Solving Systems of Equations in Two Variables by the Addition Method

A third method of solving systems of linear equations is the **addition method**. In this method, we add two terms with the same variable, but opposite coefficients, so that the sum is zero. Of course, not all systems are set up with the two terms of one variable having opposite coefficients. Often we must adjust one or both of the equations by multiplication so that one variable will be eliminated by addition.

How To...

Given a system of equations, solve using the addition method.

- **1.** Write both equations with *x* and *y*-variables on the left ide of the equal sign and constants on the right.
- 2. Write one equation above the other, lining up corresponding variables. If one of the variables in the top equation has the opposite coefficient of the same variable in the bottom equation, add the equations together, eliminating one variable. If not, use multiplication by a nonzero number so that one of the variables in the top equation has the opposite coefficient of the same variable in the bottom equation, then add the equations to eliminate the variable.
- **3.** Solve the resulting equation for the remaining variable.
- **4.** Substitute that value into one of the original equations and solve for the second variable.
- **5.** Check the solution by substituting the values into the other equation.

Example 4 Solving a System by the Addition Method

Solve the given system of equations by addition.

$$x + 2y = -1$$
$$-x + y = 3$$

Solution Both equations are already set equal to a constant. Notice that the coefficient of x in the second equation, -1, is the opposite of the coefficient of x in the first equation, 1. We can add the two equations to eliminate x without needing to multiply by a constant.

$$x + 2y = -1$$

$$-x + y = 3$$

$$3y = 2$$

Now that we have eliminated *x*, we can solve the resulting equation for *y*.

$$3y = 2$$
$$y = \frac{2}{3}$$

Then, we substitute this value for y into one of the original equations and solve for x.

$$-x + y = 3$$

$$-x + \frac{2}{3} = 3$$

$$-x = 3 - \frac{2}{3}$$

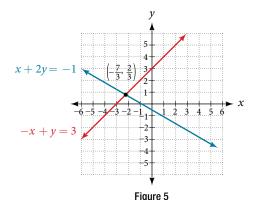
$$-x = \frac{7}{3}$$

$$x = -\frac{7}{3}$$

The solution to this system is $\left(-\frac{7}{3}, \frac{2}{3}\right)$

Check the solution in the first equation.

$$x + 2y = -1$$


$$\left(-\frac{7}{3}\right) + 2\left(\frac{2}{3}\right) = -1$$

$$-\frac{7}{3} + \frac{4}{3} = -1$$

$$-\frac{3}{3} = -1$$

$$-1 = -1$$
 True

Analysis We gain an important perspective on systems of equations by looking at the graphical representation. See Figure 5 to find that the equations intersect at the solution. We do not need to ask whether there may be a second solution because observing the graph confirms that the system has exactly one solution.

Example 5 Using the Addition Method When Multiplication of One Equation Is Required

Solve the given system of equations by the addition method.

$$3x + 5y = -11$$

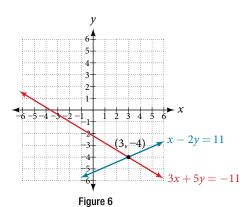
$$x - 2y = 11$$

Solution Adding these equations as presented will not eliminate a variable. However, we see that the first equation has 3x in it and the second equation has x. So if we multiply the second equation by -3, the x-terms will add to zero.

$$x - 2y = 11$$

 $-3(x - 2y) = -3(11)$ Multiply both sides by -3 .
 $-3x + 6y = -33$ Use the distributive property.

Now, let's add them.


$$3x + 5y = -11$$
$$-3x + 6y = -33$$
$$11y = -44$$
$$y = -4$$

For the last step, we substitute y = -4 into one of the original equations and solve for x.

$$3x + 5y = -11$$
$$3x + 5(-4) = -11$$
$$3x - 20 = -11$$
$$3x = 9$$
$$x = 3$$

Our solution is the ordered pair (3, -4). See **Figure 6**. Check the solution in the original second equation.

$$x - 2y = 11$$

(3) $- 2(-4) = 3 + 8$
 $11 = 11$ True

Try It #4

Solve the system of equations by addition.

$$2x - 7y = 2$$
$$3x + y = -20$$

Example 6 Using the Addition Method When Multiplication of Both Equations Is Required

Solve the given system of equations in two variables by addition.

$$2x + 3y = -16$$

$$5x - 10y = 30$$

Solution One equation has 2*x* and the other has 5*x*. The least common multiple is 10*x* so we will have to multiply both equations by a constant in order to eliminate one variable. Let's eliminate *x* by multiplying the first equation by –5 and the second equation by 2.

$$-5(2x + 3y) = -5(-16)$$

$$-10x - 15y = 80$$

$$2(5x - 10y) = 2(30)$$

$$10x - 20y = 60$$

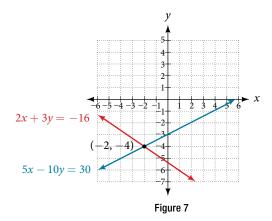
Then, we add the two equations together.

$$-10x - 15y = 80$$

$$10x - 20y = 60$$

$$-35y = 140$$

$$y = -4$$


Substitute y = -4 into the original first equation.

$$2x + 3(-4) = -16$$
$$2x - 12 = -16$$
$$2x = -4$$
$$x = -2$$

The solution is (-2, -4). Check it in the other equation.

$$5x - 10y = 30$$
$$5(-2) - 10(-4) = 30$$
$$-10 + 40 = 30$$
$$30 = 30$$

See **Figure 7**.

Example 7 Using the Addition Method in Systems of Equations Containing Fractions

Solve the given system of equations in two variables by addition.

$$\frac{x}{3} + \frac{y}{6} = 3$$
$$\frac{x}{2} - \frac{y}{4} = 1$$

Solution First clear each equation of fractions by multiplying both sides of the equation by the least common denominator.

$$6\left(\frac{x}{3} + \frac{y}{6}\right) = 6(3)$$
$$2x + y = 18$$
$$4\left(\frac{x}{2} - \frac{y}{4}\right) = 4(1)$$
$$2x - y = 4$$

Now multiply the second equation by -1 so that we can eliminate the *x*-variable.

$$-1(2x - y) = -1(4)$$
$$-2x + y = -4$$

Add the two equations to eliminate the *x*-variable and solve the resulting equation.

$$2x + y = 18$$
$$-2x + y = -4$$
$$2y = 14$$
$$y = 7$$

Substitute y = 7 into the first equation.

$$2x + (7) = 18$$
$$2x = 11$$
$$x = \frac{11}{2}$$
$$= 5.5$$

The solution is $\left(\frac{11}{2}, 7\right)$. Check it in the other equation.

$$\frac{x}{2} - \frac{y}{4} = 1$$

$$\frac{\frac{11}{2}}{2} - \frac{7}{4} = 1$$

$$\frac{11}{4} - \frac{7}{4} = 1$$

$$\frac{4}{4} = 1$$

Try It #5

Solve the system of equations by addition.

$$2x + 3y = 8$$
$$3x + 5y = 10$$

Identifying Inconsistent Systems of Equations Containing Two Variables

Now that we have several methods for solving systems of equations, we can use the methods to identify inconsistent systems. Recall that an inconsistent system consists of parallel lines that have the same slope but different y-intercepts. They will never intersect. When searching for a solution to an inconsistent system, we will come up with a false statement, such as 12 = 0.

Example 8 Solving an Inconsistent System of Equations

Solve the following system of equations.

$$x = 9 - 2y$$
$$x + 2y = 13$$

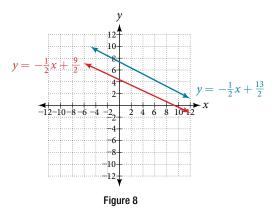
Solution We can approach this problem in two ways. Because one equation is already solved for *x*, the most obvious step is to use substitution.

$$x + 2y = 13$$
$$(9 - 2y) + 2y = 13$$
$$9 + 0y = 13$$
$$9 = 13$$

Clearly, this statement is a contradiction because $9 \neq 13$. Therefore, the system has no solution.

The second approach would be to first manipulate the equations so that they are both in slope-intercept form. We manipulate the first equation as follows.

$$x = 9 - 2y$$
$$2y = -x + 9$$
$$y = -\frac{1}{2}x + \frac{9}{2}$$


We then convert the second equation expressed to slope-intercept form.

$$x + 2y = 13$$
$$2y = -x + 13$$
$$y = -\frac{1}{2}x + \frac{13}{2}$$

Comparing the equations, we see that they have the same slope but different *y*-intercepts. Therefore, the lines are parallel and do not intersect.

$$y = -\frac{1}{2}x + \frac{9}{2}$$
$$y = -\frac{1}{2}x + \frac{13}{2}$$

Analysis Writing the equations in slope-intercept form confirms that the system is inconsistent because all lines will intersect eventually unless they are parallel. Parallel lines will never intersect; thus, the two lines have no points in common. The graphs of the equations in this example are shown in Figure 8.

Try It #6

Solve the following system of equations in two variables.

$$2y - 2x = 2$$
$$2y - 2x = 6$$

Expressing the Solution of a System of Dependent Equations Containing Two Variables

Recall that a dependent system of equations in two variables is a system in which the two equations represent the same line. Dependent systems have an infinite number of solutions because all of the points on one line are also on the other line. After using substitution or addition, the resulting equation will be an identity, such as 0 = 0.

Example 9 Finding a Solution to a Dependent System of Linear Equations

Find a solution to the system of equations using the addition method.

$$x + 3y = 2$$
$$3x + 9y = 6$$

Solution With the addition method, we want to eliminate one of the variables by adding the equations. In this case, let's focus on eliminating x. If we multiply both sides of the first equation by -3, then we will be able to eliminate the x-variable.

x + 3y = 2 (-3)(x + 3y) = (-3)(2) -3x - 9y = -6 -3x - 9y = -6

Now add the equations.

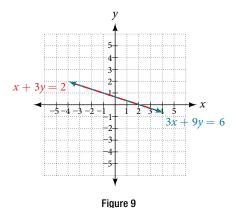
We can see that there will be an infinite number of solutions that satisfy both equations.

