GLOSSARY OF CHEM 1110 ORGANIC CHEMISTRY TERMS

acetic acid (CH₃CO₂H): trivial name for ethanoic acid, formed by the oxidation of ethanal or ethanol with $KMnO_4$.

acetone (CH₃COCH₃ or (CH₃)₂CO): trivial name for propanone, formed by the oxidation of 2-propanol with KMnO₄.

achiral molecule: a molecule that does not contain a stereogenic carbon; an achiral molecule has a plane of symmetry and is superimposable on its mirror image.

acid (carboxylic acid) (RCO₂H): a compound containing the carboxyl group.

acid anhydride ($(RCO)_2O$): a reactive derivative of a carboxylic acid; in the CHEM 1110 aspirin lab, acetic anhydride is used to convert salicylic acid to aspirin.

acid/base reaction: a reaction in which an acidic H atom is transferred from one molecule to another.

addition reaction: a reaction where a reagent is added across a double or triple bond in an organic compound to produce the corresponding saturated compound.

alcohol (R-OH): a compound which has a hydroxyl group bonded to an R group, where R is a hydrocarbon.

aldehyde (RCHO): a compound that contains a carbonyl group (C=O) at the end of the carbon chain, or that has the CHO attached to a ring.

aliphatic: a compound which does not contain a benzene ring; pentane and cyclohexane are aliphatic compounds.

alkali metal (a metal in Group IA on the periodic table): active metals which may be used to react with an alcohol to produce the corresponding metal alkoxide and hydrogen gas.

alkane: a hydrocarbon which contains only carbon-carbon single bonds; also classified as a saturated hydrocarbon. Straight or branched-chain alkanes have the general formula C_nH_{2n+2} .

alkene: a hydrocarbon which contains at least one carbon-carbon double bond; also classified as an unsaturated hydrocarbon. Straight or branched-chain alkenes have the general formula C_nH_{2n} .

alkoxide (RO⁻): an ion containing a negative charge on oxygen; formed by the reaction of an alcohol with an active metal.

alkoxy group (RO-): a substituent containing an alkyl group linked to an oxygen.

alkyl benzene (C_6H_5 -R): a benzene ring that has one alkyl group attached; the alkyl group (except quaternary alkyl groups) is susceptible to oxidation with hot KMnO₄ to yield benzoic acid ($C_6H_5CO_2H$).

alkyl group (R-): a substituent formed by removing one hydrogen atom from an alkane.

alkyl halide (R-X): a compound which contains at least one halogen atom.

alkyne: a hydrocarbon which contains at least one carbon-carbon triple bond; also classified as an unsaturated hydrocarbon. Straight or branched-chain alkynes have the general formula C_nH_{2n-2} .

amide (RCONR₂): the least reactive derivative of a carboxylic acid; it contains a carbonyl group (C=O) that is singly bonded to a nitrogen atom; the condensation product of a carboxylic acid with ammonia or an amine.

amine (RNR₂): a hydrocarbon derivative of ammonia (NH₃); primary, secondary, and tertiary amines have, respectively, one, two and three of the NH₃ hydrogen atoms replaced by hydrocarbon groups.

amino acid: a compound with a carboxyl group and an amino group. In an alpha amino acid, the amino group is on the carbon atom adjacent to the carboxyl group.

amino group: the -NH₂ group.

aniline $(C_6H_5NH_2)$: a primary (1°) amine in which the NH_2 group is bonded directly to a benzene ring.

aromatic: a compound which contains a benzene ring.

aspirin: trivial name for the compound acetylsalicylic acid; formed by treating salicylic acid with acetic anhydride.

asymmetric carbon atom: a carbon atom with four different substituents; a stereogenic carbon.

benzaldehyde (C₆H₅CHO): simplest **aromatic aldehyde**, formed by the controlled oxidation of benzyl alcohol; vigorous oxidation yields benzoic acid.

benzene: an aromatic cyclic hydrocarbon of formula C_6H_6 .

benzoic acid ($C_6H_5CO_2H$): simplest aromatic carboxylic acid, formed by the vigorous oxidation of alkyl benzene, benzyl alcohol, and benzaldehyde.

