Skip to main content
KPU Surrey Campus

You are here


Efficacy of two native Beauveria bassiana isolates from climbing cutworm pests of grapes against common Lepidopteran pests in berry and vegetable crops

Authors: Sepideh Tahriri, Heather Little, Lisa Wegener, Athena Williamson, Deborah Henderson


Funding sources:

BC Wine Grape Council (BCWGC)

Natural Sciences and Engineering Research Council of Canada (NSERC)


Presented at:

BC Wine Grape Council Conference

July 2017

PDF icon LAST VERSION-poster BCWine grape council, 2017.pdf


Logo ENLogo FR



Novel approaches to IPM strategies for climbing cutworm in wine grapes


Cutworm is a term that refers to numerous caterpillar species that survive in the soil overwinter and causes extensive damage to plant buds in the early spring.  Cutworms can cause significant loss of high value fruit in vineyards due to their wasteful feeding habits and attack on developing buds.  Due to the high crop value a low level of bud damage is acceptable in vineyards.  Chemical insecticide applications are typically recommended when bud damage is in the range of 2 to 4%.  However, chemical insecticides can negatively impact animal and human health, pollinators, natural enemies, fisheries, and lead to the development of resistance in insect pests.  Alternatively, biological control makes use of naturally occurring organisms, including nematodes, fungi, viruses, and bacteria that can infect and kill pests. 


The objective of our study is to examine the efficacy of nematode species and fungal isolates of Beauveria bassiana and combinations that are pathogenic to cutworm species as alternatives to chemical controls. Cold tolerant nematodes and fungal isolates would offer the most promise, since our aim is to target cutworms (Noctua comes and Abagrotis orbis) in the fall when larvae are small and most susceptible.  Laboratory trials are currently being performed at temperatures ranging from 15 to 25°C on larvae of varying size.  To date, preliminary results indicate that nematode species Steinernema feltiae is the most efficacious against cutworm species, N. comes and A. orbis at low temperaturesMortality in N. comes and A. orbis larvae treated with Beauveria bassiana is in the range of 20%-50% at temperatures of 15 and 17°C. Higher temperatures increased mortality in both species.  In addition, trials planned for 2019 and 2020 will target the use of combinations of these agents with the goal of increasing cutworm mortality.  Lastly, trials using potted grape vines will begin this summer to examine the efficacy of these biological agents as an intermediate step.  This work is the first stage in reducing the use of chemical insecticides for cutworm control in vineyards and enhancing the sustainability of management practices. 



From Waste to Clean Food:

This project is a collaboration between the ISH Greenhouse and Simon Fraser University’s Lab for Alternative Energy Conversion (LAEC). This project aims to address some of the pressure being applied to our current food production system from global weather pattern change, pollution, and a rapidly growing world population. The LAEC is looking at growing food and medicine in an engineered environment, such as closed greenhouses for optimum and reliable plant growth year-round. With an estimated 60% of the energy produced globally converted to waste-heat, this research program aims to develop and test greenhouse equipment that utilizes waste-heat driven technologies, accelerating the development and commercialization of the needed technologies for sustainable closed greenhouses.


Biological demand Extended Efficiciency Fertilizer:

This project is in partnership with Lucent BioSciences Ltd. and the intention is to explore the value of a proprietary natural carrier system which retains plant nutrients in the root zone and available as the plant demands. Such a carrier has the potential to prevent loss of nutrients required by food crops during flooding and weather events which normally leach nutrients out of the root zone. The project will evaluate the longevity of the natural carrier in horticultural media under various conditions with 3 diverse crop types, the response of each crop to a range of concentrations of a representative micronutrient, Manganese, and compare its mode of action to industry standard chelated Manganese.


Evaluation of Concentric's Biological Optimizer product Synergro on yield and fruit quality in an established blueberry field planting:

Currently in the second year of study, this project explores the value of a novel microbial consortium product, Synergro, for propagation and field production of high bush blueberries in BC.

Rachel & Ben in Blueberry Field    Rachel marking at Blueberry field


Registration of two ISH Trichoderma isolates as a Microbial Pest Control Product with Pest Management Regulatory Agency of Canada (PMRA)

 The Biocontrol Registration team works to build thorough Registration packages on sustainable alternatives to traditional agricultural practices and pest management strategies. Since 2016, we have been working with two promising isolates of Trichoderma that are native to the Fraser Valley region of British Columbia. We are providing the PMRA with literature reviews that span broad topics about Trichoderma such as antagonism, modes of action, secondary metabolite production, environmental fate and quality control for mass spore production. We also focus on the minute and intricate details of product risk, morphological and molecular identification and ecological interaction.

Mass production of the spores from these two Trichoderma isolates is a critical element of this research, and we are currently investigating ways for optimizing production.  Two-stage fermentation using liquid culture to inoculate solid substrate (e.g. rice, sorghum, wheat, etc) is the current method used for production.  The effects of choice of substrate, length of liquid culture incubation, presence of light during sporulation, as well as harvesting and long term storage are being studied.

Our research team works directly with the Institute’s culture collections and our industry partner to develop and coordinate research both in the lab/greenhouse and at the nursery. Not only are these topics crucial for supplying the PMRA with health and safety information meant to protect workers in the field, but also provides students at the Institute with the rare opportunity to perform extensive applicable research: from the lab to commercial agriculture.


Research Team:          Elizabeth Hudgins

                                    Lisa Wegener

                                    Li Ma

                                    Yan Han

                                    Matilda Tabert

                                    Elena Devanadera


Development of New Fungal Bio-pesticides Using Beauveria bassiana

Since 2011, ISH has been working with native beneficial fungi, including several coastal Beauveria bassiana isolates, to develop new fungal biopesticides. We already proceeded with pre-registration consultations, and has not only the research but also production capacity for these fungi. Our objective is to register our B. bassiana isolates with PMRA, and put more biological products into the hands of growers and landscape professionals.