Analysis If we rewrote both equations in the slope-intercept form, we might know what the solution would look like before adding. Let's look at what happens when we convert the system to slope-intercept form.

$$x + 3y = 2$$

$$3y = -x + 2$$

$$y = -\frac{1}{3}x + \frac{2}{3}$$


$$3x + 9y = 6$$

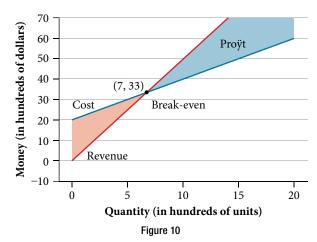
$$9y = -3x + 6$$

$$y = -\frac{3}{9}x + \frac{6}{9}$$

$$y = -\frac{1}{3}x + \frac{2}{3}$$

See **Figure 9**. Notice the results are the same. The general solution to the system is $\left(x, -\frac{1}{3}x + \frac{2}{3}\right)$.

Try It #7


Solve the following system of equations in two variables.

$$y - 2x = 5$$
$$-3y + 6x = -15$$

Using Systems of Equations to Investigate Profits

Using what we have learned about systems of equations, we can return to the skateboard manufacturing problem at the beginning of the section. The skateboard manufacturer's **revenue function** is the function used to calculate the amount of money that comes into the business. It can be represented by the equation R = xp, where x = quantity and p = price. The revenue function is shown in orange in **Figure 10**.

The **cost function** is the function used to calculate the costs of doing business. It includes fixed costs, such as rent and salaries, and variable costs, such as utilities. The cost function is shown in blue in **Figure 10**. The *x*-axis represents quantity in hundreds of units. The *y*-axis represents either cost or revenue in hundreds of dollars.

The point at which the two lines intersect is called the **break-even point**. We can see from the graph that if 700 units are produced, the cost is \$3,300 and the revenue is also \$3,300. In other words, the company breaks even if they produce and sell 700 units. They neither make money nor lose money.

The shaded region to the right of the break-even point represents quantities for which the company makes a profit. The shaded region to the left represents quantities for which the company suffers a loss. The **profit function** is the revenue function minus the cost function, written as P(x) = R(x) - C(x). Clearly, knowing the quantity for which the cost equals the revenue is of great importance to businesses.

Example 10 Finding the Break-Even Point and the Profit Function Using Substitution

Given the cost function C(x) = 0.85x + 35,000 and the revenue function R(x) = 1.55x, find the break-even point and the profit function.

Solution Write the system of equations using y to replace function notation.

$$y = 0.85x + 35,000$$

 $y = 1.55x$

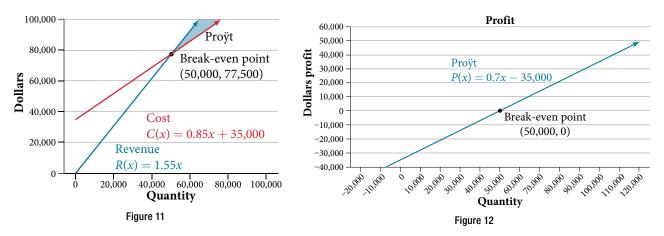
Substitute the expression 0.85x + 35,000 from the first equation into the second equation and solve for x.

$$0.85x + 35,000 = 1.55x$$
$$35,000 = 0.7x$$
$$50,000 = x$$

Then, we substitute x = 50,000 into either the cost function or the revenue function.

$$1.55(50,000) = 77,500$$

The break-even point is (50,000, 77,500).


The profit function is found using the formula P(x) = R(x) - C(x).

$$P(x) = 1.55x - (0.85x + 35,000)$$
$$= 0.7x - 35,000$$

The profit function is $P(x) = 0.7x - 35{,}000$.

Analysis The cost to produce 50,000 units is \$77,500, and the revenue from the sales of 50,000 units is also \$77,500. To make a profit, the business must produce and sell more than 50,000 units. See **Figure 11**.

We see from the graph in **Figure 12** that the profit function has a negative value until x = 50,000, when the graph crosses the x-axis. Then, the graph emerges into positive y-values and continues on this path as the profit function is a straight line. This illustrates that the break-even point for businesses occurs when the profit function is 0. The area to the left of the break-even point represents operating at a loss.

Example 11 Writing and Solving a System of Equations in Two Variables

The cost of a ticket to the circus is \$25.00 for children and \$50.00 for adults. On a certain day, attendance at the circus is 2,000 and the total gate revenue is \$70,000. How many children and how many adults bought tickets?

Solution Let c = the number of children and a = the number of adults in attendance.

The total number of people is 2,000. We can use this to write an equation for the number of people at the circus that day.

$$c + a = 2,000$$

The revenue from all children can be found by multiplying \$25.00 by the number of children, 25*c*. The revenue from all adults can be found by multiplying \$50.00 by the number of adults, 50*a*. The total revenue is \$70,000.

We can use this to write an equation for the revenue.

$$25c + 50a = 70,000$$

We now have a system of linear equations in two variables.

$$c + a = 2,000$$

$$25c + 50a = 70,000$$

In the first equation, the coefficient of both variables is 1. We can quickly solve the first equation for either *c* or *a*. We will solve for *a*.

$$c + a = 2,000$$

$$a = 2,000 - c$$

Substitute the expression 2,000 - c in the second equation for a and solve for c.

$$25c + 50(2,000 - c) = 70,000$$
$$25c + 100,000 - 50c = 70,000$$
$$- 25c = -30,000$$

$$c = 1,200$$

Substitute c = 1,200 into the first equation to solve for a.

$$1,200 + a = 2,000$$

$$a = 800$$

We find that 1,200 children and 800 adults bought tickets to the circus that day.

Try It #8

Meal tickets at the circus cost \$4.00 for children and \$12.00 for adults. If 1,650 meal tickets were bought for a total of \$14,200, how many children and how many adults bought meal tickets?

Access these online resources for additional instruction and practice with systems of linear equations.

- Solving Systems of Equations Using Substitution (http://openstaxcollege.org/l/syssubst)
- Solving Systems of Equations Using Elimination (http://openstaxcollege.org/l/syselim)
- Applications of Systems of Equations (http://openstaxcollege.org/l/sysapp)

SECTION EXERCISES 7.1

Download for free at https://openstax.org/ details/books/college-algebra

VERBAL

- 1. Can a system of linear equations have exactly two solutions? Explain why or why not.
- 3. If you are solving a break-even analysis and get a negative break-even point, explain what this signifies or the company?
- **5.** Given a system of equations, explain at least two different methods of solving that system.
- **2.** If you are performing a break-even analysis for a business and their cost and revenue equations are dependent, explain what this means for the company's profit margins.
- **4.** If you are solving a break-even analysis and there is no break-even point, explain what this means for the company. How should they ensure there is a break-even point?

ALGEBRAIC

For the following exercises, determine whether the given ordered pair is a solution to the system of equations.

6.
$$5x - y = 4$$

 $x + 6y = 2$ and $(4, 0)$

7.
$$-3x - 5y = 13$$

- $x + 4y = 10$ and $(-6, 1)$

8.
$$3x + 7y = 1$$

 $2x + 4y = 0$ and $(2, 3)$

9.
$$-2x + 5y = 7$$

 $2x + 9y = 7$ and $(-1, 1)$

10.
$$x + 8y = 43$$

 $3x - 2y = -1$ and $(3, 5)$

For the following exercises, solve each system by substitution.

11.
$$x + 3y = 5$$

 $2x + 3y = 4$

12.
$$3x - 2y = 18$$
 $5x + 10y = -10$

13.
$$4x + 2y = -10$$

 $3x + 9y = 0$

14.
$$2x + 4y = -3.8$$

 $9x - 5y = 1.3$

15.
$$-2x + 3y = 1.2$$

 $-3x - 6y = 1.8$

16.
$$x - 0.2y = 1$$
 $-10x + 2y = 5$

17.
$$3 \quad x + 5y = 9$$

 $30x + 50y = -90$

18.
$$-3x + y = 2$$

 $12x - 4y = -8$

19.
$$\frac{1}{2}x + \frac{1}{3}y = 10$$

19.
$$\frac{1}{2}x + \frac{1}{3}y = 16$$
 20. $-\frac{1}{4}x + \frac{3}{2}y = 11$ $-\frac{1}{8}x + \frac{1}{3}y = 3$

For the following exercises, solve each system by addition.

21.
$$-2x + 5y = -42$$
 $7x + 2y = 30$

22.
$$6x - 5y = -34$$
 $2x + 6y = 4$

23.
$$5x - y = -2.6$$

 $-4x - 6y = 1.4$

24.
$$7x - 2y = 3$$

 $4x + 5y = 3.25$

25.
$$-x + 2y = -1$$
 $5x - 10y = 6$

26.
$$7x + 6y = 2$$
 $-28x - 24y = -8$

$$27. \ \frac{5}{6}x + \frac{1}{4}y = 0$$

$$\frac{1}{8}x - \frac{1}{2}y = -\frac{43}{120}$$

$$\frac{1}{2}x + \frac{4}{5}y = -\frac{1}{3}$$

27.
$$\frac{5}{6}x + \frac{1}{4}y = 0$$
 28. $\frac{1}{3}x + \frac{1}{9}y = \frac{2}{9}$ $\frac{1}{6}x - \frac{1}{6}y = -\frac{43}{120}$ $-\frac{1}{6}x + \frac{4}{7}y = -\frac{1}{2}$

29.
$$-0.2x + 0.4y = 0.6$$

 $x - 2y = -3$

30.
$$-0.1x + 0.2y = 0.6$$

 $5x - 10y = 1$

For the following exercises, solve each system by any method.