carbonyl group (R-CO-R): a carbon atom which is connected to an oxygen atom with a double bond; the functional groups of aldehydes, ketones, carboxylic acids, esters and amides all contain a carbonyl group.

carboxy group (-CO₂H or -COOH): a carbonyl group to which a hydroxyl group is attached; carboxylic acids have this functional group.

catalyst: a substance which changes the rate of a chemical reaction but is unchanged at the end of the reaction; an example would be the Pt used in the hydrogenation of alkenes.

chirality: the ability of an object or a compound to exist in right and left-handed forms; a chiral compound will rotate the plane of plane-polarized light.

cis: a geometric form of a substituted alkene or a cyclic compound in which two substituents are on the same side of the carbon-carbon double bond or the ring.

constitutional isomers: see structural isomerism

cyclic compound: a molecule which has the two ends of the carbon chain connected together to form a ring.

cyclo: prefix used to indicate the presence of a ring.

dehydration: an elimination reaction in which an alcohol reacts with concentrated acid to yield an alkene plus water.

diene: a hydrocarbon with two double bonds.

diol: a compound with two alcohol groups.

double bond: a group in which two pairs of electrons are shared between two atoms (C=C,C=O, C=N); a double bond is made up of a sigma bond and a pi bond.

enantiomers: stereoisomers which are mirror images; they can be considered to be right and left-handed molecules as they are not superimposable on each other.

ester (R-CO₂-R): also called a carboxylic ester; a molecule which contains a carbonyl group (C=O) that is singly bonded to another oxygen atom which is bonded to another carbon atom (-O-R); produced by the condensation reaction between a carboxylic acid and an alcohol.

ether (C-O-C): a molecule which contains a carbon-oxygen-carbon linkage.

ethoxide (CH₃CH₂O⁻): anion formed by treating ethanol with an alkali metal.

ethoxy group (CH₃CH₂O-): a two carbon alkoxy susbtituent.

ethyl alcohol (CH₃CH₂OH): trivial name for ethanol.

ethyl group (CH₃CH₂-): a two carbon alkyl substituent.

formaldehyde (CH₂O): trivial name for methanal.

formic acid (HCO₂H): trivial name for methanoic acid.

functional group: a specific collection of atoms that reacts in a characteristic way, used as a means of classifying organic compounds into families; each functional group in a compound behaves independently, thus the reactivity of even complex molecules can be predicted.

functional isomers: compounds which have the same molecular formula that possess different functional groups.

geometric isomers: stereoisomers which differ in the geometry around either a carbon-carbon double bond or ring.

halo group (X-): substituent which is one of the four halogens; fluoro (F), chloro (Cl), bromo (Br), or iodo (I).

halogenation: the addition of a halogen molecule (only Cl_2 or Br_2) to an alkene to produce an alkyl dihalide or alkyne to produce an alkyl tetrahalide.

heteroatoms: elements other than carbon and hydrogen that are commonly found in organic molecules, such as nitrogen, oxygen and the halogens.

homologous series: compounds which differ only by the number of CH₂ units present; CH₃CH₂Cl, CH₃CH₂Cl, and CH₃CH₂CH₂Cl, all belong to the same homologous series (1° alkyl chlorides).

hydration: the addition of a molecule of water to the carbon-carbon double bond of an alkene to form an alcohol; the reaction follows Markovnikov's rule and requires a mineral acid catalyst (H⁺).

hydrocarbons: compounds which contain only carbon and hydrogen.

hydrohalogenation: the addition of a molecule of HCl or HBr to an alkene to form an alkyl halide, or to an alkyne to form a geminal alkyl dihalide, the addition follows Markovnikov's rule.

hydrolysis: a substitution reaction in which a molecule of water replaces a leaving group in a compound; examples would include the hydrolysis of ester or amides to the corresponding carboxylic acids.

hydroxyl group (-OH): the functional group present in an alcohol.