Phase I

In 2016, the efficacy of native Okanagan B. bassiana isolates from the pest of grapes, the climbing cutworm, and several coastal B. bassiana isolates were studied. Both contact and residual infection models as well as LT50/90 and LC50/90 were used to evaluate the isolates against Diamond back moth, (Plutella xylostella) and Cabbage looper (Trichoplusia ni) as two common lepidopteran pests and Noctua comes and Abagrotis orbis as two damaging cutworm species in grapes. Mass production efficacy was estimated for the isolates.

Phase I was financially supported by BC Wine Grape Council and Natural Sciences and Engineering Research Council of Canada.


Phase II

In 2017, the Okanagan and two coastal isolates were studied for potential control against cabbage looper in the field and green peach aphid (Myzus persicae) in the greenhouse. In addition, direct and residual toxicity studies were carried out on duckweed (Lemna minor), an aquatic plant as a non-target organism, and a beneficial parasitoid wasp, Trichogramma sibericum, to provide data for eventual registration. Production optimization trials were continued for registration purposes. Current results are promising and will be developed further.


Phase II was financially supported by Wine Grape Council and BC Investment Agriculture Foundation.


Development of New Bio-fungicide and Bio-Fertilizer Using Waste Products of Insects

The larvae of the Black Soldier Fly, Hermetia illucens, are common detritus feeders in compost that produce “frass”, their own waste product, and moult, which adds their chitinous exoskeletons to the frass bioproduct material. In addition to its high organic nutrient profile and chitin content, frass also harbours a unique microbial community comprised of species known to benefit plant growth. From 2013 to 2014, the first phase assay explored the value of the blend frass and chitin for potential as a biofertilizer but also demonstrated suppressive effects on plant pathogens in vitro. Current research project (phase II, 2017-2019) expands upon phase I to develop a new liquid bio-fertilizer based on insect frass for hydroponic growing system and organic agriculture. The other face of this research is to optimize practices to produce a new bio-fungicide using chitin and microbial community components of the frass to suppress soil borne plant pathogens and manage plant diseases.


This research is financially supported by Enterra Feed Corp.



Development of Integrated Pest Management Strategies for New Viral Biopesticides in Organic Crops

Biopesticides that make use of naturally occurring insect viruses remain underutilized for pest control in agriculture, despite the advantages of being non-toxic to humans and other non-arthropods, suitable for organic farming, require no pre-harvest interval and high potential for long-term pest control due to secondary cycling. In Canada, only a few viruses are registered for forest and agricultural pests.   Most recently in 2015, the baculovirus product, Loopex was registered by Canadian company, Sylvar Technologies Inc. for the control of cabbage looper (Trichoplusia ni) in greenhouse vegetables.


The cabbage looper, along with other caterpillar species (diamondback moth and imported cabbageworm) are major pests of brassica crops (ex. broccoli, cabbage, kale, brussel sprouts), many of which are grown organically in Canada with inferior yields to conventionally grown brassicas.  Resistance to the mainstay product, DiPel (Bacillus thuringiensis) threatens the control of caterpillars in organic brassicas. 


Project objectives:

  1. Determine the efficacy of Loopex for the control of caterpillars (cabbage looper, diamondback moth, and imported cabbageworm) found in brassica field crops.
  2. To supply efficacy data to aid Sylvar Technologies in the expansion of registration of the Loopex product for field vegetable crops.
  3. Develop an integrated pest management strategy (IPM) that incorporates Loopex for the control of caterpillars in in brassica crops.

We performed a series of small plot trials on the KPU Langley campus and a large scale field trial at the Tsawwassen Farm School over a five year period.  From these trials, we have identified that Loopex provides control of cabbage looper larvae, however is not effective at suppressing other caterpillar pests (diamond back moth, imported cabbage worm).  Spray applications of Loopex combined with DiPel in a tank mix and weekly alternations of these two products provide significant suppression of the caterpillar complex on brassica plants and should be included in future IPM strategies for organic brassica crops.

This joint project between ISH and Sylvar Technologies Inc. concluded in the spring 2018.  This project was part of the Organic Science Cluster II, initiated by the Organic Agriculture Centre of Canada, Dalhousie University and the industry applicant, the Organic Federation of Canada. 


**Also link to the Organic Science Canada magazine article



Seaweed Extract (Microcystis integrifolia) as a Biostimulant in Horticulture

Biostimulants for crop management are gaining increased attention with continued demand for increasing crop yield. Seaweed extracts represent one category of biostimulant, where Microcystis integrifolia extracts are widely used for yield and quality enhancement in crops. Seaweed extract is being used as a biostimulant due to the presence of plant growth regulators. Our study investigates how different concentrations of M. integrifolia affect plant mRNA transcriptomes, using the model plant Arabidopsis thaliana. Seaweed extract was also used in combination with auxins and cytokinins to develop an efficient protocol for in vitro regeneration of Coleous plant.


Evaluation of spark Treatment on Eliminating Pathogens and Pests on Greenhouse Surfaces.

 From 2014 to 2015, Spark treatments were applied in our research greenhouse for disinfecting bacterial and fungal pathogens, including Botrytis cinerea, Pythium ultimum, Fusarium oxysporum, Pseudomonas syringae, and Clavibacter michiganensis sub sp. Michiganensis. Insect pests including thrips, spidermites, white flies, and crickets were also used for the investigation.