31.
$$5x + 9y = 16$$

 $x + 2y = 4$

32.
$$6x - 8y = -0.6$$

 $3x + 2y = 0.9$

33.
$$5x - 2y = 2.25$$
 $7x - 4y = 3$

$$34. \quad x - \frac{5}{12}y = -\frac{55}{12}$$

$$-6x + \frac{5}{2}y = \frac{55}{2}$$

35.
$$7x - 4y = \frac{7}{6}$$

 $2x + 4y = \frac{1}{3}$

36.
$$3x + 6y = 11$$

 $2x + 4y = 9$

37.
$$\frac{7}{3}x - \frac{1}{6}y = 2$$
 38. $\frac{1}{2}x + \frac{1}{3}y = \frac{1}{3}$ $-\frac{21}{6}x + \frac{3}{12}y = -3$ $\frac{3}{2}x + \frac{1}{4}y = -$

7.
$$\frac{7}{3}x - \frac{1}{6}y = 2$$
 38. $\frac{1}{2}x + \frac{1}{3}y = \frac{1}{3}$ $-\frac{21}{6}x + \frac{3}{12}y = -3$ $\frac{3}{2}x + \frac{1}{4}y = -\frac{1}{8}$

39.
$$2.2x + 1.3y = -0.1$$

 $4.2x + 4.2y = 2.1$

40.
$$0.1x + 0.2y = 2$$
 $0.35x - 0.3y = 0$

GRAPHICAL

For the following exercises, graph the system of equations and state whether the system is consistent, inconsistent, or dependent and whether the system has one solution, no solution, or infinite solutions.

41.
$$3x - y = 0.6$$

 $x - 2y = 1.3$

42.
$$-x + 2y = 4$$
 $2x - 4y = 1$

43.
$$x + 2y = 7$$
 $2x + 6y = 12$

44.
$$3x - 5y = 7$$

 $x - 2y = 3$

45.
$$3x - 2y = 5$$
 $-9x + 6y = -15$

TECHNOLOGY

For the following exercises, use the intersect function on a graphing device to solve each system. Round all answers to the nearest hundredth.

46.
$$0.1x + 0.2y = 0.3$$
 $-0.3x + 0.5y = 1$

47.
$$-0.01x + 0.12y = 0.62$$

 $0.15x + 0.20y = 0.52$

48.
$$0.5x + 0.3y = 4$$

 $0.25x - 0.9y = 0.46$

49.
$$0.15x + 0.27y = 0.39$$
 $-0.34x + 0.56y = 1.8$

50.
$$-0.71x + 0.92y = 0.13$$

 $0.83x + 0.05y = 2.1$

EXTENSIONS

For the following exercises, solve each system in terms of A, B, C, D, E, and F where A-F are nonzero numbers. Note that $A \neq B$ and $AE \neq BD$.

51.
$$x + y = A$$
 $x - y = B$

52.
$$x + Ay = 1$$
 $x + By = 1$

53.
$$Ax + y = 0$$
 $Bx + y = 1$

52.
$$x + Ay = 1$$
 $53. Ax + y = 0$ $54. Ax + By = C$ $x + By = 1$ $8x + y = 1$ $x + y = 1$

55.
$$Ax + By = C$$

 $Dx + Ey = F$

REAL-WORLD APPLICATIONS

For the following exercises, solve for the desired quantity.

- **56.** A stuffed animal business has a total cost of production C = 12x + 30 and a revenue function R = 20x. Find the break-even point.
- **58.** A cell phone factory has a cost of production C(x) = 150x + 10,000 and a revenue function R(x) = 200x. What is the break-even point?
- **60.** A guitar factory has a cost of production C(x) = 75x + 50,000. If the company needs to break even after 150 units sold, at what price should they sell each guitar? Round up to the nearest dollar, and write the revenue function.
- **57.** A fast-food restaurant has a cost of production C(x) = 11x + 120 and a revenue function R(x) = 5x. When does the company start to turn a profit?
- **59.** A musician charges C(x) = 64x + 20,000, where x is the total number of attendees at the concert. The venue charges \$80 per ticket. After how many people buy tickets does the venue break even, and what is the value of the total tickets sold at that point?

For the following exercises, use a system of linear equations with two variables and two equations to solve.

- **61.** Find two numbers whose sum is 28 and difference is 13.
- **63.** The startup cost for a restaurant is \$120,000, and each meal costs \$10 for the restaurant to make. If each meal is then sold for \$15, after how many meals does the restaurant break even?
- **65.** A total of 1,595 fi st- and second-year college students gathered at a pep rally. The number of freshmen exceeded the number of sophomores by 15. How many freshmen and sophomores were in attendance?
- **67.** There were 130 faculty at a conference. If there were 18 more women than men attending, how many of each gender attended the conference?
- **69.** If a scientist mixed 10% saline solution with 60% saline solution to get 25 gallons of 40% saline solution, how many gallons of 10% and 60% solutions were mixed?
- 71. An investor who dabbles in real estate invested 1.1 million dollars into two land investments. On the fi st investment, Swan Peak, her return was a 110% increase on the money she invested. On the second investment, Riverside Community, she earned 50% over what she invested. If she earned \$1 million in profits, how much did she invest in each of the land deals?
- **73.** If an investor invests \$23,000 into two bonds, one that pays 4% in simple interest, and the other paying 2% simple interest, and the investor earns \$710.00 annual interest, how much was invested in each account?
- **75.** A store clerk sold 60 pairs of sneakers. The high-tops sold for \$98.99 and the low-tops sold for \$129.99. If the receipts for the two types of sales totaled \$6,404.40, how many of each type of sneaker were sold?
- 77. Admission into an amusement park for 4 children and 2 adults is \$116.90. For 6 children and 3 adults, the admission is \$175.35. Assuming a different price for children and adults, what is the price of the child's ticket and the price of the adult ticket?

- **62.** A number is 9 more than another number. Twice the sum of the two numbers is 10. Find the two numbers.
- **64.** A moving company charges a flat rate of \$150, and an additional \$5 for each box. If a taxi service would charge \$20 for each box, how many boxes would you need for it to be cheaper to use the moving company, and what would be the total cost?
- **66.** 276 students enrolled in a freshman-level chemistry class. By the end of the semester, 5 times the number of students passed as failed. Find the number of students who passed, and the number of students who failed.
- **68.** A jeep and BMW enter a highway running eastwest at the same exit heading in opposite directions. The jeep entered the highway 30 minutes before the BMW did, and traveled 7 mph slower than the BMW. After 2 hours from the time the BMW entered the highway, the cars were 306.5 miles apart. Find the speed of each car, assuming they were driven on cruise control.
- **70.** An investor earned triple the profits of what she earned last year. If she made \$500,000.48 total for both years, how much did she earn in profits each year?
- 72. If an investor invests a total of \$25,000 into two bonds, one that pays 3% simple interest, and the other that pays $2\frac{7}{8}$ % interest, and the investor earns \$737.50 annual interest, how much was invested in each account?
- **74.** CDs cost \$5.96 more than DVDs at All Bets Are Off Electronics. How much would 6 CDs and 2 DVDs cost if 5 CDs and 2 DVDs cost \$127.73?
- **76.** A concert manager counted 350 ticket receipts the day after a concert. The price for a student ticket was \$12.50, and the price for an adult ticket was \$16.00. The register confi ms that \$5,075 was taken in. How many student tickets and adult tickets were sold?

LEARNING OBJECTIVES

Download for free at https://openstax.org/ details/books/college-algebra

In this section, you will:

- Solve a system of nonlinear equations using substitution.
- Solve a system of nonlinear equations using elimination.
- Graph a nonlinear inequality.
- Graph a system of nonlinear inequalities.

SYSTEMS OF NONLINEAR EQUATIONS AND INEQUALITIES: TWO VARIABLES 7.3

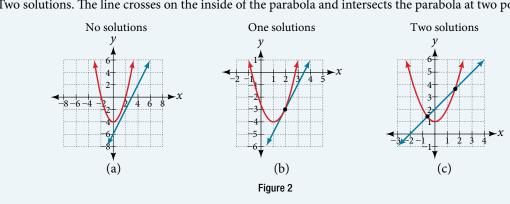
Halley's Comet (Figure 1) orbits the sun about once every 75 years. Its path can be considered to be a very elongated ellipse. Other comets follow similar paths in space. These orbital paths can be studied using systems of equations. These systems, however, are different from the ones we considered in the previous section because the equations are not linear.

Figure 1 Halley's Comet (credit: "NASA Blueshift"/Flickr)

In this section, we will consider the intersection of a parabola and a line, a circle and a line, and a circle and an ellipse. The methods for solving systems of nonlinear equations are similar to those for linear equations.

Solving a System of Nonlinear Equations Using Substitution

A system of nonlinear equations is a system of two or more equations in two or more variables containing at least one equation that is not linear. Recall that a linear equation can take the form Ax + By + C = 0. Any equation that cannot be written in this form in nonlinear. The substitution method we used for linear systems is the same method we will use for nonlinear systems. We solve one equation for one variable and then substitute the result into the second equation to solve for another variable, and so on. There is, however, a variation in the possible outcomes.


Intersection of a Parabola and a Line

There are three possible types of solutions for a system of nonlinear equations involving a parabola and a line.

possible types of solutions for points of intersection of a parabola and a line

Figure 2 illustrates possible solution sets for a system of equations involving a parabola and a line.

- No solution. The line will never intersect the parabola.
- One solution. The line is tangent to the parabola and intersects the parabola at exactly one point.
- Two solutions. The line crosses on the inside of the parabola and intersects the parabola at two points.

How To ...

Given a system of equations containing a line and a parabola, find the solution.

- 1. Solve the linear equation for one of the variables.
- **2.** Substitute the expression obtained in step one into the parabola equation.
- **3.** Solve for the remaining variable.
- **4.** Check your solutions in both equations.

Example 1 Solving a System of Nonlinear Equations Representing a Parabola and a Line

Solve the system of equations.

$$x - y = -1$$
$$y = x^2 + 1$$

Solution Solve the first equation for *x* and then substitute the resulting expression into the second equation.

$$x - y = -1$$

 $x = y - 1$ Solve for x .
 $y = x^2 + 1$
 $y = (y - 1)^2 + 1$ Substitute expression for x .