index of hydrogen deficiency (IHD): a basis for the comparison of the molecular formula of a given compound to that of an acyclic alkane which has the same number of carbon atoms (since the latter has the maximum number of hydrogens per carbon possible C_nH_{2n+2}); can be used to determine possible structural formulas from a molecular formula; if the IHD = 1, the given compound may contain either 1 double bond or 1 ring; if IHD =2, the compound may contain 2 double bonds, 2 rings, a ring and a double bond, or one triple bond; etc.

isobutyl: the (CH₃)₂CH-CH₂- group, the trivial name for the 2-methylpropyl group.

isopropyl: the (CH₃)₂CH- group, the trivial name for the 1-methylethyl group.

isomers: compounds which have the same molecular formulas but different structures; they may be sub-classified as functional, geometric, optical, positional, skeletal, stereo, or structural.

IUPAC (International Union of Pure and Applied Chemistry): the organization that establishes the system of nomenclature for organic and inorganic compounds using prefixes and suffixes, developed in the late 19th century.

ketone (RCOR): a compound which contains a carbonyl group (C=O) attached to two carbon atoms.

Markovnikov's rule: organic reaction in which the major product is the one predicted to form by adding a hydrogen atom to the carbon atom of a double bond which contains the greater number of hydrogen atoms.

meta-(m-): prefix used to describe disubstituted benzenes in which the two groups are in positions 1 and 3.

methoxy group (CH₃O-): the simplest alkoxy substituent.

methyl alcohol (CH₃OH): trivial name for methanol.

methyl group (CH₃-): the simplest alkyl substituent.

nomenclature: a method of systematically naming organic compounds using prefixes and suffixes.

olefin: another name for an alkene.

optical activity: refers to the ability of a compound to interact with plane polarized light; such a compound is said to be optically active and it will not be superimposable on its mirror image.

optical isomers: this refers to compounds which will rotate the plane of polarized light by the same amount, but in opposite directions; also called enantiomers (i.e. non-superimposable mirror images).

ortho- (*o*-): prefix used to describe disubstituted benzenes in which the two groups are in positions 1 and 2.

oxidation: a reaction in which electrons are lost by a species or molecule e.g. $2Cl^- \rightarrow Cl_2$; also the gain of carbon-oxygen bonds, and/or loss of carbon-hydrogen bonds e.g. 1-butanol \rightarrow butanol \rightarrow butanoic acid.

para- (p-): prefix used to describe disubstituted benzenes in which the two groups are in positions 1 and 4.

phenol: a compound containing an OH group attached to an aromatic ring; an aromatic alcohol (e.g. C_6H_5OH).

phenyl group (C_6H_5 - or Ph-): the group formed by removing one hydrogen atom from benzene.

plane of symmetry: an imaginary surface which divides an object (or molecule) into two equal halves which are mirror images of each other.

polarimeter: an instrument used to measure the optical activity of a compound.

positional isomers: compounds which differ only in the position of a functional group; 2-pentanol and 3-pentanol are positional isomers.

primary (1°): general term used to describe a specific structural arrangement in which a carbon atom is attached to one other carbon atom.

primary alcohol (RCH₂OH): alcohol in which the OH group is bonded to a carbon bonded to one alkyl group.

primary amine (RNH₂): amine in which the N atom is bonded to one alkyl group.

propoxy group (CH₃CH₂CH₂O-): a straight chain three carbon alkoxy substituent.

propyl group (CH₃CH₂CH₂-): a straight chain three carbon alkyl substituent.

qualitative analysis: visual tests used in the laboratory to determine the presence or absence of a given functional group:

Beilstein Test: the appearance of a green flame when a sample of an organic compound is burned on a copper wire is indicative of the presence of an alkyl halide.

Brady's Test: the formation of a yellow or orange precipitate when an organic compound is treated with Brady's reagent is indicative of the presence of an aldehyde or a ketone.

Bromine Test: the formation of a colourless solution when an organic compound is treated with a solution of bromine (orange-brown) is indicative of the presence of an unsaturated hydrocarbon (alkene or alkyne).

KHCO₃ Test: the rapid formation of bubbles of CO_2 when an organic compound is treated with KHCO₃(aq) is indicative of the presence of a carboxylic acid.