Expand the equation and set it equal to zero.

$$y = (y - 1)^{2}$$

$$= (y^{2} - 2y + 1) + 1$$

$$= y^{2} - 2y + 2$$

$$0 = y^{2} - 3y + 2$$

$$= (y - 2)(y - 1)$$

Solving for y gives y = 2 and y = 1. Next, substitute each value for y into the first equation to solve for x. Always substitute the value into the linear equation to check for extraneous solutions.

$$x - y = -1$$

$$x - (2) = -1$$

$$x = 1$$

$$x - (1) = -1$$

$$x = 0$$

The solutions are (1, 2) and (0, 1), which can be verified by substituting these (x, y) values into both of the original equations. See **Figure 3**.

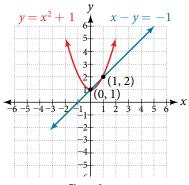


Figure 3

Q & A...

Could we have substituted values for y into the second equation to solve for x in Example 1?

Yes, but because x is squared in the second equation this could give us extraneous solutions for x.

For
$$y = 1$$

$$y = x^{2} + 1$$

$$1 = x^{2} + 1$$

$$x^{2} = 0$$

$$x = \pm \sqrt{0} = 0$$

This gives us the same value as in the solution.

For
$$y = 2$$

$$y = x^{2} + 1$$

$$2 = x^{2} + 1$$

$$x^{2} = 1$$

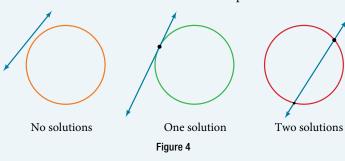
$$x = \pm \sqrt{1} = \pm 1$$

Notice that -1 is an extraneous solution.

Try It #1

Solve the given system of equations by substitution.

$$3x - y = -2$$
$$2x^2 - y = 0$$


Intersection of a Circle and a Line

Just as with a parabola and a line, there are three possible outcomes when solving a system of equations representing a circle and a line.

possible types of solutions for the points of intersection of a circle and a line

Figure 4 illustrates possible solution sets for a system of equations involving a circle and a line.

- No solution. The line does not intersect the circle.
- One solution. The line is tangent to the circle and intersects the circle at exactly one point.
- Two solutions. The line crosses the circle and intersects it at two points.

How To ..

Given a system of equations containing a line and a circle, find the solution.

- **1.** Solve the linear equation for one of the variables.
- **2.** Substitute the expression obtained in step one into the equation for the circle.
- **3.** Solve for the remaining variable.
- **4.** Check your solutions in both equations.

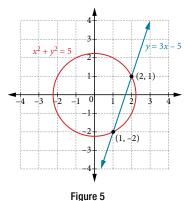
Example 2 Finding the Intersection of a Circle and a Line by Substitution

Find the intersection of the given circle and the given line by substitution.

$$x^2 + y^2 = 5$$
$$y = 3x - 5$$

Solution One of the equations has already been solved for *y*. We will substitute y = 3x - 5 into the equation for the circle.

$$x^{2} + (3x - 5)^{2} = 5$$
$$x^{2} + 9x^{2} - 30x + 25 = 5$$
$$10x^{2} - 30x + 20 = 0$$


Now, we factor and solve for *x*.

$$10(x^{2} - 3x + 2) = 0$$
$$10(x - 2)(x - 1) = 0$$
$$x = 2$$
$$x = 1$$

Substitute the two *x*-values into the original linear equation to solve for *y*.

$$y = 3(2)-5$$

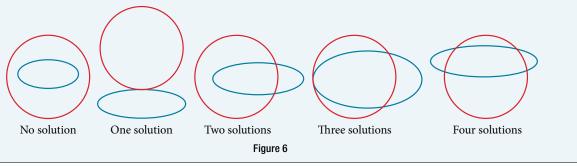
= 1
 $y = 3(1)-5$
= -2

The line intersects the circle at (2, 1) and (1, -2), which can be verified by substituting these (x, y) values into both of the original equations. See **Figure 5**.

Try It #2

Solve the system of nonlinear equations.

$$x^2 + y^2 = 10$$
$$x - 3y = -10$$


Solving a System of Nonlinear Equations Using Elimination

We have seen that substitution is often the preferred method when a system of equations includes a linear equation and a nonlinear equation. However, when both equations in the system have like variables of the second degree, solving them using elimination by addition is often easier than substitution. Generally, elimination is a far simpler method when the system involves only two equations in two variables (a two-by-two system), rather than a three-by-three system, as there are fewer steps. As an example, we will investigate the possible types of solutions when solving a system of equations representing a circle and an ellipse.

possible types of solutions for the points of intersection of a circle and an ellipse

Figure 6 illustrates possible solution sets for a system of equations involving a circle and an ellipse.

- No solution. The circle and ellipse do not intersect. One shape is inside the other or the circle and the ellipse are a distance away from the other.
- One solution. The circle and ellipse are tangent to each other, and intersect at exactly one point.
- Two solutions. The circle and the ellipse intersect at two points.
- Th ee solutions. The circle and the ellipse intersect at three points.
- Four solutions. The circle and the ellipse intersect at four points.

Example 3 Solving a System of Nonlinear Equations Representing a Circle and an Ellipse

Solve the system of nonlinear equations.

$$x^2 + y^2 = 26 \tag{1}$$

$$3x^2 + 25y^2 = 100 \qquad (2)$$

Solution Let's begin by multiplying equation (1) by -3, and adding it to equation (2).

$$(-3)(x^{2} + y^{2}) = (-3)(26)$$

$$-3x^{2} - 3y^{2} = -78$$

$$3x^{2} + 25y^{2} = 100$$

$$22y^{2} = 22$$

After we add the two equations together, we solve for *y*.

$$y^2 = 1$$
$$y = \pm \sqrt{1} = \pm 1$$

Substitute $y = \pm 1$ into one of the equations and solve for x.

$$x^{2} + (1)^{2} = 26$$
 $x^{2} + (-1)^{2} = 26$ $x^{2} + 1 = 26$ $x^{2} = 25$ $x = \pm \sqrt{25} = \pm 5$

There are four solutions: (5, 1), (-5, 1), (5, -1), and (-5, -1). See **Figure 7**.

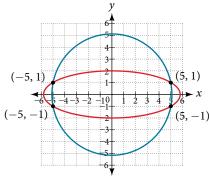


Figure 7

Try It #3

Find the solution set for the given system of nonlinear equations.

$$4x^2 + y^2 = 13$$

$$x^2 + y^2 = 10$$

Graphing a Nonlinear Inequality

All of the equations in the systems that we have encountered so far have involved equalities, but we may also encounter systems that involve inequalities. We have already learned to graph linear inequalities by graphing the corresponding equation, and then shading the region represented by the inequality symbol. Now, we will follow similar steps to graph a nonlinear inequality so that we can learn to solve systems of nonlinear inequalities. A **nonlinear inequality** is an inequality containing a nonlinear expression. Graphing a nonlinear inequality is much like graphing a linear inequality.

Recall that when the inequality is greater than, y > a, or less than, y < a, the graph is drawn with a dashed line. When the inequality is greater than or equal to, $y \ge a$, or less than or equal to, $y \le a$, the graph is drawn with a solid line. The graphs will create regions in the plane, and we will test each region for a solution. If one point in the region works, the whole region works. That is the region we shade. See **Figure 8**.

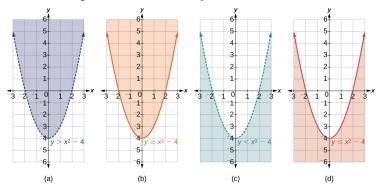


Figure 8 (a) an example of y > a; (b) an example of $y \ge a$; (c) an example of y < a; (d) an example of $y \le a$

How To ...

Given an inequality bounded by a parabola, sketch a graph.

- 1. Graph the parabola as if it were an equation. This is the boundary for the region that is the solution set.
- **2.** If the boundary is included in the region (the operator is \leq or \geq), the parabola is graphed as a solid line.
- **3.** If the boundary is not included in the region (the operator is $\langle or \rangle$), the parabola is graphed as a dashed line.
- **4.** Test a point in one of the regions to determine whether it satisfies the inequality statement. If the statement is true, the solution set is the region including the point. If the statement is false, the solution set is the region on the other side of the boundary line.
- 5. Shade the region representing the solution set.

Example 4 Graphing an Inequality for a Parabola

Graph the inequality $y > x^2 + 1$.

Solution First, graph the corresponding equation $y = x^2 + 1$. Since $y > x^2 + 1$ has a greater than symbol, we draw the graph with a dashed line. Then we choose points to test both inside and outside the parabola. Let's test the points (0, 2) and (2, 0). One point is clearly inside the parabola and the other point is clearly outside.

$$y > x^2 + 1$$

$$2 > (0)^2 + 1$$

$$0 > (2)^2 + 1$$

$$0 > 5$$
 False

The graph is shown in **Figure 9**. We can see that the solution set consists of all points inside the parabola, but not on the graph itself.

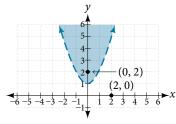


Figure 9

Graphing a System of Nonlinear Inequalities

Now that we have learned to graph nonlinear inequalities, we can learn how to graph systems of nonlinear inequalities. A **system of nonlinear inequalities** is a system of two or more inequalities in two or more variables containing at least one inequality that is not linear. Graphing a system of nonlinear inequalities is similar to graphing a system of linear inequalities. The difference is that our graph may result in more shaded regions that represent a solution than we find in a system of linear inequalities. The solution to a nonlinear system of inequalities is the region of the graph where the shaded regions of the graph of each inequality overlap, or where the regions intersect, called the **feasible region**.

How To ...

Given a system of nonlinear inequalities, sketch a graph.

- 1. Find the intersection points by solving the corresponding system of nonlinear equations.
- **2.** Graph the nonlinear equations.
- **3.** Find the shaded regions of each inequality.
- **4.** Identify the feasible region as the intersection of the shaded regions of each inequality or the set of points common to each inequality.

Example 5 Graphing a System of Inequalities

Graph the given system of inequalities.

$$x^2 - y \le 0$$
$$2x^2 + y \le 12$$

Solution These two equations are clearly parabolas. We can find the points of intersection by the elimination process: Add both equations and the variable *y* will be eliminated. Then we solve for *x*.

$$x^{2} - y = 0$$

$$2x^{2} + y = 12$$

$$3x^{2} = 12$$

$$x^{2} = 4$$

$$x = \pm 2$$

Substitute the *x*-values into one of the equations and solve for *y*.

$$x^{2} - y = 0$$

$$(2)^{2} - y = 0$$

$$4 - y = 0$$

$$y = 4$$

$$(-2)^{2} - y = 0$$

$$4 - y = 0$$

$$y = 4$$

The two points of intersection are (2, 4) and (-2, 4). Notice that the equations can be rewritten as follows.

$$x^{2} - y \le 0$$

$$x^{2} \le y$$

$$y \ge x^{2}$$

$$2x^{2} + y \le 12$$

$$y \le -2x^{2} + 12$$

Graph each inequality. See **Figure 10**. The feasible region is the region between the two equations bounded by 2 $x^2 + y \le 12$ on the top and $x^2 - y \le 0$ on the bottom.

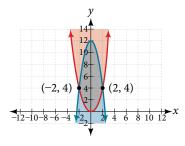


Figure 10

Try It #4

Graph the given system of inequalities.

$$y \ge x^2 - 1$$
$$x - y \ge -1$$

Access these online resources for additional instruction and practice with nonlinear equations.

- Solve a System of Nonlinear Equations Using Substitution (http://openstaxcollege.org/l/nonlinsub)
- Solve a System of Nonlinear Equations Using Elimination (http://openstaxcollege.org/l/nonlinelim)

7.3 SECTION EXERCISES

Download for free at https://openstax.org/ details/books/college-algebra

VERBAL

- 1. Explain whether a system of two nonlinear equations can have exactly two solutions. What about exactly three? If not, explain why not. If so, give an example of such a system, in graph form, and explain why your choice gives two or three answers.
- **3.** When you graph a system of inequalities, will there always be a feasible region? If so, explain why. If not, give an example of a graph of inequalities that does not have a feasible region. Why does it not have a feasible region?
- **5.** If you perform your break-even analysis and there is more than one solution, explain how you would determine which *x*-values are profit and which are not.

- **2.** When graphing an inequality, explain why we only need to test one point to determine whether an entire region is the solution?
- **4.** If you graph a revenue and cost function, explain how to determine in what regions there is profit.

ALGEBRAIC

For the following exercises, solve the system of nonlinear equations using substitution.

6.
$$x + y = 4$$

 $x^2 + y^2 = 9$

7.
$$y = x - 3$$

 $x^2 + y^2 = 9$

8.
$$y = x$$
 $x^2 + y^2 = 9$

9.
$$y = -x$$

 $x^2 + y^2 = 9$

10.
$$x = 2$$

 $x^2 - y^2 = 9$

For the following exercises, solve the system of nonlinear equations using elimination.

11.
$$4x^2 - 9y^2 = 36$$

 $4x^2 + 9y^2 = 36$

12.
$$x^2 + y^2 = 25$$

 $x^2 - y^2 = 1$

13.
$$2x^2 + 4y^2 = 4$$

 $2x^2 - 4y^2 = 25x - 10$

14.
$$y^2 - x^2 = 9$$
 $3x^2 + 2y^2 = 8$

15.
$$x^2 + y^2 + \frac{1}{16} = 2500$$

 $y = 2x^2$

For the following exercises, use any method to solve the system of nonlinear equations.

16.
$$-2x^2 + y = -5$$

 $6x - y = 9$

17.
$$-x^2 + y = 2$$

 $-x + y = 2$

18.
$$x^2 + y^2 = 1$$

 $y = 20x^2 - 1$

19.
$$x^2 + y^2 = 1$$

 $y = -x^2$

20.
$$2x^3 - x^2 = y$$

 $y = \frac{1}{2} - x$

21.
$$9x^2 + 25y^2 = 225$$

 $(x-6)^2 + y^2 = 1$

22.
$$x^4 - x^2 = y$$

 $x^2 + y = 0$

23.
$$2x^3 - x^2 = y$$

 $x^2 + y = 0$

For the following exercises, use any method to solve the nonlinear system.

24.
$$x^2 + y^2 = 9$$

 $y = 3 - x^2$

25.
$$x^2 - y^2 = 9$$

 $x = 3$

26.
$$x^2 - y^2 = 9$$
 $y = 3$

27.
$$x^2 - y^2 = 9$$

 $x - y = 0$

28.
$$-x^2 + y = 2$$

 $-4x + y = -1$

29.
$$-x^2 + y = 2$$

 $2y = -x$

30.
$$x^2 + y^2 = 25$$

 $x^2 - y^2 = 36$

31.
$$x^2 + y^2 = 1$$

 $y^2 = x^2$

32.
$$16x^2 - 9y^2 + 144 = 0$$

 $y^2 + x^2 = 16$

33.
$$3x^2 - y^2 = 12$$

 $(x-1)^2 + y^2 = 1$

34.
$$3x^2 - y^2 = 12$$

 $(x-1)^2 + y^2 = 4$

35.
$$3x^2 - y^2 = 12$$

 $x^2 + y^2 = 16$

36.
$$x^2 - y^2 - 6x - 4y - 11 = 0$$
 $-x^2 + y^2 = 5$ **37.** $x^2 + y^2 - 6y = 7$ $x^2 + y = 1$

37.
$$x^2 + y^2 - 6y = 7$$

 $x^2 + y = 1$

38.
$$x^2 + y^2 = 6$$
 $xy = 1$

GRAPHICAL

For the following exercises, graph the inequality.

39.
$$x^2 + y < 9$$

40.
$$x^2 + y^2 < 4$$

For the following exercises, graph the system of inequalities. Label all points of intersection.

41.
$$x^2 + y < 1$$
 $y > 2x$

42.
$$x^2 + y < -5$$
 $y > 5x + 10$

43.
$$x^2 + y^2 < 25$$
 $3x^2 - y^2 > 12$

44.
$$x^2 - y^2 > -4$$
 $x^2 + y^2 < 12$

45.
$$x^2 + 3y^2 > 16$$
 $3x^2 - y^2 < 1$

EXTENSIONS

For the following exercises, graph the inequality.

46.
$$y \ge e^x$$
 $y \le \ln(x) + 5$

47.
$$y \le -\log(x)$$
 $y \le e^x$

For the following exercises, find the solutions to the nonlinear equations with two variables.

48.
$$\frac{4}{x^2} + \frac{1}{y^2} = 24$$
$$\frac{5}{x^2} - \frac{2}{y^2} + 4 = 0$$

49.
$$\frac{6}{x^2} - \frac{1}{y^2} = 8$$

$$\frac{1}{x^2} - \frac{6}{y^2} = \frac{1}{8}$$

50.
$$x^2 - xy + y^2 - 2 = 0$$

 $x + 3y = 4$

51.
$$x^2 - xy - 2y^2 - 6 = 0$$

 $x^2 + y^2 = 1$

51.
$$x^2 - xy - 2y^2 - 6 = 0$$
 $x^2 + y^2 = 1$ **52.** $x^2 + 4xy - 2y^2 - 6 = 0$ $x = y + 2$

TECHNOLOGY

For the following exercises, solve the system of inequalities. Use a calculator to graph the system to confirm the answer.

53.
$$xy < 1$$
 $y > \sqrt{x}$

54.
$$x^2 + y < 3$$
 $y > 2x$

REAL-WORLD APPLICATIONS

For the following exercises, construct a system of nonlinear equations to describe the given behavior, then solve for the requested solutions.

- **55.** Two numbers add up to 300. One number is twice the square of the other number. What are the numbers?
- 57. A laptop company has discovered their cost and revenue functions for each day: $C(x) = 3x^2 - 10x + 200$ and $R(x) = -2x^2 + 100x + 50$. If they want to make a profit, what is the range of laptops per day that they should produce? Round to the nearest number which would generate profit.
- **56.** The squares of two numbers add to 360. The second number is half the value of the fi st number squared. What are the numbers?
- 58. A cell phone company has the following cost and revenue functions: $C(x) = 8x^2 - 600x + 21,500$ and $R(x) = -3x^2 + 480x$. What is the range of cell phones they should produce each day so there is profit? round to the nearest number that generates profit.

CHAPTER 7 REVIEW EXERCISES

Download for free at https://openstax.org/ details/books/college-algebra

SYSTEMS OF LINEAR EQUATIONS: TWO VARIABLES

For the following exercises, determine whether the ordered pair is a solution to the system of equations.

1.
$$3x - y = 4$$

 $x + 4y = -3$ and $(-1, 1)$

2.
$$6x - 2y = 24$$

 $-3x + 3y = 18$ and (9, 15)

For the following exercises, use substitution to solve the system of equations.

3.
$$10x + 5y = -5$$

 $3x - 2y = -12$

4.
$$\frac{4}{7}x + \frac{1}{5}y = \frac{43}{70}$$

 $\frac{5}{6}x - \frac{1}{3}y = -\frac{2}{3}$

5.
$$5x + 6y = 14$$

 $4x + 8y = 8$

For the following exercises, use addition to solve the system of equations.

6.
$$3x + 2y = -7$$

 $2x + 4y = 6$

7.
$$3x + 4y = 2$$

 $9x + 12y = 3$

8.
$$8x + 4y = 2$$

 $6x - 5y = 0.7$

For the following exercises, write a system of equations to solve each problem. Solve the system of equations.

9. A factory has a cost of production
$$C(x) = 150x + 15,000$$
 and a revenue function

$$R(x) = 200x$$
. What is the break-even point?