KMnO₄ Test: the formation of a brown precipitate when an organic compound is treated with a basic solution of potassium permanganate (purple solution) is indicative of the presence of a functional group which can be oxidized (an alkene, alkyne, aldehyde, primary or secondary alcohol).

Lucas Test: the rapid formation of a milky suspension when an organic compound is treated with the Lucas reagent is indicative of the presence of a tertiary alcohol; secondary alcohols react much slower, and primary alcohols hardly at all.

Sodium Test: the evolution of hydrogen gas when an organic compound is treated with sodium metal is indicative of the presence of an alcohol or a carboxylic acid.

Tollens' Test: the formation of a silver mirror when an organic compound is treated with Tollens' reagent is indicative of the presence of an aldehyde.

quaternary (4°) carbon: a carbon that is bonded to four carbon atoms.

reduction: a reaction in which a substance gains electrons, or loses O atoms, or gains H atoms; examples would be: $Cl_2 \rightarrow 2Cl^2$, and the conversion of 2-butanone to 2-butanol.

road map: a type of question in which the structures of the compounds must be deduced from the formulas of the compounds and the results of various reactions.

saturated: a compound which does not contain any double or triple bonds.

secondary (2°): general term used to describe a specific structural arrangement in which a carbon atom that is attached to two other carbon atoms.

secondary alcohol (R₂CH-OH): alcohol in which the OH group is bonded to a carbon atom bonded to two alkyl groups.

secondary amine (R_2NH): amine in which the N atom is bonded to two alkyl groups.

side chain: a chain of atoms which is attached to a longer chain of atoms; examples of side chains would be methyl, ethyl, propyl groups (among others).

skeletal isomers: isomers which differ in the length of the carbon chain; examples are pentane and dimethylpropane.

stereochemistry: the branch of organic chemistry that deals with the three-dimensional structure of molecules.

stereogenic carbon (asymmetric carbon): a carbon atom which is bonded to four different groups or atoms; a chiral molecule must contain a stereogenic carbon, and therefore has no plane of symmetry and is not superimposable on its mirror image.

stereoisomers: isomers which have the same bonding connectivity but have a different three-dimensional structure; examples would be cis-2-butene and trans-2-butene (geometric isomers), and the left and right handed forms of 2-butanol (enantiomers).

structural formula: a convention used to represent the structures of organic molecules in which not all the valence electrons of the atoms are shown.

structural isomerism: relation between two compounds which have the same molecular formula, but different structures; they may be further classified as functional, positional, or skeletal isomers. This relation is also called constitutional isomerism.

substituent: an atom or group of atoms that is attached to a group of atoms; examples would be Cl-(chloro), NO₂- (nitro), CH₃CH₂- (ethyl), etc...

substitution reaction: process in which one group or atom in a molecule is replaced by another group or atom.

tert (t-): prefix used to indicate that the carbon atom connected to the main chain of a molecule is itself bonded to three carbon atoms: $(CH_3)_3C$ - is the t-butyl group. This prefix is not counted for alphabetization purposes.

tert-butyl (*t***-butyl**): trivial name for the 1,1-dimethylethyl group.

tertiary (3°): general term used to describe a specific structural arrangement.

tertiary alcohol (R₃C-OH): an alcohol in which the OH group is bonded to a carbon atom bonded to three alkyl groups.

tertiary amine (R₃N): an amine in which the N atom is bonded to three carbon atoms.

toluene (C₆H₅CH₃): trivial name for methylbenzene

trans: geometric form of a substituted alkene or cyclic compound in which two substituents are on opposite side of the carbon-carbon double bond or the ring.

triple bond: a group in which three pairs of electrons are shared between two atoms; carbon-carbon $(C \equiv C)$ and carbon-nitrogen $(C \equiv N)$ triple bonds are very common in organic compounds; a triple bond is made up of a sigma bond and two pi bonds.

trivial name: common name which has been used for a long period of time for a simple compound, or a simple common name for a very complicated structure. The structural formula cannot be deduced from the name using a set of rules.

unit of unsaturation: also called the index of hydrogen deficiency (IHD).

unsaturated: refers to a compound which contains at least one double or triple bond; addition of excess hydrogen to such a molecule will produce a saturated compound.