10. A performer charges C(x) = 50x + 10,000, where x is the total number of attendees at a show. The venue charges \$75 per ticket. After how many people buy tickets does the venue break even, and what is the value of the total tickets sold at that point?

SYSTEMS OF LINEAR EQUATIONS: THREE VARIABLES

For the following exercises, solve the system of three equations using substitution or addition.

11.
$$0.5x - 0.5y = 10$$

 $-0.2y + 0.2x = 4$
 $0.1x + 0.1z = 2$

12.
$$5x + 3y - z = 5$$

 $3x - 2y + 4z = 13$
 $4x + 3y + 5z = 22$

13.
$$x + y + z = 1$$

 $2x + 2y + 2z = 1$
 $3x + 3y = 2$

14.
$$2x - 3y + z = -1$$

 $x + y + z = -4$
 $4x + 2y - 3z = 33$

15.
$$3x + 2y - z = -10$$

 $x - y + 2z = 7$
 $-x + 3y + z = -2$

16.
$$3x + 4z = -11$$

 $x - 2y = 5$
 $4y - z = -10$

17.
$$2x - 3y + z = 0$$

 $2x + 4y - 3z = 0$
 $6x - 2y - z = 0$

18.
$$6x - 4y - 2z = 2$$

 $3x + 2y - 5z = 4$
 $6y - 7z = 5$

For the following exercises, write a system of equations to solve each problem. Solve the system of equations.

- **19.** The e odd numbers sum up to 61. The smaller is one-third the larger and the middle number is 16 less than the larger. What are the three numbers?
- **20.** A local theatre sells out for their show. They sell all 500 tickets for a total purse of \$8,070.00. The tickets were priced at \$15 for students, \$12 for children, and \$18 for adults. If the band sold three times as many adult tickets as children's tickets, how many of each type was sold?

SYSTEMS OF NONLINEAR EQUATIONS AND INEQUALITIES: TWO VARIABLES

For the following exercises, solve the system of nonlinear equations.

21.
$$y = x^2 - 7$$
 $y = 5x - 13$

22.
$$y = x^2 - 4$$

 $y = 5x + 10$

23.
$$x^2 + y^2 = 16$$
 $y = x - 8$

22.
$$y = x^2 - 4$$
 $y = 5x + 10$ **23.** $x^2 + y^2 = 16$ $y = x - 8$ **24.** $x^2 + y^2 = 25$ $y = x^2 + 5$ **25.** $x^2 + y^2 = 4$ $y = x^2 + 5$ $y - x^2 = 3$

25.
$$x^2 + y^2 = 4$$

 $y - x^2 = 3$

For the following exercises, graph the inequality.

26.
$$y > x^2 - 1$$

27.
$$\frac{1}{4}x^2 + y^2 < 4$$

For the following exercises, graph the system of inequalities.

28.
$$x^2 + y^2 + 2x < 3$$

 $y > -x^2 - 3$

29.
$$x^2 - 2x + y^2 - 4x < 4$$

 $y < -x + 4$

30.
$$x^2 + y^2 < 1$$
 $y^2 < x$

PARTIAL FRACTIONS

For the following exercises, decompose into partial fractions.

$$31. \ \frac{-2x+6}{x^2+3x+2}$$

32.
$$\frac{10x+2}{4x^2+4x+1}$$

$$33. \ \frac{7x+20}{x^2+10x+25}$$

34.
$$\frac{x-18}{x^2-12x+36}$$

35.
$$\frac{-x^2 + 36x + 70}{x^3 - 125}$$

36.
$$\frac{-5x^2+6x-2}{x^3+27}$$

37.
$$\frac{x^3 - 4x^2 + 3x + 11}{(x^2 - 2)^2}$$

38.
$$\frac{4x^4 - 2x^3 + 22x^2 - 6x + 48}{x(x^2 + 4)^2}$$

MATRICES AND MATRIX OPERATIONS

For the following exercises, perform the requested operations on the given matrices.

$$A = \begin{bmatrix} 4 & -2 \\ 1 & 3 \end{bmatrix}, B = \begin{bmatrix} 6 & 7 & -3 \\ 11 & -2 & 4 \end{bmatrix}, C = \begin{bmatrix} 6 & 7 \\ 11 & -2 \\ 14 & 0 \end{bmatrix}, D = \begin{bmatrix} 1 & -4 & 9 \\ 10 & 5 & -7 \\ 2 & 8 & 5 \end{bmatrix}, E = \begin{bmatrix} 7 & -14 & 3 \\ 2 & -1 & 3 \\ 0 & 1 & 9 \end{bmatrix}$$

40.
$$10D - 6E$$

41.
$$B + C$$

50.
$$A^3$$

SOLVING SYSTEMS WITH GAUSSIAN ELIMINATION

For the following exercises, write the system of linear equations from the augmented matrix. Indicate whether there will be a unique solution.

51.
$$\begin{bmatrix} 1 & 0 & -3 & 7 \\ 0 & 1 & 2 & -5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

52.
$$\begin{bmatrix} 1 & 0 & 5 & -9 \\ 0 & 1 & -2 & 4 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

54. 4x + 2y - 3z = 14

For the following exercises, write the augmented matrix from the system of linear equations.

53.
$$-2x + 2y + z = 7$$
$$2x - 8y + 5z = 0$$

$$2x - 8y + 5z = 0$$

$$-12x + 3y + z = 100$$

$$19x - 10y + 22z = 3$$

$$9x - 6y + 2z = 31$$

55.
$$x + 3z = 12$$

 $-x + 4y = 0$
 $y + 2z = -7$

Download for free at https://openstax.org/ details/books/college-algebra

Section 6.5

1. $\log_{\nu}(2) + \log_{\nu}(2) + \log_{\nu}(2) + \log_{\nu}(k) = 3\log_{\nu}(2) + \log_{\nu}(k)$

2. $\log_3(x+3) - \log_3(x-1) - \log_3(x-2)$

4. $-2\ln(x)$ **5.** $\log_3(16)$ **6.** $2\log(x) + 3\log(y) - 4\log(z)$

7. $\frac{2}{3}\ln(x)$ 8. $\frac{1}{2}\ln(x-1) + \ln(2x+1) - \ln(x+3) - \ln(x-3)$

9. $\log\left(\frac{3\cdot 5}{4\cdot 6}\right)$; can also be written $\log\left(\frac{5}{8}\right)$ by reducing the fraction

to lowest terms. $\mathbf{10.} \log \left(\frac{5(x-1)^3 \sqrt{x}}{(7x-1)} \right)$

11. $\log \frac{x^{12}(x+5)^4}{(2x+3)^4}$; this answer could also be written $\log \left(\frac{x^3(x+5)}{(2x+3)}\right)^4$. **12.** The pH increases by about 0.301. **13.** $\frac{\ln(8)}{\ln(0.5)}$

14. $\frac{\ln(100)}{\ln(5)} \approx \frac{4.6051}{1.6094} = 2.861$

Section 6.6

1. x = -2 **2.** x = -1 **3.** $x = \frac{1}{2}$ **4.** The equation has no solution. **5.** $x = \frac{\ln(3)}{\ln(\frac{2}{3})}$

7. $t = \ln\left(\frac{1}{\sqrt{2}}\right) = -\frac{1}{2}\ln(2)$ **8.** $x = \ln(2)$ **9.** $x = e^4$

10. $x = e^5 - 1$ **11.** $x \approx 9.97$ **12.** x = 1 or x = -1

13. $t = 703,800,000 \times \frac{\ln(0.8)}{\ln(0.5)}$ years $\approx 226,572,993$ years.

Section 6.7

1. $f(t) = A_0 e^{-0.0000000087t}$ **2.** Less than 230 years; 229.3157 to be exact

3. $f(t) = A_0 e^{(\frac{\ln(2)}{3})t}$ **4.** 6.026 hours **5.** 895 cases on day 15

6. Exponential. $y = 2e^{0.5x}$ **7.** $y = 3e^{(\ln 0.5)x}$

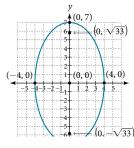
Section 6.8

1. a. The exponential regression model that fits these data is $y = 522.88585984(1.19645256)^x$. **b.** If spending continues at this rate, the graduate's credit card debt will be \$4,499.38 after one year.

2. a. The logarithmic regression model that fits these data is $y = 141.91242949 + 10.45366573\ln(x)$ **b.** If sales continue at this rate, about 171,000 games will be sold in the year 2015.

3. a. The logistic regression model that fits these data is

$$y = \frac{25.65665979}{1 + 6.113686306e^{-0.3852149008x}}.$$


b. If the population continues to grow at this rate, there will be about 25,634 seals in 2020. **c.** To the nearest whole number, the carrying capacity is 25,657.

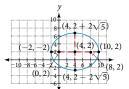
Chapter 7

Section 7.1

1. Not a solution

2. The solution to the system is the ordered pair (-5, 3).

3. (-2, -5) **4.** (-6, -2)**5.** (10, -4) 6. No solution. It is an inconsistent system. **7.** The system is dependent so there are infinite solutions of the form (x,2x + 5).


8. 700 children, 950 adults

Section 7.2

1. (1, -1, 1)**2.** No solution **3.** Infinite number of solutions of the form (x, 4x - 11, -5x + 18)

Section 7.3

1. $\left(-\frac{1}{2}, \frac{1}{2}\right)$ and (2, 8) **2.** (-1, 3) **3.** $\{(1, 3), (1, -3), (-1, 3), (-1, -3)\}$

Section 7.4

1. $\frac{3}{x-3} - \frac{2}{x-2}$ **2.** $\frac{6}{x-1} - \frac{5}{(x-1)^2}$ **3.** $\frac{3}{x-1} + \frac{2x-4}{x^2+1}$ **4.** $\frac{x-2}{x^2-2x+3} + \frac{2x+1}{(x^2-2x+3)^2}$

Section 7.5

1. $A + B = \begin{bmatrix} 2 & 6 \\ 1 & 0 \\ 1 & -3 \end{bmatrix} + \begin{bmatrix} 3 & -2 \\ 1 & 5 \\ -4 & 3 \end{bmatrix} = \begin{bmatrix} 2+3 & 6+(-2) \\ 1+1 & 0+5 \\ 1+(-4) & -3+3 \end{bmatrix} = \begin{bmatrix} 5 & 47 \\ 2 & 5 \\ -3 & 0 \end{bmatrix}$

2. $-2B = \begin{bmatrix} -8 & -2 \\ 6 & 4 \end{bmatrix}$

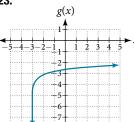
Section 7.6

1. $\begin{bmatrix} 4 & -3 & 11 \\ 3 & 2 & 4 \end{bmatrix}$ **3.** (2, 1)

4. $\begin{bmatrix} 1 & -\frac{5}{2} & \frac{5}{2} & \frac{17}{2} \\ 0 & 1 & 5 & 9 \end{bmatrix}$ **5.** (1, 1, 1)

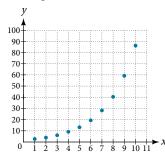
6. \$150,000 at 7%, \$750,000 at 8%, \$600,000 at 10%

Section 7.7

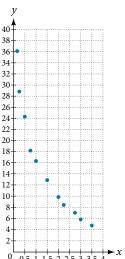

1. $AB = \begin{bmatrix} 1 & 4 \\ -1 & -3 \end{bmatrix} \begin{bmatrix} -3 & -4 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1(-3) + 4(1) & 1(-4) + 4(1) \\ -1(-3) + -3(1) & -1(-4) + -3(1) \end{bmatrix}$ = $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

 $BA = \begin{bmatrix} -3 & -4 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ -1 & -3 \end{bmatrix} = \begin{bmatrix} -3(1) + -4(-1) & -3(4) + -4(-3) \\ 1(1) + 1(-1) & 1(4) + 1(-3) \end{bmatrix}$

2. $A^{-1} = \begin{bmatrix} \frac{3}{5} & \frac{1}{5} \\ -\frac{2}{5} & \frac{1}{5} \end{bmatrix}$ **3.** $A^{-1} = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 4 & -3 \\ 3 & 6 & -5 \end{bmatrix}$ **4.** $X = \begin{bmatrix} 4 \\ 38 \\ 59 \end{bmatrix}$


Download for free at https://openstax.org/ details/books/college-algebra

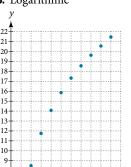
- **21.** $\ln(e^{-0.8648}) = -0.8648$


- **25.** Domain: x > -5; vertical asymptote: x = -5; end
- behavior: as $x \to -5^+$,
- $f(x) \to -\infty$ and as
- $x \to \infty$, $f(x) \to \infty$
- **27.** $\log_{8}(65xy)$
- **29.** $\ln\left(\frac{z}{xy}\right)$
- **31.** $\log_{\nu}(12)$
- 33. $\ln(2) + \ln(b) + \frac{\ln(b+1) \ln(b-1)}{2}$ 35. $\log_7 \left(\frac{v^3 w^6}{\sqrt[3]{u}} \right)$ 37. $x = \frac{5}{3}$ 39. x = -3 41. No solution 43. No solution 45. $x = \ln(11)$ 47. $a = e^4 3$ 49. $x = \pm \frac{9}{5}$ 51. About 5.45 years 53. $f^{-1}(x) = \sqrt[3]{2^{4x} 1}$

- **55.** $f(t) = 300(0.83)^t$; $f(24) \approx 3.43 g$
 - **57.** About 45 minutes
- **59.** About 8.5 days
- **61.** Exponential

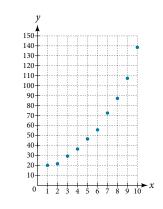
- **63.** $y = 4(0.2)^x$; $y = 4e^{-1.609438x}$
- **65.** About 7.2 days
- **67.** Logarithmic

 $y = 16.68718 - 9.71860\ln(x)$

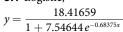


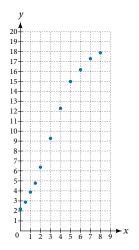
Chapter 6 Practice Test

- 1. About 13 dolphins
- **5.** *y*-intercept: (0, 5)
- - **7.** $8.5^a = 614.125$ **9.** $x = \frac{1}{49}$
 - **11.** $\ln(0.716) \approx -0.334$
 - **13.** Domain: x < 3; vertical asymptote: x = 3; end behavior: as $x \to 3^-$, $f(x) \to -\infty$ and as $x \to -\infty, f(x) \to \infty$
 - **15.** $\log_{t}(12)$
- **17.** $3\ln(y) + 2\ln(z) + \frac{\ln(x-4)}{3}$
- **19.** $x = \frac{\frac{\ln(1000)}{\ln(16)} + 5}{3} \approx 2.497$ **21.** $a = \frac{\ln(4) + 8}{10}$


- **23.** No solution **25.** $x = \ln(9)$ **27.** $x = \pm \frac{3\sqrt{3}}{2}$
- **29.** $f(t) = 112e^{-0.019792t}$; half-life: about 35 days
- **31.** $T(t) = 36e^{-0.025131t} + 35$; $T(60) \approx 43^{\circ}F$

33. Logarithmic




35. Exponential;

 $y = 15.10062(1.24621)^x$

37. Logistic;

CHAPTER 7

Section 7.1

- 1. No, you can either have zero, one, or infin tely many. Examine graphs. **3.** Th s means there is no realistic break-even point. By the time the company produces one unit they are already making profit. 5. You can solve by substitution (isolating x or y), graphically, or by addition. **7.** Yes **9.** Yes **11.** (-1, 2)

- **15.** $\left(-\frac{3}{5}, 0\right)$ **17.** No solutions exist **19.** $\left(\frac{72}{5}, \frac{132}{5}\right)$ **21.** (6, -6) **23.** $\left(-\frac{1}{2}, \frac{1}{10}\right)$ **25.** No solutions exist.

- **27.** $\left(-\frac{1}{5}, \frac{2}{3}\right)$ **29.** $\left(x, \frac{x+3}{2}\right)$ **31.** (-4, 4) **33.** $\left(\frac{1}{2}, \frac{1}{8}\right)$ **35.** $\left(\frac{1}{6}, 0\right)$ **37.** (x, 2(7x-6))

- **39.** $\left(-\frac{5}{6}, \frac{4}{3}\right)$ **41.** Consistent with one solution
- **43.** Consistent with one solution
- **45.** Dependent with infin tely many solutions

- **47.** (-3.08, 4.91) **49.** (-1.52, 2.29) **51.** $\left(\frac{A+B}{2}, \frac{A-B}{2}\right)$ **53.** $\left(-\frac{1}{A-B}, \frac{A}{A-B}\right)$ **55.** $\left(\frac{EC-BF}{AE-BD}, \frac{DC-AF}{BD-AE}\right)$

57. They never turn a profit. **59.** (1,250, 100,000)

61. The numbers are 7.5 and 20.5. **63.** 24,000

65. 790 sophomores, 805 freshman **67.** 56 men, 74 women

69. 10 gallons of 10% solution, 15 gallons of 60% solution

71. Swan Peak: \$750,000, Riverside: \$350,000
73. \$12,500 in the fi st account, \$10,500 in the second account
75. Hightops: 45, Low-tops: 15
77. Infin tely many solutions. We need more information.

Section 7.2

1. No, there can be only one, zero, or infin tely many solutions.

3. Not necessarily. There could be zero, one, or infin tely many solutions. For example, (0,0,0) is not a solution to the system below, but that does not mean that it has no solution.

$$2x + 3y - 6z = 1$$
 $-4x - 6y + 12z = -2$ $x + 2y + 5z = 10$

5. Every system of equations can be solved graphically, by substitution, and by addition. However, systems of three equations become very complex to solve graphically so other methods are usually preferable. **7.** No **9.** Yes

11.
$$(-1, 4, 2)$$
 13. $\left(-\frac{85}{107}, \frac{312}{107}, \frac{191}{107}\right)$ **15.** $\left(1, \frac{1}{2}, 0\right)$

17.
$$(4, -6, 1)$$
 19. $\left(x, \frac{65 - 16x}{27}, \frac{28 + x}{27}\right)$ **21.** $\left(-\frac{45}{13}, \frac{17}{13}, -2\right)$

23. No solutions exist **25.** (0,0,0) **27.** $\left(\frac{4}{7},-\frac{1}{7},-\frac{3}{7}\right)$

35.
$$(-5, -5, -5)$$
 37. $(10, 10, 10)$ **39.** $(\frac{1}{2}, \frac{1}{5}, \frac{4}{5})$

41.
$$\left(\frac{1}{2}, \frac{2}{5}, \frac{4}{5}\right)$$
 43. $(2, 0, 0)$ **45.** $(1, 1, 1)$

47.
$$\left(\frac{128}{557}, \frac{23}{557}, \frac{28}{557}\right)$$
 49. $(6, -1, 0)$ **51.** 24, 36, 48

53. 70 grandparents, 140 parents, 190 children 55. Your share was \$19.95, Sarah's share was \$40, and your other roommate's share was \$22.05. **57.** There are infin tely many solutions; we need more information. **59.** 500 students, 225 children, and 450 adults **61.** The BMW was \$49,636, the Jeep was \$42,636, and the Toyota was \$47,727. **63.** \$400,000 in the account that pays 3% interest, \$500,000 in the account that pays 4% interest, and \$100,000 in the account that pays 2% interest. United States consumed 26.3%, Japan 7.1%, and China 6.4% of the world's oil. 67. Saudi Arabia imported 16.8%, Canada imported 15.1%, and Mexico 15.0% **69.** Birds were 19.3%, fish were 18.6%, and mammals were 17.1% of endangered species

Section 7.3

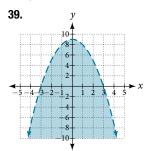
1. A nonlinear system could be representative of two circles that overlap and intersect in two locations, hence two solutions. A nonlinear system could be representative of a parabola and a circle, where the vertex of the parabola meets the circle and the branches also intersect the circle, hence three solutions. **3.** No. There does not need to be a feasible region. Consider a system that is bounded by two parallel lines. One inequality represents the region above the upper line; the other represents the region below the lower line. In this case, no points in the plane are located in both regions; hence there is no feasible region. **5.** Choose any number between each solution and plug into C(x) and R(x). If C(x) < R(x), then there is profit.

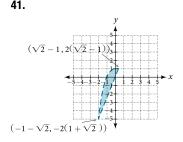
7.
$$(0, -3), (3, 0)$$
 9. $\left(-\frac{3\sqrt{2}}{2}, \frac{3\sqrt{2}}{2}\right), \left(\frac{3\sqrt{2}}{2}, -\frac{3\sqrt{2}}{2}\right)$

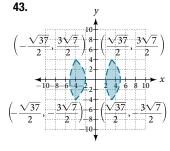
11. (-3,0), (3,0) **13.**
$$\left(\frac{1}{4}, -\frac{\sqrt{62}}{8}\right), \left(\frac{1}{4}, \frac{\sqrt{62}}{8}\right)$$

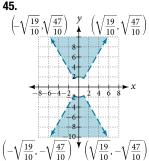
15.
$$\left(-\frac{\sqrt{398}}{4}, \frac{199}{4}\right), \left(\frac{\sqrt{398}}{4}, \frac{199}{4}\right)$$
 17. $(0, 2), (1, 3)$

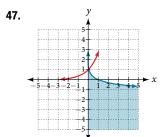
19.
$$\left(-\sqrt{\frac{1}{2}(\sqrt{5}-1)}, \frac{1}{2}(1-\sqrt{5})\right), \left(\sqrt{\frac{1}{2}(\sqrt{5}-1)}, \frac{1}{2}(1-\sqrt{5})\right)$$

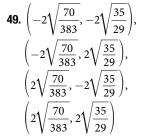

21. (5, 0) **23.** (0, 0) **25.** (3, 0) **27.** No solutions exist


29. No solutions exist


31.
$$\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right), \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right), \left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right), \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$$


33.
$$(2,0)$$
 35. $(-\sqrt{7},-3),(-\sqrt{7},3),(\sqrt{7},-3),(\sqrt{7},3)$


37.
$$\left(-\sqrt{\frac{1}{2}(\sqrt{73}-5)}, \frac{1}{2}(7-\sqrt{73})\right) \left(\sqrt{\frac{1}{2}(\sqrt{73}-5)}, \frac{1}{2}(7-\sqrt{73})\right)$$



51. No solution exists

53. x = 0, y > 0 and $0 < x < 1, \sqrt{x} < y < \frac{1}{x}$ **55.** 12,288

57. 2–20 computers

Section 7.4

1. No, a quotient of polynomials can only be decomposed if the denominator can be factored. For example, $\frac{1}{x^2+1}$ cannot be decomposed because the denominator cannot be factored.

3. Graph both sides and ensure they are equal.

37.
$$\left(\frac{18}{13}, \frac{15}{13}, -\frac{15}{13}\right)$$
 39. $\left(x, y, \frac{1}{2} - x - \frac{3}{2}y\right)$

41.
$$\left(x, -\frac{x}{2}, -1\right)$$
 43. $(125, -25, 0)$ **45.** $(8, 1, -2)$

47.
$$(1, 2, 3)$$
 49. $\left(-4z + \frac{17}{7}, 3z - \frac{10}{7}, z\right)$

53. 860 red velvet, 1,340 chocolate **51.** No solutions exist.

55. 4% for account 1, 6% for account 2 **57.** \$126

59. Banana was 3%, pumpkin was 7%, and rocky road was 2%

61. 100 almonds, 200 cashews, 600 pistachios

Section 7.7

1. If A^{-1} is the inverse of A, then $AA^{-1} = I$, the identity matrix. Since A is also the inverse of A^{-1} , A^{-1} A = I. You can also check by proving this for a 2×2 matrix. **3.** No, because *ad* and *bc* are both 0, so ad - bc = 0, which requires us to divide by 0 in the **5.** Yes. Consider the matrix $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. The inverse is found with the following calculation:

$$A^{-1} = \frac{1}{0(0) - 1(1)} \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

7.
$$AB = BA = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$
 9. $AB = BA = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$

11.
$$AB = BA = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$
 13. $\frac{1}{29} \begin{bmatrix} 9 & 2 \\ -1 & 3 \end{bmatrix}$

15.
$$\frac{1}{69}\begin{bmatrix} -2 & 7\\ 9 & 3 \end{bmatrix}$$
 17. There is no inverse **19.** $\frac{4}{7}\begin{bmatrix} 0.5 & 1.5\\ 1 & -0.5 \end{bmatrix}$

21.
$$\frac{1}{17} \begin{bmatrix} -5 & 5 & -3 \\ 20 & -3 & 12 \\ 1 & -1 & 4 \end{bmatrix}$$
 23. $\frac{1}{209} \begin{bmatrix} 47 & -57 & 69 \\ 10 & 19 & -12 \\ -24 & 38 & -13 \end{bmatrix}$

25.
$$\begin{bmatrix} 18 & 60 & -168 \\ -56 & -140 & 448 \\ 40 & 80 & -280 \end{bmatrix}$$
 27. $(-5, 6)$ **29.** $(2, 0)$ **31.** $\left(\frac{1}{3}, -\frac{5}{2}\right)$ **33.** $\left(-\frac{2}{3}, -\frac{11}{6}\right)$ **35.** $\left(7, \frac{1}{2}, \frac{1}{5}\right)$

31.
$$\left(\frac{1}{3}, -\frac{5}{2}\right)$$
 33. $\left(-\frac{2}{3}, -\frac{11}{6}\right)$ **35.** $\left(7, \frac{1}{2}, \frac{1}{5}\right)$

37.
$$(5,0,-1)$$
 39. $\left(-\frac{35}{34},-\frac{97}{34},-\frac{77}{17}\right)$

41.
$$\left(\frac{13}{138}, -\frac{568}{345}, -\frac{229}{690}\right)$$
 43. $\left(-\frac{37}{30}, \frac{8}{15}\right)$

45.
$$\left(\frac{10}{123}, -1, \frac{2}{5}\right)$$
 47. $\frac{1}{2}\begin{bmatrix} 2 & 1 & -1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & -1 & 1 & 1 \\ 0 & 1 & -1 & 1 \end{bmatrix}$

49.
$$\frac{1}{39} \begin{bmatrix}
3 & 2 & 1 & -7 \\
18 & -53 & 32 & 10 \\
24 & -36 & 21 & 9 \\
-9 & 46 & -16 & -5
\end{bmatrix}$$

51.
$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ -1 & -1 & -1 & -1 & -1 & 1 \end{bmatrix}$$
 53. Infin te solutions

55. 50% oranges, 25% bananas, 20% apples

57. 10 straw hats, 50 beanies, 40 cowboy hats

59. Tom ate 6, Joe ate 3, and Albert ate 3

61. 124 oranges, 10 lemons, 8 pomegranates

Section 7.8

1. A determinant is the sum and products of the entries in the matrix, so you can always evaluate that product—even if it does **3.** The inverse does not exist. end up being 0.

7. 7 **9.** -4 **11.** 0 **13.** -7, 990.7 **15.** 3 **17.** -1

19. 224 **21.** 15 **23.** -17.03 **25.** (1, 1) **27.** $\left(\frac{1}{2}, \frac{1}{3}\right)$

31. $\left(-1, -\frac{1}{3}\right)$ **33.** (15, 12) **35.** (1, 3, 2)**29.** (2, 5)

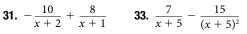
37. (-1,0,3) **39.** $\left(\frac{1}{2},1,2\right)$ **41.** (2,1,4)

43. Infin te solutions **45.** 24 **49.** Yes; 18, 38

51. Yes; 33, 36, 37 **53.** \$7,000 in fi st account, \$3,000 in second account **55.** 120 children, 1,080 adult **57.** 4 gal yellow, 6 gal blue **59.** 13 green tomatoes, 17 red tomatoes

61. Strawberries 18%, oranges 9%, kiwi 10% **63.** 100 for the fi st movie, 230 for the second movie, 312 for the third movie

65. 20–29: 2,100, 30–39: 2,600, 40–49: 825 **67.** 300 almonds, 400 cranberries, 300 cashews


Chapter 7 Review Exercises

1. No **5.** (4, -1) 3. (-2,3)**7.** No solutions exist **9.** (300, 60) **11.** (10, -10, 10) **13.** No solutions exist

17. $\left(x, \frac{8x}{5}, \frac{14x}{5}\right)$ **15.** (-1, -2, 3)**19.** 11, 17, 33

23. No solution **21.** (2, -3), (3, 2)25. No solution

27.

35.
$$\frac{3}{x-5} + \frac{-4x+1}{x^2+5x+25}$$
 37. $\frac{x-4}{x^2-2} + \frac{5x+3}{(x^2-2)^2}$

41. Undefi ed; dimensions do not match

43. Undefi ed; inner dimensions do not match

49. Undefi ed; inner dimensions do not match

51. x - 3z = 7y + 2z = -5 with infin te solutions

53. $\begin{bmatrix} -2 & 2 & 1 & 7 \\ 2 & -8 & 5 & 0 \\ 19 & -10 & 22 & 3 \end{bmatrix}$ **55.** $\begin{bmatrix} 1 & 0 & 3 & 12 \\ -1 & 4 & 0 & 0 \\ 0 & 1 & 2 & -7 \end{bmatrix}$

57. No solutions exist **59.** No solutions exist

63. No inverse exists **65.** (-20, 40)

67. (-1, 0.2, 0.3) **69.** 17% oranges, 34% bananas, 39% apples

71. 0 **73.** 6 **75.** $\left(6, \frac{1}{2}\right)$ **77.** (x, 5x + 3) **79.** $\left(0, 0, -\frac{1}{2}\right)$